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The acoustic radiation and scattering of underwater bubbles play an important
role in ocean exploration, target localization, acoustic measurements, etc. The
two-phase fluid flow and moving boundary result in the lack of means to predict
the sound field, which limits the exploration of relevant characteristics and
mechanisms. The present work is intended to introduce a numerical approach
for acoustic radiation and scattering of moving bubbles at low frequencies with
CFD-BEM couplingmethod. The two-phase interface is captured with the volume
of fluid scheme and the sound field is solved with the boundary element method.
After that, some benchmark problems are solved and the results are compared
with data from literatures. Finally, the radiation and scattering ofmoving bubbles at
low frequencies are predicted with our approach. The acoustic radiation pressure
of bubbles shows a slight increase trend during deformation. As the ka value
increases, both the acoustic directionality of radiation and scattering exhibit main
and side lobes, and the scattering energy gradually concentrates in the positive
direction of the incident wave. For a moving bubble, its displacement and velocity
of moving have a significant impact on the directionality of the scattered sound
field. Therefore, the problem of bubble localization can be studied based on
directionality shift.
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1 Introduction

The research of acoustic radiation in gas-liquid two-phase medium is the theoretical
basis for the development of technologies such as ocean exploration, target localization and
acoustic measurement. For decades, researchers have conducted extensive and in-depth
research on the acoustic radiation and scattering properties of bubbles.

The research of acoustic propagation of bubbles can be traced back to 1917, Rayleigh [1]
derived the pressure equation during collapsing bubble based on the phenomenon of sound
generated by bubble breakage in boiling water. Then the motion equation of a spherical
bubble under incompressible flow conditions was established. Since the Rayleigh’s equation
tended to be idealized and cannot accurately describe the behavior of bubbles in reality, many
researchers subsequently modified the equation under different conditions [2–5]. Zhang
et al. [6] have proposed a bubble dynamic equation that can simultaneously consider the
effects of boundary, bubble interaction, environmental flow field, gravity, bubble migration,
fluid compressibility, viscosity and surface tension, and achieved good results. Minnaert [7]
was the first to study the vibration of bubbles separated from the nozzle He analyzed the
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small oscillation of a single spherical bubble, and gave an expression
for the intrinsic frequency of the bubble. Some researchers paid
attention to the violent bubbles with large amplitude vibration, such
as bubbles generated by underwater explosion, they analyzed the
pulsating pressure and radiation noise produced by collapsing
bubble [8–10]. Twersky [11] used the Bessel-Lejeuneade series to
characterize the acoustic scattering at a relatively small equivalent
frequency (ka) and derived a theoretical solution for the sound
scattering of a small sphere. Subsequently, the results of the
scattering problem of elastic spheres in fluids were also discussed
[12], and these theoretical predictions were confirmed by a large
number of experiments [13]. In 1994, Leighton [14] summarized the
contents of previous studies on bubble acoustics in different fields
and published the book The Acoustic Bubble, and the theoretical
system of bubble acoustics was basically established.

Before the 21st century, due to the incomplete understanding of
bubbles, the research on the acoustic field of bubbles was mainly
focused on the theoretical model. With the rapid development of
computers, the improvement of computational efficiency and
accuracy has provided great convenience for the numerical
simulation of bubble acoustics. Using CFD commercial software
to calculate the motion and acoustics of bubbles has been a widely
used means [15], such as ANSYS Fluent and COMSOL
Multiphysics. The main methods for predicting the acoustic field
include the integral equation method [16], the T-matrix method
[17], the finite element method (FEM) [18], and the boundary
element method (BEM) [19].

The BEM can reduce the computational dimension and improve
the computational efficiency, so it was suitable for the calculation of
acoustic radiation problems [20]. Chen [21] used the BEM to
simulate the underwater acoustic radiation and scattering of
multiple stationary objects. Fan [22] studied the acoustic
scattering problems of stationary bubbles based on the BEM, and
obtained accurate results. Many researchers have also taken different
approaches to calculate the acoustic field in the frequency and time
domains. Liu [23] combined large eddy simulation and acoustic
analogy to predict the acoustic characteristics of bubble formation at
the nozzle. Zhang et al. [24] combined radial point interpolation
with implicit time integration to analyze the underwater acoustic
propagation problem. Cong [25] combined experiments and
numerical simulations to analyze the flow pattern and acoustic
properties of the bubble. In addition, Chai et al. [26, 27] used
FEM and the meshless method to study the distribution of the
acoustic field.

