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Digital images are characterized by high redundancy and strong interpixel
correlation. Breaking the correlation between data and improving sensitivity are
crucial to protecting image information. To effectively achieve this goal, a chaotic
encryption algorithm based on Josephus cycle scrambling diffusion is proposed in
this paper. First, the adaptive key is generated by the Hash function to generate the
initial value of the chaotic system, which is highly related to the plaintext image.
The generation of the adaptive key can effectively resist plaintext attacks. Second,
the pseudorandom sequence generated by the two-difference chaoticmapping is
applied as the step sequence and direction sequence of Josephus traversal and
optimizes Josephus traversal via variable steps and directions; the ranks of plain-
text images are scrambled by the Josephus cycle to break the strong correlation
between pixels. Finally, the initial cipher-text is divided into blocks to complete the
Josephus cycle scrambling diffusion of image blocks, intrablock pixel bits and bit
planes. The double permutations at the pixel level and bit level break the high
correlation between pixels. Compared with the previous studies, our algorithm’s
average entropy of encrypted images is 7.9994, which has slightly improved. The
correlation coefficient of the cryptographic image fluctuates up and down by
approximately 0. In addition, the algorithmhas the advantages of a large key space,
high key sensitivity, anti-robust attack, and feasible encryption efficiency.
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1 Introduction

Due to the epidemic, increasing interpersonal communications have been moved to the
internet. As a result, users’ demands for privacy protection and information security are
gradually becoming urgent. Unlike text data, digital images, as a kind of two-dimensional
information commonly used online, possess considerable data volume, high redundancy and
strong interpixel correlations. Therefore, traditional encryption methods are not applicable
for encrypting images, while the existing encryption algorithms for digital images generally
have the disadvantages of complicated encryption processes and long time consumption,
which no longer satisfy the demands of image encryption.

Chaos theory was first introduced by mathematician Matthews [1] into the field of
cryptography; however, it was not until 1998 that Fridrich [2] proposed an image encryption
algorithm based on chaotic mapping, which opened a new era of this particular algorithm’s
rapid development. American mathematician Claude Shannon [3] suggested the classical
structure of image encryption based on a chaotic system to be scrambling-diffusion. In the
scrambling phase, the positions of image pixels are varied so that their distribution is as
random as possible, destroying the similarity between neighboring pixels in the plain-text
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image. In the diffusion phase, the pixel values interact with each
other and change randomly to hide the plain-text image information
[4–6]. The security of the encryption effect of this algorithm based
on chaotic systems is mainly determined by the structure of this
encryption algorithm and the performance of the adopted chaotic
systems [7].

According to the confusion system used for encryption, chaotic
encryption algorithms can be classified into two types: continuous
chaotic encryption algorithms and discrete chaotic encryption
algorithms. Continuous chaotic systems consist of one-
dimensional higher-order nonlinear differential equations or
multivariate first-order differential equations, while discrete
chaotic systems comprise iterative mappings, i.e., difference
equations. Low-dimensional continuous chaotic systems were
previously applied to cryptography in chaos theory because of
their simple structure and easy implementation. For example,
Gao et al. [8] proposed an image encryption algorithm based on
the typical Lorenz and Chen systems.

Due to its small or discontinuous chaotic range, resulting in
an uneven distribution of the output chaotic sequence, C. Pak [9],
R.A. Elmanfaloty [10] improved the structures of different one-
dimensional chaotic systems to effectively increase the chaotic
range of chaotic systems and improve the uniformity of chaotic
system distribution and the key space of encryption algorithms.
Wang et al. [11] proposed a chaotic image encryption algorithm
with a perceptual model based on a high-dimensional Loranz
chaotic system and a perceptual model of a neural network.
Cheng et al. [12], based on a five-dimensional super
multiwing chaotic system, designed a chunkwise scrambling
algorithm with mixed R, G, and B components to enhance the
dependency among the components and improve the scrambling
efficiency. Discrete chaotic systems include one-dimensional
chaotic mappings and high-dimensional chaotic mappings.
One-dimensional chaotic mappings such as logistic
mappings, segmented linear chaotic mappings, and Tent are
used for image encryption because of their simple structure and
fast calculation, such as those of the digital image encryption
algorithm based on logistic mapping proposed by Wang et al.
[13]. However, their one-dimensional discrete chaotic
mapping interval is narrow, multiple period windows will

lead to a small cipher space, and the attacker can analyze
and attack the chaotic mapping used, which is proven to be
insecure [14]. To overcome the shortcomings of one-
dimensional chaotic mappings, researchers have proposed
many different methods to construct chaotic mappings. Hua
et al. [15] proposed a two-dimensional logic-based tuned
sinusoidal mapping and used it for image encryption. Due
to truncation and rounding errors, the chaotic trajectory can be
trapped in a cycle when the device is operated with finite
accuracy [16]. [17] proposed extending the time for chaotic
mappings to enter a cycle with extended accuracy, which is also
limited in its effectiveness since the accuracy cannot be scaled
up infinitely. Another approach is to combine multiple
mappings together by cascading or switching [12]. Both
cascading and switching ignore the interactions between
multiple mappings, and their combination’s effect depends
on the superiority of the strategy. Chai et al. [38] proposed
an image encryption scheme based on multiobjective
optimization and block compressed sensing. However, those
methods based on chaotic systems only scramble the plaint
image pixel position, which does not change the entropy and
histogram values of the plaintext. This means that the capacity
to defend against statistical attacks is poor.

