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The residual symmetry of the KdV6 equation is obtained by the Painlevé truncate
expansion. Since the residual symmetry is non-local, five field quantities are
introduced to localize it into the local one. Besides, the interaction solutions
between solitons and cnoidal periodic waves of the KdV6 equation are
constructed by making use of the consistent tanh expansion method. As an
illustration, a specific interaction solution in the form of tanh function and
Jacobian elliptic function is discussed both analytically and graphically.
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1 Introduction

Due to the wide applications in explaining physical phenomena, seeking exact solutions
of non-linear equations becomes one of the most important tasks in non-linear science. In
fact, finding solutions of non-linear evolution equations is not an easy thing, and only in few
special cases one may write down the explicit analytical solutions. Despite of this fact, kinds
of non-linear excitations such as the solitons, conoidal periodic waves, Painlevé waves have
been found. However, although the non-linear waves or even the interactions among solitons
have been well studied, the research on the interactions among different types of non-linear
waves is still a thorny issue. Recently, Lou discovered that, starting from the non-local
symmetries of non-linear equations, the interactions, such as the soliton-Painlevé wave,
soliton-cnoidal periodic wave, soliton-KdV wave, etc., can be established [1-6]. Moreover,
recent researches have also shown that the interaction solutions between solitons and other
non-linear excitations can also be obtained by the consistent tanh expansion (CTE) method,
which is evolved from the classical tanh function expansion method [7-9].

In Ref. [10], K2S2T [A. Karasu-Kalkanlı, A. Karasu, A. Sakovich, S. Sakovich, R. Turhan]
introduced the Painlevé test for integrability of partial differential equation to the sixth-order
non-linear wave equation

uxxxxxx + α1uxuxxxx + α2uxxuxxx + α3u
2
xuxx

+α4utt + α5uxxxt + α6uxuxt + α7utuxx � 0,
(1)

where αi (i = 1, 2, . . . , 7) are arbitrary parameters. They found that there were four cases of
relations between the parameters that pass the Painlevé test. Three of those cases correspond
to the known integrable equations, the bidirectional Sawada–Kotera equation (11)–(15), the
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bidirectional Kaup-Kupershmidt equation (11), (12) and (16) and
the Drinfeld-Sokolov-Satsuma-Hirota system [17-19], whereas the
fourth one

z2x + 8uxzx + 4uxx( ) ut + uxxx + 6u2
x( ) � 0 (2)

turns out to be new. This new integrable case is associated with the
same spectral problem as of the potential KdV equation, so Eq. 2 is
also called the KdV6 equation. In Ref. [10], K2S2T also showed the
Lax pair, auto-Bäcklund transformation, traveling wave solutions,
and third-order generalized symmetries of the KdV6 equation. In
fact, since K2S2T first derived the KdV6 equation, there has been a
growing interest in finding its exact solutions, conservation laws and
various integrable properties [20-24]. However, as far as we know,
the research on the interaction solution of this equation is still
lacking.

In present paper, we shall focus on investigating the non-local
residual symmetry and the interactions between solitons and cnoidal
periodic waves for the KdV6 equation. The paper is organized as
follows: In Section 2, the non-local residual symmetry of the
KdV6 equation is derived. To constitute a local symmetry, five
dependent variables are brought in, thus the non-local symmetry is
localized into the Lie point symmetry of the enlarged KdV6 system.
In Section 3, with the aid of the CTE method, the interaction
solutions between solitons and cnoidal periodic waves of the
KdV6 equation are acquired. According to these explicit
solutions, the dynamical properties of the interaction solutions
are investigated. Finally, the main results are summarized in
Section 4.