With the deeper understanding of bubble acoustics, the research
of bubble acoustic radiation and scattering has been gradually
improved. However, due to the complexity of flow-acoustic
coupling analysis, most of the current studies on acoustic
scattering were about stationary objects [28], and there were few
studies on the acoustic scattering of moving bubbles. Therefore, this
paper calculated the acoustic radiation and scattering of moving
bubbles at low frequencies based on the coupled CFD-BEMmethod.
The research is as follows: the calculation method of flow field and
the acoustic BEM are introduced in Chapter 2, the calculation
procedure of acoustic field used in this paper is verified in
Chapter 3, the results with analysis of acoustic radiation and
scattering about moving bubbles are shown in Chapter 4 and

Chapter 5 respectively, and the conclusions are included in
Chapter 6.

2 Numerical model

The motion and acoustic scattering of bubbles in water involve
two-phase fluid flow and flow-acoustic coupling process. In this
work, the flow field was predicted by the CFD commercial software,
which captured the boundary information during the bubble motion
based on the volume of fluid method (VOF). Then, the boundary
information is used as the initial condition for BEM to calculate the
acoustic field. The pressure and velocity at the boundary of a bubble
during its movement can be calculated in the flow field, which are
transformed into pulsating pressure and vibration velocity that can
be used for acoustic calculations through Fourier transform. This
CFD-BEM coupling calculation belongs to the one-way coupling
and is an explicit algorithm.

2.1 VOF for flow field

The prediction of flow field in present work is based on the
Navier-Stokes (N-S) equation, which is based on the following
assumptions: 1) the moving of bubble is isothermal and
adiabatic, there is no heat transfer occurs with the external
environment, 2) the gas and liquid in the model are
incompressible Newtonian fluids, 3) the interaction between the
gas and liquid happens only at the interface. According to the law of
conservation of mass, the continuity equation of fluid motion is
deduced as

∇u � 0 (1)
in which u represents the velocity of the fluid flow, ▽ is the Laplace
operator.

∇ � z

zx
+ z

zy
+ z

zz
(2)

According to Newton’s second law, the momentum equation for
an incompressible viscous fluid is derived as

zρu
zt

+ ∇ · ρuu � −∇ρ + ∇ · μ ∇u( )T[ ] + ρg (3)

in which ρ denotes the density of the liquid, t is the time of moving μ
is the viscosity coefficient of the fluid; g is the acceleration of gravity.

Due to the shape of the bubble is changeable, the interface
change has a great influence on the movement of bubbles. Various
complex phenomena in the movement of bubbles are also related to
the interaction of gas-liquid phase at the interface. Therefore, the
VOF model is used for the prediction of the bubble surface, tracking
the moving interface on the basis of a fixed Eulerian grid. Because
the VOF method does not track the movement of fluid particles, it
has the advantages of implementation, the amount of calculation
and accuracy.

The VOF method is proposed by Hirt [29] in 1981, which is
based on the principle that the fluid is divided into target fluid and
non-target fluid. Then the fluid is tracked by calculating the volume
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fraction of each phase in the grid, so as to determine the interface of
two phases. The volume function can be obtained as follows.

C � α

Q
(4)

in which α is the volume of the target fluid in the grid, α represents
the volume of gas in this work, Q is the grid volume.

There are three types of results.

(1) C = 0: there is no target fluid in the grid,
(2) 0 < C < 1: the interior of the grid contains both the target fluid

and the non-target fluid, which represented as an interface,
(3) C = 1: the interior of the grid is target fluid.

The prediction of the flow field of the bubble in this paperwas based
on the commercial CFD software ANSYS Fluent. The VOF model and
the SIMPLE algorithm was used to solve the N-S equation, the Euler
scheme was adopted for the time discretization.t. In addition, the
standard k-ε model was adopted as the turbulence model. Under the
above conditions, the bubble floating and deformation in the gravity
field were simulated. The boundary information of the bubble was
captured for the acoustic field calculation.

2.2 BEM for acoustic field

Sound is a mechanical wave existing in elastic medium. Acoustic
field is the space where acoustic waves exist. Due to the perturbation
of acoustic wave, parameters such as density and pressure of the
medium change with time and space. The calculation of the acoustic
field in this work is based on the following assumptions: 1) the
medium is an ideal fluid without viscosity, 2) themedium is assumed
to be homogeneous and stationary, 3) the process of the sound
propagating is adiabatic, 4) the amplitude of acoustic wave is small.

Based on the above assumptions, according to the law of
conservation of mass (continuity equation), the law of
conservation of momentum (equation of motion) and the
physical state of the medium (equation of matter), the
corresponding linearized equations are obtained by omitting the
higher order minima. So as to obtain the linear acoustic fluctuation
equation in a homogeneous medium.