Additionally, some nonchaotic encryption schemes have been
used for image encryption at the bit level. The Arnold transform,
geometry transform, and E curve transform are classical image
scrambling algorithms that are nonchaotic. Hua et al. [28]
proposed a two-dimensional plane scrambling algorithm based
on Josephus travel. Yu and Yang [35] proposed a symmetric
algorithm applied in remote sensing images, which improved
encryption security. A dynamic bit-flipping diffusion encryption
algorithm is proposed in the literature. Zhu et al. [36] proposed a
three-dimensional bit-level image encryption algorithm using
Rubik’s cube method.

Inspired by the above literature, we combine image bit-level
and bit-level encryption and propose an image encryption
method with high security and sensitivity by combining a new
two-dimensional differential chaotic map and an improved
Joseph cycle. In this paper, we propose an image encryption
method with high security and sensitivity by combining a new

FIGURE 1
Bifurcation diagram for the range 2≤ a≤6 with respect to x, y.
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two-dimensional differential chaos mapping and an improved
Josephus cycle. The image chunking strategy is utilized to
enhance the algorithm scrambling efficiency; the improved
Josephus cycle enables dynamic variable-step and variable-
direction Josephus scrambling diffusion. The scrambling-
diffusion of encrypted images is carried out in two
dimensions: pixel bits within a block and pixel bit planes
within a block, which can effectively reduce the correlation
between adjacent data, and the scrambling effect of encrypted
images is more random and effective [18]. Also used the adaptive
key, which came from the sum and average of the plain-text
image, while the method in this paper adopted the hash value of
the plain-text image as the adaptive key, which is more sensitive
to plain-text changes.

In this paper, the security of the algorithm is verified and
compared with related algorithms in terms of correlation and
information entropy. The experimental results show that the
algorithm in this paper encrypts images with uniform pixel
distribution and low interpixel correlation and can effectively
resist common attacks with high security.

2 Basic theory

2.1 Chaotic systems

2.1.1 Two-dimensional differential chaotic map
A chaotic system is a nonlinear dynamic system. It has randomness,

sensitivity to initial conditions, nonperiodicity and long-term
unpredictability. It is suitable for image encryption with a large
amount of data and high correlation. Two-dimensional chaotic
mapping contains fewer periodic windows in branching graphs, a
larger range of chaotic parameters, and faster operation compared to
one-dimensional chaotic mapping, and these properties are consistent
with cryptographic characteristics, so two-dimensional chaotic mapping
is often used in key generators. Combined with the Nicholson-Bailey
model [40] in the study of biological populations, the two-dimensional
difference equation to be studied in this paper is proposed as follows,
which is a variation of Nicholson-Bailey model [41].

yn+1 � yn exp r 1 − yn( ) − axn( )
xn+1 � yn 1 − exp −axn( )( ){ (1)

The r is chosen as 3, the initial point is arbitrarily set between [0, 1],
and Eq. 1 is iterated 1,000 times. Figure 1 shows the bifurcation diagram
of parameter a about x and y in the interval [2, 6]. From the figure, we
can see that it is a curve at [2, 3.22], so the equation converges at this
stage. When a = 3.23, the Hopf branch appears, and periodic motion
occurs at [3.23, 3.62]. At [3.63, 3.90], the image contains a 4-terminal
curve, which means a motion of 4-cycle. When the equation is greater
than 3.91, as a increases, there is no regularity at the beginning, and the
equation gradually enters chaos.

2.1.2 Lyapunov exponent
The Lyapunov exponent is an important index to verify the

randomness and chaotic characteristics of chaotic sequences. If the
Lyapunov exponent of the chaotic system is positive, the chaotic
system has chaotic characteristics. The larger the positive value is,
the better the chaotic characteristics of the chaotic system are.

FIGURE 3
General frame of the encryption scheme.

FIGURE 2
Lyapunov exponent plots for 2≤ a≤5
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It can be seen from Figure 2, when a > 4.04, the Lyapunov
exponent is greater than zero, which indicates that the equation
enters a chaotic phenomenon. Figure 2 verifies that the Lyapunov
exponent diagram of this 2D difference equation agrees with the
bifurcation diagram, and the equation shows rich dynamic behavior
as the parameter a changes in the interval [2, 6].

2.1.3 Stability analysis of chaotic systems
The immovable points of the nonlinear iterative equations are used as

a powerful tool to describe the evolution of the system dynamics. System
(1) contains immobile points that satisfy the F � (x*, y*) equation as:

y* � y* exp r 1 − y( ) − ax*( )
x* � y*(1 − exp −ax*( ) } (2)

The solution is:

x1
* � r − lnQ( ) Q − 1( )

Qr

y1
* � 1 − lnQ

r

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

Among them:

Q � eax* (4)
The positive equilibrium point of Eq. 1 is expressed as

E* � (x*, y*), and based on Eq. 3, the positive equilibrium point
cannot be solved analytically.