2 Non-local residual symmetry and its
localization

By the transformation v = ux, w � ut + uxxx + 6u2x, Eq. 2 is
equivalent to

vt + vxxx + 12vvx − wx � 0, wxxx + 8vwx + 4wvx � 0. (3)
Since the KdV6 Eq. 3 possesses Painlevé property, we formulate the
truncated Painlevé expansion as

v � p2

ϕ2 +
p1

ϕ
+ p0, w � q2

ϕ2 +
q1
ϕ
+ q0, (4)

where p2, p1, p0, q2, q1 and q0 are undetermined functions depending
on {x, t}. Substituting the expansion 4) into Eq. 3 and collecting the
terms with the same power of ϕ, we get the expressions

p2 � −ϕ2
x, p1 � ϕxx, p0 � −1

4
ϕxxx

ϕx

+ 1
8
ϕ2
xx

ϕ2
x

+ λ,

q2 � −12λϕ2
x − ϕxϕxxx +

3
2
ϕ2
xx − ϕxϕt,

q1 � 12λϕxx + ϕxxxx + ϕxt −
3ϕxxϕxxx

ϕx

+ 3
2
ϕ3
xx

ϕ2
x

,

q0 � 9λϕ2
xx

ϕ2
x

+ 1
2
ϕxxϕxt

ϕ2
x

− 2λϕt

ϕx

− 8λϕxxx

ϕx

− 1
2
ϕxxxxx

ϕx

+ 3
2
ϕ2
xxx

ϕ2
x

(5)

with λ being a free integral constant. In this case, Eq. 3 can be
represented as its Schwartzian form

8λ
ϕt

ϕx

( )
x

+ 3 ϕ;x{ } ϕ;x{ }x + 20λ ϕ;x{ }x + ϕ;x{ }t + ϕ;x{ }xxx � 0

(6)
with the Schwartzian derivative {ϕ;x} � ϕxxx

ϕx
− 3

2
ϕ2xx
ϕ2x
. The

Schwartzian form (6) is form invariant under the Möbious
transformation

ϕ → a + bϕ

c + dϕ
, ad ≠ bc( ) (7)

which implies that Eq. 6 possesses the symmetry

σϕ � d1 + d2ϕ + d3ϕ
2 (8)

with di (i = 1, 2, 3) being three random constants.
In view of the expansion 4), it is found that {p0, q0} is just the

solution of the KdV6 equation, so the following non-auto-Bäcklund
transformation theorem is true.

Non-auto-Bäcklund transformation theorem. If ϕ satisfies the
Schwartzian Equation 6, then

v � −1
4
ϕxxx

ϕx

+ 1
8
ϕ2
xx

ϕ2
x

+ λ,

w � 9λϕ2
xx

ϕ2
x

+ 1
2
ϕxxϕxt

ϕ2
x

− 2λϕt

ϕx

− 8λϕxxx

ϕx

− 1
2
ϕxxxxx

ϕx

+ 3
2
ϕ2
xxx

ϕ2
x

(9)

constitutes a solution of the KdV6 Eq. 3.
In addition, the substituting of the expansion 4) into Eq. 3 also

tells us that the residues p1 and q1, taking the form as Eq. 5, exactly
satisfy the symmetry equations of the KdV6 equation, i.e.,

σvt + σvxxx + 12σvvx + 12vσvx − σwx � 0,
σwxxx + 8σvwx + 8vσw + 4σwvx + 4wσvx � 0.

(10)

Thus {p1, q1} is then named as the residual symmetry of the
KdV6 equation. Clearly, seen from Eq. 5, the residual symmetry
{p1, q1} contains the space and time derivatives of ϕ, which means
that this symmetry is non-local. We turn now to the task of
localizing it into a local one such that one can use Lie’s first
principle to recover the original Bäcklund transformation. To this
end, the following five field quantities have to be introduced

ϕ1 � ϕx, ϕ2 � ϕ1x, g � ϕt, g1 � ϕ1t, h � vx. (11)

As a result, the residual symmetry {p1, q1} of the KdV6 equation is
converted into the Lie point symmetry

σv, σw, σϕ, σϕ1 , σϕ2 , σg, σg1 , σh{ }T
� {ϕ2,−4ϕ1h + 4vϕ2 + 8λϕ2 + g1,−ϕ2,−2ϕϕ1,−2ϕ2