∇2p r, t( ) − 1
c2

z2p r, t( )
zt2

� 0 (5)

in which p(r, t) represents the pressure function, r is the distance of
the wave propagation., c is the speed of sound.

Supposing there is a simple harmonic wave in the sound field,
the sound pressure at any point can be expressed as

p � Peiωt (6)
in which P is the amplitude of sound pressure at any point, i is an
imaginary unit, and ω is the circular frequency, ω = 2πf, f is the
frequency of the wave.

Helmholtz equation can be obtained by bringing Eq. 6 into Eq. 5:

∇2p + k2p � 0 (7)
in which k represents the wave number, k = ω/c.

The calculation of the acoustic field is to solve Eq. 7 according to
different boundary conditions. The acoustic boundary conditions
are generally divided into the following three types: velocity
boundary condition (Neumann boundary condition), acoustic
pressure boundary condition (Dirichlet boundary condition) and
impedance boundary condition (Robin boundary condition). The
boundary condition of the bubble is the pressure and velocity are
continuous on the bubble surface, Neumann and Dirichlet boundary
conditions are both used in the following simulation. It needs to be
noted that the velocity and pressure obtained from flow field
calculations cannot be directly used as boundary conditions,
which require Fourier transform to be coupled into acoustic
calculations. Since the radius of the bubble is small relative to the
wavelength of the plane wave, the computational situation can be
simplified by using the Born approximation [30].

The BEM is based on the integral theorem to transform the
differential equation in the solution domain into an integral
equation on the boundary. Then the boundary is divided into
finite size boundary elements, finally transformed into the
algebraic equation to solve. The Helmholtz equation is
discretized by Gaussian integration. The types of calculations
include internal and external problems. Solving the radiated and
scattered sound fields of the bubble belongs to the external problem.
The general expression of the boundary integral equation of the field
point can be obtained by numerical derivation of Eq. 7 using Green’s
formula.

∫
v
Ψ∇2p − p∇2Ψ( )dv � ∫

s
Ψ
zp

zn
− p

zΨ

zn
( )ds (8)

in which v is the vibration velocity, s is the area of integration, n is the
normal vector of the integration surface, ψ is the fundamental
solution of the accompanying equation.

Ψ � A
e−ikr

r
+ B

eikr

r
(9)

in which A and B are directional factors, r is the distance from the
measuring point to the boundary.

Assuming that the fundamental solution and the sound pressure
satisfy Eq. 8, the relationship between the sound pressure at the field
point and the boundary information is obtained as follows

p P( ) � ∫
s
Ψ
zp

zn
− p

zΨ

zn
( )ds (10)

Therefore, for the problem of acoustic radiation in the external
field, the sound pressure at any field point in the domain can be
solved by the sound pressure on the surface of the objects and the
vibration velocity of surface particles. However, there is a problem
that the solution of boundary integral equation (CBIE) is not unique
at the characteristic frequency in the common BEM. The following is
the expression of the CBIE for the acoustic scattering problem.

c x( )p x( ) � ∫
Γ
G x, y( )q y( )dΓ y( ) − ∫

Γ

zG x, y( )
zn y( ) p y( )dΓ y( )

+ pin x( ), x ∈ Γ
(11)

In which, G(x, y) represents the Green’s function, p(x) and q(x)
represent the sound pressure and sound flux at the point on the
boundary respectively, c(x) determined by the geometric features at
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point x, pin(x) is the incident sound pressure at point x, Γ represents
the integral region.

In this work, CHIEF method was used to configure some points
(CHIEF points) outside the sound field area. The integral equation of
CHIEF points can be combined with the boundary integral equation to
form an overdetermined equation, thus solving the problem that the
solution is not unique at the characteristic frequency.

In solving the coefficient matrix of boundary nodes, if the
computational source point is close to or even coincides with the
element node, the fundamental solution of Green’s function has
first-order singularity, which affects the calculation accuracy. For the
singular integral problem, this paper used the method of coordinate
transformation to introduce the Jacobi matrix to eliminate the
singular integral.

3 Verification of acoustic BEM program
and flow field simulation

Based on the assumptions of sound field calculation given in
Chapter 2, the acoustic radiation of the bubble can be calculated by
the analytical formula. Then the numerical solution calculated by BEM
was compared with the analytical solution to verify the effectiveness of
BEM. Subsequently, the accuracy of flow field calculation was verified
through grid convergence analysis and literature comparison.