To discuss the stability of the equilibrium point, model (1) is
written in the following equations:

FIGURE 4
Plain-text histogram and cryptographic histogram for different images.
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x n + 1( ) � F1 xn, yn( )
y n + 1( ) � F2 xn, yn( ){ (5)

Adding a small permutation Δx and Δy at the n pair of
equilibrium points, the equation evolves at the n + 1 pair as follows:

x n + 1( ) + Δxn+1 � F1 xn, yn( ) + Δxn

y n + 1( ) + Δyn+1 � F2 xn, yn( ) + Δyn
{ (6)

To obtain a linear stability analysis, the Taylor expansion of the
above equation is given as:

Δxn+1
Δyn+1

( ) �
zF1
zx

zF1
zy

zF2
zx

zF2
zy

⎛⎜⎝ ⎞⎟⎠
x*,y*

Δxn

Δyn
( ) (7)

For the equilibrium point E0 � (0, 0):
zF1
zx

zF1
zy

zF2
zx

zF2
zy

⎛⎜⎝ ⎞⎟⎠
0,0

� er 0
0 0

( ) (8)

where the characteristic roots are λ1 � er and λ2 � 0, with the
parameter r> 0, which leads to |λ1|> 1, indicating that the
equilibrium point E0 � (0, 0) is unstable.

For positive equilibrium point E* � (N*, P*):
zF1
zN

∣∣∣∣ E* � 1 − r − lnQ

zF1
zP

∣∣∣∣ E* � −a r + lnQ( )Q
r

zF2
zN

∣∣∣∣ E* � 1 − Q

zF2
zN

∣∣∣∣ E* � a r + lnQ( )Q
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

Given the matrix:

A � G11 G12

G21 G22
( ) (10)

where the characteristic equation of G11 � zF1
zN|E*, G12 � zF1

zP |E*, G21 �
zF1
zN|E*, G22 � zF1

zN|E* is:
G11 − λ G12

G21 G22 − λ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ � 0 (11)

Additionally, revised as:

Q λ( ) ≡ λ2 − Bλ + C � 0 (12)
where B � G11 + G12, C � G11G22 − G21G12,

Q(λ) is an upper-concave para-curve, while the equation’s root
as the positive equilibrium point becomes asymptotically stable
when the following conditions are satisfied.

Solving the condition for asymptotic stability of the positive
equilibrium point as:

−1 − C<B< 1 + C, C< 1 (13)

2.2 Josephus cycle

Josephus cycle [37] is a classical problem of mathematical
application: it is known that individuals (denoted by the
numbers 1,2,3,4, n, respectively) are sitting around a round
table. Starting with the person numbered 1, the person who
has counted to m comes out of the column; the sequence started
from 1 again and repeated until all the people come out of the
column. Based on the order of the columns, a sequence is
obtained: Josephus sequence. Available at J � f(S, l), this is S
for the total number of elements, l for the step size, and J for the
Josephus sequence.

To increase the diversity of Josephus, this paper introduces the
pseudorandom sequence generated by a chaotic system as the dynamic
step of the Josephus cycle based on the original rule; using the parity of
the pseudorandom sequence as the dynamic direction, the Josephus
function is further extended to J � f(S, l, r,D).

TABLE 1 Correlations of ciphertext images.
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TABLE 2 NPCR and UACI values of cipher-text images (%).

Teat
image

NPCR UACI

Reference [24] Reference [25] Perposed Reference [24] Reference [25] Perposed

5.2.08 99.960 99.6070 99.7085 33.692 33.4734 33.4695

5.2.09 99.876 99.6106 99.6989 33.548 33.4572 33.4610

5.2.10 99.654 99.6096 99.7012 33.454 33.4575 33.4580

7.1.01 99.957 99.6095 99.6945 33.648 33.4726 33.4506

7.1.02 99.918 99.6117 99.7102 33.465 33.4563 33.4409

7.1.03 99.849 99.6123 99.6968 33.273 33.4535 33.4606

7.1.04 99.991 99.6114 99.6978 33.202 33.4475 33.4572

7.1.05 99.942 99.6099 99.6982 33.830 33.4559 33.4608

7.1.06 99.670 99.6064 99.6979 33.627 33.4515 33.5106

7.1.07 99.983 99.6068 99.6986 33.609 33.4638 33.4600

7.1.08 99.818 99.6097 99.6995 33.375 33.4536 33.4610

7.1.09 99.874 99.6112 99.6989 33.530 33.4729 33.4679

7.1.10 99.697 99.6096 99.6979 33.438 33.4605 33.4665

boat.512 99.715 99.6084 99.7002 33.374 33.4434 33.4492

elaine.512 99.746 99.6095 99.7010 33.379 33.4746 33.4700

Gray21.512 99.643 99.6074 99.6998 33.507 33.4588 33.4672

Numbers.512 99.653 99.6102 99.6899 33.388 33.4477 33.4576

Ruler.512 99.637 99.6092 99.6996 33.415 33.4637 33.4566

Mean 99.910 99.6095 99.6700 33.486 33.459 33.4605

STD 0.1312 0.00171 0.00445 0.1551 0.0094 0.0142

Pass/all All All All 14/18 All All
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2.3 Combined scrambling diffusion of bits
and bit planes