1 − 2ϕϕ2,

− 2ϕg,−2ϕ1g − 2ϕg1,−8vϕ
2
1 − 8λϕ2

1 − ϕ2
2

2ϕ1

}
T

(12)

of the enlarged KdV6 system {3), 6), 9), (11)}.
As is known, symmetry reduction [25, 26] is one of the most

powerful methods to study exact explicit solutions for non-linear
equations. Based on the Lie point symmetry (12), one may continue
to explore more abundant symmetry reduction solutions for the
KdV6 equation. The details on this topic might be reported in our
future research work.
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3 CTE solvability of the KdV6 equation
and its soliton-cnoidal wave interaction
solutions

In this section, we would like to obtain the soliton-cnoidal wave
interaction solutions for the KdV6 Eq. 3. In the frame of the CTE
method, by balancing the highest order non-linearity and dispersive
term of the KdV6 equation, we take v and w in the following
generalized truncated tanh function expansion

v � v2 tanh
2 f + v1 tanhf + v0,

w � w2 tanh
2 f + w1 tanhf + w0,

(13)

where vi,wi (i = 0, 1, 2), being six real-valued functions of (x, t), are to
be determined from the requirement for solutions v and w to satisfy
Eq. 3. Inserting Eq. 13 into the KdV6 equation and requiring the
coefficients of all powers of tanh f to be zeros yield twelve
overdetermined partial differential equations. After a few detail
calculations, we can conclude that

v � −f2
x tanh

2 f + fxx tanhf − 1
4
fxxx

fx
+ 1
8
f2
xx

f2
x

+ 1
2
f2
x + λ,

w � 2f4
x − 12λf2

x − fxfxxx + 3
2
f2

xx − fxft( )tanh2 f

+ fxxxx − 3fxxfxxx

fx
+ fxt + 3f3

xx

2f2
x

− 6f2
x − 12λ( )fxx[ ]tanhf

−1
2
fxxxxx

fx
+ 2fxxfxxxx

f2
x

− 1
2
fxxt

fx
+ 3
2
f2
xxx

f2
x

+ 1
2
fxxfxt

f2
x

− 21
4

f2
xx

f3
x

− 4fx + 8λ
fx

( )fxxx + 9
4
f4
xx

f4
x

+ 3
2
+ 9λ

f2
x

( )f2
xx

+ fx − 2λ
fx

( )ft − 2f4
x + 16λf2

x − 24λ2,

(14)
and the expansion function f is determined by

1
4
fxxxxxx

fx
− 3
2
fxxfxxxxx

f2
x

+ 1
4
fxxxt

fx
− 5

2
fxxx

f2
x

− 45
8

f2
xx

f3
x

+ 5
2
fx − 5λ

fx
( )fxxxx

−3
4
fxxtfxx

f2
x

+ 15
2

f2
xxxfxx

f3
x

− 1
4
fxt

f2
x

+ 15f3
xx

f4
x

+ 20λfxx

f2
x

( )fxxx + 45
8

f5
xx

f5
x

+ 3
4
f2
xx

f3
x

− fx + 2λ
fx

( )fxt + 15λf3
xx

f3
x

− 2λft

f2
x

− 6f3
x + 20λfx( )fxx � 0

(15)

with λ being an arbitrary integral constant.
In order to obtain the interaction solutions between solitons and

other non-linear excitations for the KdV6 equation, the expansion
function in Eq. 15 may be assumed in the form

f � x − ω1t

b1
+W

x − ω0t

b0
( ) ≡

x − ω1t

b1
+W ξ( ), (16)

whereω1 andω0 describe the velocities of the soliton and its surrounding
W-wave, b1 and b0 are two quantities referring to the widths of the
soliton and W-wave, respectively. Specially, if W(ξ) = 0 is taken, the
solution (14) with Eq. 16 reduces to the trivial traveling wave solution.