3.1 Acoustic radiation from an infinitely long
rigid cylinder

The analytical formula for the acoustic radiation from an
infinitely long cylindrical surface in Fourier Acoustics [31] is as
follows

p r, ϕ( ) � iρ0cu0
H0 kr( )
H0

′ ka( ) (12)

whereH0 is the Bessel function of the third kind, a is the radius of the
cylinder, r is the distance between the measuring point and the
cylindrical surface, ρ0 is the medium density, u0 is the vibration

velocity of the cylindrical surface, ϕ is the angle in the three-
dimensional space. When calculating, a = 1 m, ka = 1, u0 = 1 m/s.

Based on the BEM program, the circumferential boundary of the
two-dimensional infinitely and long cylinder was discretized, and
was divided into 64 linear elements, as shown in Figure 1A. Due to
the symmetry of the cylinder, a Cartesian coordinate system was
established with the center of the circle as the coordinate origin.
Then, starting from the surface of the cylinder, a total of
40 monitoring points were evenly distributed along the positive
direction of the x-axis with a spacing of 1 m. The decreasing trend of
acoustic pressure along the positive direction of x-axis was analyzed.

Figure 1B shows the results of the analytical and numerical
solutions of the sound pressure at the field points. At low frequency
(ka = 1), the distribution of the sound pressure gradually decreases
with the increase of the radiation distance. The sound pressure
calculated by the two methods is basically the same, which proves
that the analytical solution is in good agreement with the numerical

FIGURE 1
(A) Bubble boundarymeshing. (B)Comparison between numerical and analytical solutions of acoustic radiation from an infinitely long rigid cylinder.

FIGURE 2
A scattering model of infinitely long rigid long cylinder.
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solution. The BEM program used in this work is reliable and can be
applied to the next part of the acoustic calculation of the bubble.

3.2 Acoustic scattering from an infinitely
long rigid cylinder

Supposing there is a plane wave propagating along the x-axis, its
sound pressure can be expressed as

pi x, t( ) � p0e
j ωt−kx( ) (13)

in which p0 is the amplitude of sound pressure, x is the distance
between the field point and the cylindrical surface.

Based on the computational model in Figure 2, the analytical
solution of the scattered sound pressure of the far field can be
obtained from The Fundamentals of Acoustics [32].

ps r,φ, t( ) ≈ p0

			
2a
π

√
ej ωt−kr( )	

r
√ R φ( ) (14)

in which r is the monitoring distance, R(φ) is represented as the
acoustic directivity function.

R φ( ) � 1			
ka

√ ∑∞
n�0

bme
j2n+14 π cos nφ[ ] (15)

bm � − −j( )nεn dJm μ( )
dμ

dH 2( )
m μ( )
dμ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
μ�ka

εn � 1, n � 0
2, n> 0

{ }( ) (16)

in which J is the Bessel function of the first kind, H is the Bessel
function of the third kind, φ represents the angle between the

monitoring point and the x-axis, εn is a parameter related to n.
When calculating, a = 1 m, r = 100 m, p0 = 1 Pa.

The analytical and BEM solutions of the far-field scattering
sound pressure calculated at different ka values are given in Figure 3.
The distribution of the scattered sound pressure has a clear
relationship with ka, both for the theoretical solution and for the
BEM. The calculation results of the two methods are in good
agreement when ka is small. When ka increases, the finer grid
needs to be used to reduce errors. The consistency of the BEM results
with the theoretical solutions illustrates the effectiveness of the BEM
program used in this work.

3.3 Acoustic scattering from an infinitely
long elastic cylinder

The boundary condition of the bubble is different from the rigid
cylinder. But the acoustic scattering of the bubble is similar to the
scattering result of the infinitely long elastic cylinder [33]. Therefore,
the analytical solution of the bubble can be calculated from the
scattered sound pressure equation of the infinitely long elastic
cylinder.

Psc r, ϕ( ) � p0∑∞
n�0

εni
nAn x( )H 2( )

n kr( ) cos nϕ (17)

An x( ) � An x( )s � − Jn x( )
H 2( )

n x( ) (18)

in which, ε is a parameter that depends on n, ϕ is the angle between
the measuring point and the x-axis, An(x) is represented as the

FIGURE 3
Far-field scattering comparison of theoretical and analytical solutions for infinitely long rigid cylinder with different ka values. (A) ka= 1. (B) ka= 2. (C)
ka = 3. (D) ka = 4. (E) ka = 5.
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acoustic directivity function. When calculating, a = 1 m, r = 100 m,
p0 = 1 Pa.