The pixels of a grayscale map are generally composed of 8-digit
binary, where the amount of binary information varies greatly from
position to position. For example, a “1” in the eighth bit represents
128 (27), while the lowest bit “1” represents 1 (20). The information
contained in each bit is proportional as follows:

p i( ) � 2i−1

∑8
i�1
2i−1

i � 1, 2, 3, 4, 5, 6, 7, 8 (14)

From Eq. 14, it can be seen that as the bits increase, the proportion
of information contained in the bits increases. Therefore, the bits of
different bit positions are scrambled. Then, the scrambled bit planes are
diffused by the bit positions. Finally, 8 bit planes are obtained after bit
position diffusion, and these bit planes are reorganized into one pixel
plane to obtain the image after bit position diffusion.

3 Image encryption algorithm

3.1 Encryption algorithm

The encryption scheme proposed in this paper mainly consists of
five parts: image rank permutation, image block division, image block
diffusion, bit-level scrambling diffusion and cipher-text image block
combination. The proposed encryption scheme can be represented by a
block diagram, as shown in Figure 3. The whole scheme can be divided

into pixel diffusion and bit diffusion. First, an adaptive key is generated
through a plain-text image for the chaotic system’s initial values, and
three pairs of pseudorandom sequences are generated. Second, to diffuse
the image via row and column shuffling and divide into blocks, one pair
of pseudo random sequences is used for the modified Josephus traversal
to finish the block scrambling diffusion. Third, another two pairs of
pseudorandom sequences finish shuffling at the bit level for the pixel and
bit plane. In combination with a modified Josephus traversal, the image
is dislocated and diffused using a production-issue chaotic sequence.

3.2 Key generation

Adaptive keys are an effective method to improve the resistance of
encrypted images to known plaintext attacks. As [19] described,
independent key streams increase the possibility of selecting
plaintext attacks. In contrast, generating adaptive keys from plain-
text images can achieve a 1-time 1-classification effect. Of course, the
plain-text image has to be highly dispersed into the keystream. For this
reason, this paper uses the hash value of the plain-text image to
construct the initial value of the chaotic system. Any small change
in the imagewill result in a huge change in the hash value, and the initial
value of the chaotic system will also change. Of course, the use of
different systemparameters and initial values determines the superiority
of the cryptographic complexity of this chaotic sequence [20]. Showed
that choosing appropriate parameters in the chaotic interval couldmake
the autocorrelation property of the resulting chaotic sequence close to
white noise. Therefore, in this paper, the adaptive key is processed and
controlled to fall within the chaotic interval.

FIGURE 5
Correlations of adjacent pixels in the horizontal (A,D), vertical (B,E), and diagonal (C,F) directions before and after Lena encryption.
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FIGURE 6
Correlations of adjacent pixels in the horizontal (A,D), vertical (B,E), and diagonal (C,F) directions before and after boat encryption.

FIGURE 7
Correlations of adjacent pixels in the horizontal (A,D), vertical (B,E), and diagonal (C,F) directions before and after Feifei encryption.
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Read the plain-text image p(m, n), where m and n are the length
and width of the image, respectively. Calculate the SHA-256 cipher-
text valueH of the image. Convert the cipher-text value to the initial
value of the 2-D differential chaos system x0, y0, the parameter a,
and the number of discarded terms c.

x0 � hex2dec H 1: 16( )( ) × 10−20

y0 � hex2dec H 17: 32( )( ) × 10−20

a � hex2dec H 1: 16( )( ) × 10−20 + 4.04
c � hex2dec H 1: 16( )( ) × 10−20 + 1000

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (15)

The initial values generated by Eq. 15 are brought into Eq. 1 to
iterate the random sequence of c + 21 × m × n to obtain two chaotic
sequences x,y. To enhance the randomness of the chaotic sequences,
the first c values are discarded, and the interval sampling method
proposed by [21] is adopted for sequence sampling with a sampling
interval of 12 to expand the x,y sequence into four pseudorandom
sequences of x1, x2, y1, y2, and [21] revealed that x1, x2 are
independent and y1, y2 are independent. The even positions of x1, x2

are extracted to form a new random sequence x3, and the even positions
of y1, y2 are extracted to form a new random sequence y3.

3.3 Image scrambling encryption

First read in the image P through the row/column permutation
into P1. Second, we divide the scrambled image P1 of size M × N
into m × n non-overlapping blocks P1 � Pi | i � 1, 2,/, k{ }, where
k � M × N

m × n is the number of blocks, and each block has m × n pixels,
i.e., P1i � P1i,j | j � 1, 2,/, m × n{ }.

The image block scrambling process can be divided into the
following 3 steps.
Step 1 Interblock scrambling. In this paper, we give a cyclic traversal
methodwith variable step length and direction. Themethod is combined
with a chaotic system, in which the chaotic sequence x1, y1 is used as the
direction and step sequence, and when the Josephus traversal cycle is
performed on the image blocks, the cycle direction is determined first,
and then the traversal is performed according to the step length.
Step 2Block built-in scrambling protects pixel bit scrambling and bit
plane scrambling.