Figure 4 shows the calculation results of analytical solutions and
BEM solutions with different ka values. Unlike the rigid cylinder, the
energy of the scattered wave of the elastic cylinder is concentrated in
the forward direction of the incident wave, which is independent of
the increase of the equivalent frequency ka. With the increase of ka
(Figures 4B, C), half of the scattered wave energy is concentrated in
the positive direction of the incident wave, the other half is evenly
distributed in other directions, and the side lobe energy is small. The
directional characteristic of the sound pressure of the numerical
solution and the theoretical solution at different ka is basically
identical, which proves the correctness of the BEM program. On this
basis, the acoustic scattering of bubbles under the incidence of plane
wave can be discussed.

3.4 The motion of a bubble in water

In order to verify the correctness of the numerical model used
for flow field calculation, it is necessary to conduct simulation of the
floating process of a single bubble in a stationary viscous liquid. The
geometry model is shown in Figure 5A.

In Figure 5A, a bubblewith a radius of 10 mm is used for calculation,
where the width of the calculation domain is 100 mm and the height is
200 mm. The left, right, and lower boundaries of the computational
domain are both no-slip wall conditions, with the upper boundary being
the pressure outlet and set to atmospheric pressure. Bubble moved
upwards from rest under the action of gravity and buoyancy. Three grid
systems of different sizes were used for calculation during the simulation
process. The grids with lengths of 2, 1, and 0.5 mm were selected for
convergence verification. Time steps were all taken as 0.001 s.

FIGURE 4
Comparison of the far-field scattering about theoretical and analytical solutions from infinitely long elastic cylinders with different ka values.
(A) ka = 1. (B) ka = 3. (C) ka = 5.

FIGURE 5
(A) Computation model of fluid field. (B) The variation of bubble shape with motion with a grid size of 0.5 mm. (C) The shape changes of the bubble
with general cases in the literature.
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Figure 5B shows the morphological change of the bubble during
the motion with a grid size of 0.5 mm, which is basically consistent
with the calculation results of Zhang and Li [34, 35] (Figure 5C).
Through calculation, it was found that there was not much
difference in bubble motion among the three grid sizes, and it
can be considered that the calculation has reached a convergence
state. For the sake of calculation accuracy and efficiency, the size of
gird with 1 mm was selected for subsequent calculations.

4 Analysis of acoustic radiation from
bubble

Underwater bubble can be seen as a typical monopole sound
source, and the pressure pulsation from its own volume change is the
main source of its noise generation.

4.1 The capture of bubble boundary

In the calculation of flow field, the movement of bubble within 1s
was selected for analysis. The relevant computational parameters
taken in the simulation in this section were shown in Table 1.

Figure 6 shows the shape changing of the bubble during the
movement. The shape of the bubble after every 0.2 s was shown in
Figure 6A. The bubble rising uniformly changes from a sphere to an
ellipsoid firstly, then the bottom of bubble gradually depresses

inward. With the increase of moving distance, the depression of
bubble gradually deepens, and finally appears a cap shape and
remains stable floating.

It can be found from Figure 6B that the boundary of the bubble is
captured during the process of motion. The method of boundary
capturing selected in this work is based on the air volume fraction.
Firstly, deriving the data of all nodes from the fluid computing
domain. According to Eq. 4 in Section 2, it can be known that 0 <C <
1 represents the bubble boundary. Therefore, fluid particles within
the range of C < 0.5 were selected through programming, and the
bubble boundaries were ultimately captured.

4.2 Discussion of acoustic radiation

In the calculation of BEM with frequency, the calculation
frequency and vibration frequency about bubble need to be
considered. For a spherical bubble in water, the simplified
expression for the resonant frequency can be obtained according
to the literature [36].

fb � 3.25
							
1 + 0.1h

√
a

(19)

where h is the bubble depth and a is the bubble radius. According to
the calculation, the resonant frequency of the bubble was about
300 Hz, so the calculated frequency was chosen as 300 Hz in this
paper.

TABLE 1 Calculational parameters.

Parameter Acoustic velocity Liquid density Bubble radius Bubble velocity

c/m·s−1 ρ/kg·m−3 a/m v/m·s−1

Value 1,500 1,000 0.01 0.1

FIGURE 6
Comparison of the bubble boundary. (A) The contour of the bubble. (B) Capturing the bubble boundary.
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Radiated sound pressure produced by the bubble in uniform
linear motion was calculated. Figure 7A is the result of the
acoustic radiation generated by the volume vibration caused
by the deformation of the moving bubble at the time of 0.2,
0.6, and 1.0 s. The measurement range of the sound field is
defined as within 1–100 m in the horizontal direction of the
bubble. With the increase of the propagation distance of the
sound wave, the pressure of the acoustic radiation decreases
gradually. With the increase of movement time, the extreme
value of the radiated sound field also increases slightly due to the
deformation of the bubble. According to the comparison of
bubble shapes at different time in Figure 7. Since the bubble
size does not change significantly, the difference in the
calculation is not significant.

Figure 7B depicts the acoustic directivity of the bubble at three
moments. It can be clearly seen that the directivity of bubble
acoustic radiation is uniform, and the sound pressure
distribution in all directions is basically the same. The motion
of the bubble has no obvious effect on the directivity of the
acoustic radiation, but it slightly affects its amplitude. There are
two reasons for this phenomenon. One is that the diameter of the
bubble is too small, and the impact of deformation can be
ignored. The other is that the distance of bubble movement is
too short, which can be ignored relative to the length of the
monitoring area.

5 Analysis of acoustic scattering from
moving bubble

In the sound scattering of the bubble, the bubble can be regarded
as a highly compressible elastic sphere. When a free wave encounters
the elastic sphere on the propagation path, the sphere is going to
have a scattering effect on the sound wave. It can also be considered
that the bubble acts as a sound source under the excitation of the
incident wave.

The parameters of bubble in the calculation process were the
same as Table 1 in Chapter 4. The sound pressure amplitude of
incident plane wave was 1 Pa. The calculation domain was taken as a

circle with a radius of 100 m to calculate the acoustic scattering in
the far field of the bubble.

5.1 A bubble moving in a straight line with
uniform velocity

Considering an ideal condition, the bubbles were supposed to
be undeformed, and moving uniformly upward at different
speeds. The sampling points A and B, 100 m away from the
center of the computational domain, were selected as shown in
Figure 8. With coordinates of origin (0, 0), the bubble started to
rise from (0, −10), and the coordinates of the sampling points
were defined as A (−100, 0) and B (100, 0) respectively. The plane
wave was assumed to propagate along the positive direction of the

FIGURE 7
(A) Sound pressure of radiation with monitoring distance at different times. (B) The directivity of acoustic radiation.

FIGURE 8
Location distribution of sampling points A, B and calculation
domain.
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x-axis. The sampling point A was defined as being on the back
side of the wave propagation direction, and sampling point B was
in the forward direction. The bubble has the radius of 1 cm and
the velocity of 1 m/s. The amplitude of the sound pressure of the
incident wave is 1 Pa.

Figure 9 shows the relationship between the scattered sound
pressure and time at A and B from 0 to 20 s when ka = 1. The sound
pressure at A and B both oscillates with time, and the amplitude of

the sound pressure at point B is approximately twice that of point A.
This phenomenon also indicates that due to the presence of the
bubble, most of the energy of acoustic scattering is concentrated in
the front of the sound propagation direction, so the sound pressure
at point B is always greater than that at point A. When t = 10 s, the
bubble is just at the center of A and B, both A and B have the extreme
value of sound pressure. Figure 9A shows the minimum value about
A, and Figure 9B shows the maximum value about B. This represents

FIGURE 9
Variation of scattered sound pressure at (A,B) with time for ka = 1.

FIGURE 10
The change of the directivity of the acoustic scattering under different ka. (A) ka = 1. (B) ka = 2. (C) ka = 3. (D) ka = 4. (E) ka = 5.
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that the forward sound pressure is at its maximum and the reverse
sound pressure is at its minimum, reflecting the effect of the bubble
on the scattered sound field.

At 100 m away from the bubble, the monitoring points were
arranged every 5° and the acoustic directional diagram was
drawn. With the motion of the bubble, the sound field
changes, which can be demonstrated by the change in the
acoustic directivity. This work defined the directional offset
angle θ as shown in Figure 10E. θ represents the angle
between the maximum sound pressure under two working
conditions (the red solid line represents the distribution of
acoustic filed at the initial moment of the bubble, and the blue
dashed line represents the scattered sound field after a period of
bubble movement).

It can be found that ka also has an effect on the distribution of
the acoustic scattering in Chapter 3. Therefore, the comparison of
θ = 10° under different ka was plotted in Figure 10. Figure 10
depicts the change in directionality offset caused by bubble
motion, with the position of measurement points unchanged.
The presence of the bubble has almost no obstruction effect on
the sound wave, so that the energy of the acoustic scattering is
mainly concentrated in the forward direction of the incident
wave. When ka is small (Figure 10A), the directivity of the
acoustic scattering in the far-field of the bubble is not very
obvious, and no side lobes are produced. As ka increases, the
distribution of sound pressure gradually has obvious directivity,

the main lobe and a small part of the side lobes appear (Figures
10D, E).