Step 2.1. Pixel bit position scrambling uses the chaotic sequence x3, y3

as a variable direction, variable step sequence to traverse the pixel’s bits in
a cycle.

Step 2.2. Bit plane scrambling, image blocks are all composed of 8 bit
planes, using chaotic sequences x2, y2, with directional sequences,
step sequences, and cyclic traversal of the bit values within the bit
planes.
Step 3 Splice the cipher-text image blocks to obtain the cipher-text image.

3.4 Image recovery

The decryption process is the reverse of the encryption process,
and the main steps are as follows:

Input: Ciphertext image, SHA-256 cipher-text value H.
Out: Plaintext image.

TABLE 3 Information entropy of plaintext images and ciphertext images.

Textimage Size Plaintext images Ciphertext images

Reference [22] Reference [25] Proposed

5.2.08 512 × 512 7.5237 7.9991 7.9993 7.9995

5.2.10 5.7056 7.9991 7.9993 7.9990

7.1.01 6.0274 7.9990 7.9991 7.9992

7.1.02 4.0045 7.9991 7.9992 7.9996

7.1.04 6.1074 7.9992 7.9993 7.9993

7.1.05 6.5632 7.9992 7.9992 7.9992

7.1.06 6.6953 7.9992 7.9993 7.9996

7.1.07 5.9916 7.9991 7.9993 7.9995

7.1.08 5.5034 7.9990 7.9993 7.9996

7.1.09 6.1898 7.9991 7.9992 7.9995

7.1.10 5.9088 7.9990 7.9993 7.9995

Boat.512 7.1914 7.9992 7.9994 7.9996

Elaine.512 7.5060 7.9992 7.9993 7.9994

Gray21.512 4.3923 7.9993 7.9994 7.9996

Numbers.512 7.7292 7.9994 7.9991 7.9995

Ruler.512 0.5000 7.9987 7.9992 7.9996

Mean — 7.9991 7.9993 7.9994
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Step 1The ciphertext image I is converted into a 2-D moment of size
M × N array.
Step 2Generated the key sequences {x1, x2, x3, y1, y2, y3} as the
method in Section 3.1
Step 3Block built-in scrambling protects pixel bit scrambling and bit
plane scrambling.

Step 3.1. Joseph traversal with sequence {x3, y3}, which uses as a
variable step size and variable direction is used to complete the
scrambling of the image bit plane.

Step 3.2. Joseph traversal with sequence {x2, y2}, which uses as a
variable step size and variable direction is used to complete the
scrambling of the pixel bit plane.

Step 4. Joseph traversal with sequence {x1, y1}, which is used as variable
astep size and variable direction is used to scramble the image pixel
blocks, and a new image matrix is obtained, which is the plaintext image.

4 Security analysis

The effectiveness of the proposed encryption algorithm is
verified from histogram, correlation, differential attack, key space,

information entropy, clipping and noise attacks using data from the
USC-SIPI ’Miscellaneous’ database.

4.1 Histogram analysis

The more uniform the histogram is, the looser the relationship
between the pixel intensity value and the number of pixels, the more
random the image is, and the more difficult it is for an attacker to
recover the original image through a histogram analysis attack.

Figure 4 shows the histograms and pixel distributions of the three
images of Lena, Boat, and Feifei in the testing database, where the first
row is the plain-text image, the second is the histogram of the plain-text
image, the third is the pixel distribution of the plain-text image, and the
fourth and fifth are the histograms and pixel distributions of the cipher-
text obtained from encryption of the corresponding plain-text. Both the
histogram and the pixel distribution of the plain-text image present
significant differences, i.e., uneven distribution. The difference between
the histogram and the pixel distribution of the obtained cipher text is
relatively insignificant, and the comparison shows that the pixel
distribution of the cipher text is more uniform than that of the
plain text. This is because the Josephus cyclic scrambling diffusion
of bit positions and bits at the bit level changed the bit values composed
of the plain-text image’s bit planes so that the pixel value distribution of

TABLE 4 Comparison of local Shannon entropy.

Test image Size Reference [23] Reference [22] Reference [25] Proposed

5.2.08 512 × 512 7.902,793 7.902,831 7.902,038 7.902,658

5.2.09 7.902,972 7.903,028 7.902,722 7.902,726

5.2.10 7.902,464 7.903,511 7.902,478 7.902,646

7.1.01 7.903,339 7.903,252 7.902,012 7.902,714

7.1.02 7.902,649 7.903,313 7.902,484 7.902,660

7.1.03 7.902,493 7.903,103 7.902,833 7.902,698

7.1.04 7.903,261 7.902,625 7.902,047 7.902,685

7.1.05 7.902,714 7.902,435 7.902,568 7.902,669

7.1.06 7.902,563 7.902,675 7.902,022 7.902,712

7.1.07 7.903,185 7.902,813 7.902,398 7.902,683

7.1.08 7.902,805 7.902,668 7.902,137 7.902,697

7.1.09 7.903,070 7.902,632 7.902,142 7.902,657

7.1.10 7.902,929 7.902,486 7.902,171 7.902,706

Boat.512 7.902,697 7.902,885 7.902,046 7.902,438

Elaine.512 7.902,755 7.902,805 7.902,632 7.902,642

Gray21.512 7.903,661 7.903,106 7.902,718 7.902,495

Numbers.512 7.902,545 7.903,263 7.902,067 7.902,368

Ruler.512 7.902,896 7.902,848 7.902,004 7.902,549

Mean 7.902,877 7.902,904 7.902,307 7.902,633

STD 0.000324 0.000303 0.0002931 0.000102

PASS/ALL ALL ALL ALL ALL
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the reconstructed pixel planes tends to be uniform. Therefore, the
algorithm in this paper was proven to have a good ability to resist
statistical analysis.

To test the uniformity of the histogram, a chi-square test was
used, which is computed by the following equation.

χ2 � 1
255

∑255
i�0

histi − 1
256

∑255
i�0
histi⎛⎝ ⎞⎠2

(16)

where histi is the pixel value frequency (0–255). The lower the chi-
square value, the better the consistency. To the significant level of α
is fixed, so P χ2 ≥ χ2α(n − 1){ } � α, then χ2 ≺ χ2α(n − 1) satisfies the
desired condition.

When α � 0.01, 0.05, 0.1; χ20.01(255) � 310.45739,
χ20.05(255) � 293.24783, χ20.1(255) � 284.33591, the plaintext image
and the encrypted image χ2 points. When the significance level was
α = 0.05, all ciphertext images [39] passed the test.

4.2 Correlation analysis

The neighboring pixel values of plain-text images are very close to
each other and have a strong correlation. Breaking the correlation
between pixels is important to resist statistical analysis attacks.
Correlation analysis is used to test the strength of the correlation
between image pixels. The correlation between ordinary image pixels
is usually extremely high, and the correlation coefficient of an image
usually tends to be close to 1. If the correlation between adjacent or
most pixels can be broken instead, then if the correlation and the
correlation coefficient are reduced, it is more resistant to statistical
analysis attacks. The correlation coefficient is calculated using the
following equation:

E x( ) � 1
N

∑N
i�1
xi

D x( ) � 1
N

∑N
i�1

xi − E x( )[ ]2

cov x, y( ) � 1
N

∑N
i�1

x − E x( )[ ] y − E y( )[ ]
γxy � cov x, y( )���������

D x( )D y( )√

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

Randomly selected 5,000 pairs of pixel points, the statistical
results of the correlation between the horizontal, vertical and
diagonal directions of the original image and the cipher-text
image in the test database are shown in Table 1, from which it
can be seen that the number of prior relationships in the three
directions of the cipher-text image fluctuates up and down around
x = 0, indicating that the correlation between the pixels of the
adjacent images of the plain-text is very low, revealing that the
proposed encryption method is reliable and secure.

Figures 5–7 visualizes the correlation results before and after
encryption. The plain-text images are strongly correlated in three
directions. After the proposed encryption algorithm, the correlation
of neighboring pixels is substantially weakened. It is this structure
and characteristics of the plain-text image that make it resistant to
statistical attacks.

4.3 Differential attack analysis

The differential attack is a deciphering method to attack the
encryption algorithm by analyzing the degree of cipher-text change

FIGURE 8
Encryption results after clipping attack (A) Encryption of Lena’s 1/4 clipping, (B) Encryption of Boat’s 1/8 clipping, (C) Encryption of Feifei’s 1/
16 clipping.
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due to the subtle difference in plain-text. To analyze the resistance of
the proposed encryption algorithm to the differential attack, this
paper observes the degree of difference between the cipher-text
images after two encryptions by changing the pixel value at any
point in the plain-text image. If the degree of difference is large, the
proposed algorithm is able to resist the differential attack effectively.
The pixel change rate (NPCR) and the pixel average change intensity
(UACI) are usually measured using the expressions of NPCR and
UACI as follows:

NPCR � 1
M × N

∑M

i
∑N

j
D i, j( ) × 100%

D i, j( ) � 1, I1 i, j( ) ≠ I2 i, j( )
0, I1 i, j( ) � I2 i, j( )

⎧⎨⎩
UACI �

∑M

i
∑N

j
I1 i, j( ) − I2 i, j( )∣∣∣∣ ∣∣∣∣D i, j( )
255 × M × N

× 100%

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

where I1, I2 is the two plain-text images to be encrypted with only
one pixel difference. For an arbitrary NPCR and UACI, expect 100%
and 33.4635%.

The NPCR and UACI pairwise scores of the test images were
analyzed. The mean value of NPCR and the standard deviation of
UACI of the proposed method in this paper are 99.6700 and
0.0045, respectively. The mean value and standard deviation of
UACI are 33.4605 and 0.0142, respectively. The comparison
shows that the NPCR, UACI of the proposed encryption

algorithm is very close to the theoretical value, and its
labelling difference is the smallest among the compared
methods. This indicates that the proposed method has better
sensitivity. In addition, the significance level of our images is set
to 0.05, and then the critical values of NPCR and UACI
corresponding to different sizes are calculated. Compared with
the approaches of [22, 23], the proposed method exhibits the
same pass rate, but the mean value of the encrypted images in
this paper is closer to the theoretical value of 33.4605%, but
the standard deviation 0.0142 of the encryption algorithm in
this paper fell between the two comparative works,
indicating that the encryption algorithm in this paper can
better resist the differential attack, but the stability of the
ability to resist the split attack is between the two
comparative methods.