According to the deviation of acoustic directivity, it is found that
ka does not have much effect on the backward scattering. When ka
increases, the shift of the main lobe becomes more obvious. That is,
the larger the ka is, the more intense the disturbance of bubble
motion on the acoustic field.

In order to further discuss the effect of bubble motion on sound
field, the displacement and velocity of bubble motion required for
θ = 1°, 5°, 10° at different ka were calculated. In Figure 11, H is the
height of the bubble rising in the straight line, V is the speed of
bubble motion, C is the speed of sound, and L is the radius of the
monitoring domain, C = 1,500 m/s, L = 100 m.

Figure 11A depicts the effect of bubble moving displacement
on sound scattering, representing the distance traveled by the
bubble (v = 1 m/s) when the directionality offset angle θ = 1°, 5°,
10°. Obviously, as the displacement of moving increases, the θ

also increases. At the same θ, as the ka increases, the distance of
bubble movement also needs to increase. When the offset angle
θ = 1, the motion distance of the bubble is 100 times radius of
the bubble at least. This proves that the distance the bubble
moves has some effect on the sound pressure of far-field, the
farther the bubble moves, the more pronounced the change in
directivity.

In this paper, the acoustic directivity changing velocity is
defined as

FIGURE 11
Changes of parameters of acoustic scattering when bubble moves at different ka. (A) Movement distance. (B) Movement speed. (C) Percentage of
sound pressure attenuation.
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w i( ) � θ i( )
t i( ) (20)

in which t is the time the bubble moves. w is used to evaluate the
velocity of acoustic directionality shift, representing the angle that a
bubble movement of 1 s can cause the point of maximum sound
pressure to move, the unit is ° s−1.

Figure 11B shows the bubble velocity v corresponding to θ = 1°,
5°, 10° when w = 1°·s−1, representing the relationship between the
offset velocity of acoustic directionality and the velocity of the
bubble. As ka increases, the bubble velocity v also needs to
increase when θ is fixed. When ka is small, the increase of v is
proportional to θ. When ka is large, the speed corresponding to
different offset angles θ has no obvious relationship. The average of
the velocities at the three offset angles θ can be used to represent the
velocity that a bubble needs to reach when w = 1°·s−1. It can be seen
that within the same movement time, the increase in bubble velocity
does not cause a more significant shift in directionality.

Such as shown in Figure 10D, this work defined the percentage
of sound pressure attenuation in the direction of 0° at a certain offset
angle θ as

per � p1 − p2( )
p1

× 100% (21)

where p1 is the sound pressure at point 1 in Figure 10D and p2 is the
sound pressure at point 2.

Figure 11C discusses the percentage of sound pressure attenuation
at different θ under different ka, representing the influence of bubble
motion on the sound pressure in the positive x-axis direction.When θ =
1°, ka has no significant effect on the sound pressure in the direction of
0°. However, the influence of ka on attenuation of sound pressure
increases when the θ increases. In addition, when ka is small, the offset
angle of the acoustic directivity θ has little effect on the sound pressure
attenuation. When ka is large, the increase of the θ will rapidly reduce
the sound pressure value in the direction of 0°. This indicates that within
a fixed monitoring domain, the upward movement of the bubble will
reduce the sound pressure in the x-axis direction, and the farther the
bubble moves, the more significant the decrease in the sound pressure.

5.2 A bubble with uniform circular motion

Given a bubble motion period of 20 s, the uniform circular
motion was carried out with a fixed circumferential radius of 10 m.
During the motion, the measurement point C (100, 0) as shown in
Figure 12A. The bubble moves in a uniform circular motion starting
from (10,0). Figure 12B shows the change law of real sound pressure
with time at the point C when the bubble moves for one cycle. It can
be seen that the sound pressure is constantly oscillating during the
bubble movement, and the influence of the circular movement on
the extreme value of sound pressure is not obvious. Since the point C
is always directly in front of the sound wave, that is, to the right of
the bubble, its sound pressure depends on the distance between the
bubble and point C. The scattered sound pressure increases when
the bubble is close to point C, and decreases when it is far away from
point C. This variation is not obvious, because the circular motion of

FIGURE 12
(A) The arrangement of measuring point. (B) The relationship between sound pressure and time at the point C.

FIGURE 13
Variation of bubble acoustic directivity during uniform circular
motion.
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the bubble is relatively small relative to the far-field measurement
point. When the bubble moves to the x-axis and y-axis, the sound
pressure at point C reach to the maximum (P1, P2, P3).