4.4 Key space analysis

To effectively resist brute force attacks, the key should have a
sufficiently large key space in addition to a strong sensitivity. The
size of the key space is determined by the number of keys; the larger
the number of keys, the larger the key space of the encryption
algorithm, and the stronger its ability to resist brute-force attacks.

The security key factors of the encryption algorithm in this
paper are five, which are two parameters of the system, two initial

FIGURE 9
Decryption results after noise attack: (A) decryption of “Lena”with noise intensity of 0.25, (B) decryption of “Ship”with noise intensity of 0.10, and (C)
Decryption of “Baboon” with noise intensity of 0.05.

FIGURE 10
Comparison of decryption results after clipping attack: (A) 1/4° clipping of the encrypted “Lena”, (B) Decryption by the algorithm proposed in this
paper, (C) Decryption by the algorithm proposed in [25], (D) Decryption by the algorithm in [26], (E) Decryption by the algorithm in [27].
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values of the chaotic system and the order of chaos taking m. The
sensitivity of both chaotic parameters and chaotic initial values is
10−15, then the key capacity of this encryption algorithm is
1015 × 1015 × 1015 × 1015 � 1060, which is greater than 2100,
therefore, it can be considered that this image encryption process
has a strong resistance to exhaustive attacks.

4.5 Information entropy analysis

Information entropy is a test of uncertainty and is calculated as
in Eq. 19.

H m( ) � − ∑2N−1

k�0
p mi( )log2 p mi( ) (19)

p(m) denotes the probability of occurrence of information m. For
grayscale images, information m has 256 states, the minimum
value is 0 and the maximum value is 255. When the information
entropy is eight, it indicates that the information is completely
random, that is, the larger the cipher-text information entropy is,
the more secure it is. Table 3 provides the image information
entropy using the proposed encryption algorithm, and by
comparing with the methods of [24, 25], the cipher-text image
information entropy 7.9994 proposed in this paper is closer to the
ideal value of eight. Its randomness is better than that of the
compared methods.

The information entropy can better reflect the overall
randomness of the image, while the local information entropy
can better reflect the microscopic randomness of the image. Local
information entropy is an improved information algorithm that

selects nonoverlapping regions in an image and calculates the
evaluation information entropy of these regions, which is
calculated as in Eq. 20:

H k,TB( ) S( ) � 1
k
∑k
i�1
H Si( ) (20)

k denotes the number of regions, TB denotes the number of pixels in
the selected regions, and H(k,TB)(S) denotes the local information
entropy. Let k = 30, and the confidence interval of local information
entropy is [7.900,573,7.904,227] when the significance level is 0.05.
The local information entropy of the test image is shown in Table 4,
and the encryption algorithm proposed in this paper and those in
[22, 23, 25] are all within the confidence interval. However, the mean
value of 7.902,633 of the proposed algorithm in this paper is better
than that of [25]. The standard deviation in this paper is 0.000102,
which is smaller than those of the three compared methods. The
local randomness of the image encrypted by the proposed algorithm
is also better than the three compared methods in terms of stability
performance.

4.6 Clipping attack and noise attack

A clipping attack is an attack method that intercepts and
destroys or removes part of the data of a cipher-text image
during transmission. Usually, the clipped part is a region in the
image with strong interpixel correlation, and the lost information is
difficult to recover. Therefore, breaking the interpixel correlation is a
measure of the clipping resistance performance of the image
encryption algorithm. If the strong interpixel correlation of the

FIGURE 11
Comparison of decryption results after noise attack: (A) decrypted after a 1% noise attack by the proposed algorithm, (B) decrypted after a 1% noise
attack by the algorithm in [25], (C) decrypted after a 1% noise attack by the algorithm in [42], (D) decrypted after a 5% noise attack by the proposed
algorithm, (E) decrypted after a 5% noise attack by the algorithm in [25], and (F) decrypted after a 5% noise attack by the algorithm in [42].
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image leads to decryption, it may fail when the cipher-text image
after the loss of information does not provide enough valid
information. In this paper, by combining two-dimensional
difference mapping with the Josephus cycle, the image is
dislocated using a chunking strategy with uniform pixel
distribution, and when the cipher-text image is clipped, the
clipped part is not a complete distinction in the original image
but is scattered in various regional points so that the clipped
image still retains enough information to enable it to recover the
corresponding plain-text image. The following test images of
Lena et al. shown in Figure 8 are clipped by 1/16, 1/8, and 1/4 (the
pixels at the clipped position are all 0, and the clipped sample is
shown in Figure 10), and the decrypted image of the clipped
cipher-text image is shown in the second row of Figure 8. The
algorithm in this paper has certain recovery ability when
subjected to clipping attacks, and the encryption algorithm in
this paper can resist certain clipping attacks.

Figure 9 shows the effect of Lean reduced by different decryption
algorithms at the same degree of clipping, and it can be seen that the
proposed encryption algorithm is different from [25]. There is almost
no difference between the proposed encryption algorithm and [25], but
it is significantly better than the algorithms in [26, 27].

Image noise is the unnecessary or redundant interference
information that exists in image data. In the process of image
acquisition or transmission, due to the influence of image sensor
material, working environment, transmission channel, etc., the
image may receive noise contamination, which will have a certain
impact on the decryption of the terminal image. Therefore, the
ability to resist certain noise attacks is an indicator of the
performance of image encryption algorithms. In this paper, we

use pepper noise to simulate noise contamination in transmission
and add different intensities of pepper noise to the cipher image to
test the anti-noise ability of the algorithm in this paper.

Figure 10 shows the results obtained by restoring the test cipher-
text image after adding pretzel noise with noise densities of 0.25, 0.10,
and 0.05. From this, it can be seen that the greater the noise intensity,
the deeper the impact on the image and the poorer the quality of the
decrypted image, but the algorithm in this paper can still distinguish
the main information of the original image from the overall effect,
which indicates that the algorithm in this paper can tolerate a certain
degree of noise and has a certain anti-interference ability.

Figure 11 shows the individual results of using the encryption
algorithms proposed in this paper and [25, 26] for cipher-text
image restoration under noise attacks. The first column shows the
proposed algorithm in this paper, the second column shows the
results of [25], and the third column is the results of [42]. The
first row is a 1% noise attack, and the second row is a 5% noise
attack. By comparing the decrypted images under the same noise
interference, it can be seen that the decryption algorithm in this
paper outperforms the other two encryption algorithms.

4.7 Lossless and perceived encryption
analysis

The proposed method is lossless encryption. We use the value of
the peak signal measure noise ratio (PSNR) to calculate the
difference between the plain and cipher images. When the value
of PSNR between the plain image and the cipher image is minimal,
the encryption performance is better. In contrast, the PSNR value
between plain and decrypted images must be infinity to prove that
the encryption is lossless. PSNR can be calculated by Eq. (21)

PSNR � 10 × log10 (2552/
1

MN
∑M
i�1
∑N
j�1

I i, j( ) − I′ i, j( )∣∣∣∣ ∣∣∣∣2
255

(21)

where I is the plain image, I′ is the image cipher or image decrypt
depending on the calculation of the encryption or decryption
process and the pixel coordinates are i, j. The result measured by
PSNR is presented in Table 3.

We also use structural similarity (SSIM) to measure the quality
of the encryption proposed for the cipher image. In addition, SSIM is

TABLE 5 SSIM between the cover image and stego image.

Test image Proposed

Boat.512 0.9785

Elaine.512 0.9797

Gray21.512 0.9794

Numbers.512 0.9786

Ruler.512 0.9812

TABLE 6 The running time of different algorithms.

Metric Input images Encryption(s) Decryption(s)

Reference [29]

Lena

0.40585 —

Reference [30] 1.7351 3.4689

Reference [31] 0.3440 —

Reference [32] 10.8232 10.6952

Reference [33] 14.8401 14.9266

Reference [34] 0.329,276 0.217,033

Proposed 0.34498 0.2017
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also used to measure the quality of the decrypted image from the
distortion that occurs, which has a value between 0 and 1. A large
value means that SSIM is better. The SSIM can be calculated by
Eq. 22

SSIM � 2μcμs + C1( ) 2σCS + C2( )
μc

2 + μs
2 + C1( ) σc2 + σs2 + C2( ) (22)

where C1 andC2 are two constants, c represents the cover image and
s means the stego image. Moreover, represent the average and the
standard deviation, respectively. The result measured by SSIM is
presented in Table 5.

4.8 Encryption time and encryption
complexity analysis

In this section, we chose an image named Lena, which is a
representation to compare the encryption time with the other
encryption schemes. Table 6 shows different algorithms’
encryption times. Encryption is not the best, but it is the best in
decryption since decryption does not need to recive the
pseudorandom sequence.

The proposed algorithm’s computational complexity mainly
depends on the calculation of the integer data. The proposed
encryption method’s computational complexity is
Θ(8(M +N) + N

2 + M × N
2 )≤Θ(M × N), where M and N represent

the length and width of the image, respectively. Therefore, the
encryption scheme is proposed with a high encryption speed.

5 Conclusion

To address the problems of weak security of current image
encryption algorithms, this paper proposes a Josephus cycle image
encryption algorithm based on a two-difference chaotic system. The
chunking strategy is used to improve the efficiency of the scrambling
diffusion, and the adaptive key generation algorithm is used to break
the correlation between neighboring pixels through the scrambling
diffusion of bit bits and bit planes by applying the rank
transformation method and the Josephus cycle with variable step
length and direction. Experimental evidence is conducted using
USC-SIPI ’Miscellaneous’ images, which are commonly used in

encryption. The results show that the algorithm in this paper can
effectively resist common attacks such as information analysis, brute
force, noise, and clipping and can be applied to the encryption and
transmission of image information. However, the algorithm in this
paper also has certain shortcomings, and the bit-level encryption in
this paper increases the complexity of the algorithm. To guarantee
the security of the algorithm, it is complicated to choose the
scrambling method, which affects the encryption speed, and if
the algorithm is applied to fast mobile devices, the efficiency of
the algorithm needs to be further improved.
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