Figure 13 shows the directivity diagram of the acoustic
scattering at three selected moments in a period of bubble
movement when ka = 1. During the uniform circular motion
of the bubble, the sound energy is mainly concentrated in the
forward direction of the incident wave. Since the direction of
motion about the bubble is counterclockwise, the acoustic
directivity shifts upward with the bubble motion, but the
offset angle θ is small. At the same time, the forward sound
pressure slightly decreases and the backward sound pressure
slightly increases, which shows the effect of the circular motion
of the bubble on the sound field distribution.

To further discuss the effect of bubble circular motion on the
sound field, the circumferential radius and angular velocity for
bubble motion at θ = 1°, 5°, 10° at different kawere calculated. In
Figure 14A, R is the radius of the bubble’s circular motion, and L is
the distance between the measuring point and the bubble. At the
same θ, the ka value increases and the circumferential radius
required for bubble motion increases. When ka is fixed, the
bubble’s circular motion radius increases proportionally with the
increase of θ. This proves that the radius of circular motion of the
bubble has a certain impact on far-field sound pressure, and the
larger the radius of motion, the more significant the change in
directionality.

Figure 14B shows the relationship between the offset velocity of
the acoustic directivity (w = 1°·s−1) and the angular velocity of the
bubble (ω). When the ka value increases, the ω also increases. When
ka is the same, the ω corresponding to different θ is not much
different. Therefore, the average of the three angular velocities can be
selected to represent the relationship between the w and the ω. It can
be seen that within the same movement time, an increase in the
velocity of the bubble’s circular motion will not cause a significant
change in directionality. However, as ka increases, the bubble

requires a greater circumferential velocity to shift the
directionality of the sound by the same angle.

5.3 Small deformation bubbles

In reality, the bubble does not always keep spherical when
moving, but deforms due to the pressure. The shape change of
bubbles can be observed in Chapter 4. Therefore, this section
discussed the property of acoustic scattering about ellipsoidal
bubbles. The ratio of long and short axes of bubbles is defined as
N = a/b, a is the long axes and b is the short axes. When N = 1, it
represents an ideal spherical bubble. Figure 15 is the scattering
directivity diagram of ellipsoid bubble at different
N when ka = 1.

Figure 15A shows that when the bubble volume keeps
constant, as N increases, the long axis a of the bubble
increases and the short axis b decreases, which indicates the
shape of the bubble becomes more and more flat. During this
change, the forward sound pressure increases and the backward
sound pressure decreases. The energy of the acoustic scattering
is also concentrated in the forward direction of the incident
wave, and the amplitude of the sound pressure increases slightly.
By comparing the calculated results in Figure 15A with the
literature [37], it can be found that the scattered sound pressure
of the bubble is close to the minimum value for N = 2. Figure 15B
represents the bubble with a change in volume, its long axis a
remains constant. As the short axis b decreases, the volume of
the bubble decreases, the amplitude of scattered sound pressure
decreases, and the directivity decreases This indicates that the
decrease in bubble volume has a greater impact on sound
radiation than the change in the long and short axes of the
bubble on the scattered sound field. Comparing Figures 15A, B,
it can be found that both the size and thickness of the bubble
have an effect on the scattered sound field.

FIGURE 14
Relationship between the offset angle and circumferential radius (A) and angular velocity (B) during uniform circular motion at different ka values.
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6 Conclusion

Regarding the problem of the sound radiation and scattering of
moving bubbles, this paper introduces a coupled CFD-BEMmethod
to predict the acoustic radiation and scattering of bubbles under low
motion velocity. Based on the motion boundary of bubbles obtained
by CFD, the BEMprogram is used to solve the acoustic radiation and
scattering of stationary spherical and ellipsoidal bubbles, uniform
linear rising bubbles, and uniform circular motion bubbles
respectively. The following conclusions are obtained.

(1) ka has an important influence on the acoustic scattering of the
bubble.When the ka value is small, the directivity of the acoustic
scattering is not obvious. With the increase of ka value, the main
lobe and side lobe appears, and the energy of the acoustic
scattering is gradually concentrated in the forward direction
of the incident wave.

(2) For a bubble moving in a straight line, the distance of moving
can deflect the far-field acoustic directivity (The far field
distance is about 100 m). For a bubble with circular motion,
the radius of motion (R) is positively proportional to the
acoustic directivity changing velocity (w).

(3) For the ellipsoidal bubble, the flatter the bubble, the higher its
forward scattering sound pressure. It is worth noting that the
shape and volume changes of the bubble can both affect the
distribution of scattered sound field.
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FIGURE 15
The relationship between the acoustic directivity of the ellipsoid bubble and themajor andminor axes. (A) The bubble volume remains constant. (B)
The long axis of the bubble remains constant.
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