Inserting the ansatz (16) into Eq. 15 and introducing the
abbreviation

Wξ ξ( ) � W1, (17)
it follows that Eq. 15 becomes the equation satisfied by the elliptic
function

W2
1ξ � a4W

4
1 + a3W

3
1 + a2W

2
1 + a1W1 + a0 (18)

with coefficients a1, a4 and ω1 taking the form

a1 � a0b1
b0

+ b0a2
b1

− a3b
2
0

b21
+ 4b30

b31
, a4 � 4,

ω1 � 2b20b
2
1ω0 + a2b

2
1 − 3a3b0b1 + 24b20( ) a0b

4
1 − a2b

2
0b

2
1 + 2a3b

3
0b1 − 12b40( )

16b60b
4
1λ

+ 2b40b
2
1ω0 − 5a0b

4
1 + 5a2b

2
0b

2
1 − 10a3b

3
0b1 + 60b40

2b40b
2
1

. (19)

Hence, the corresponding relation between the solution of the
KdV6 equation and that of Eq. 18 is established. Given any one
solution of Eq. 18, the associated interaction solution of the
KdV6 system can be realized. According to Ref. [27], Eq. 18 has
varieties of solutions in the form of Jacobian elliptic functions, which
gives us a chance to look for the physically relevant soliton-cnoidal
periodic wave interaction solutions for the KdV6 equation. As a
representative example, we suppose now that Eq. 18 owns the
solution

W1 � c0CD

1 − c1S2
, (20)

where c0 and c1 are two real constants, S ≡ sn (ξ,m),C ≡ cn (ξ,m) and
D ≡ dn (ξ, m) represent the Jacobian elliptic sine function, Jacobian
elliptic cosine function and Jacobian elliptic function of the third
kind, respectively, and m is known as the modulus of the Jacobian
elliptic functions. Substituting the solution (20) into Eq. 18 and
eliminating the coefficients of different powers of Jacobian elliptic
functions, we obtain after a brief calculation

a0 � m3 + 2m2 +m, a2 � −m2 − 6m − 1,

a3 � 0, b0 � 1
2
b1δ m + 1( ), c0 � δ

��
m

√
, c1 � m,

ω1 � 1 − m − 1( )2
b21λ m + 1( )2( )ω0 + 20 m − 1( )2

b21 m + 1( )2 −
2 5m2 + 6m + 5( ) m − 1( )2

b41λ m + 1( )4 .

(21)
Next integrating the notation (17), the expression for the cnoidal
periodic wave can be written as

W � −δarctanh m1/2S( ) + c2 (22)

with an integral constant c2. Substituting this into Eq. 16, we form
now the formula for the expansion function

f � −δarctanh m1/2S( ) − ω1t

b1
+ x

b1
+ c2. (23)

Therefore, after inserting Eq. 23 into the solution (14), the soliton-
cnoidal periodic wave interaction solution of the KdV6 equation is
constructed. Here we omit the lengthy formulas for the sake of
simplicity.

As pointed out in our pervious work [2, 7], soliton-cnoidal wave
interaction solutions can be regarded as dressed solitons, namely,
solitons dressed by cnoidal periodic waves. After taking the limit
tanh(f) = ±1 in the solution (14), i.e., removing the soliton cores of v
and w, only the cnoidal periodic wave parts remain. To illustrate the
soliton-cnoidal periodic wave structure in more detail, it is exhibited
in a graphical way with the parameters c2 = 0, δ = b1 = λ = 1, ω0 = 2
andm = 0.01; Figures 1A,B display the profiles of the soliton-cnoidal
wave structures at t = 0; Figures 1C,D depict the soliton cores of v
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and w, where the dashed lines show the left parts of the solitons,
i.e., taking tanh(f) = −1 in the solution (14), and the right parts are
displayed by the solid lines. Figures 1E,F show the corresponding
cnoidal periodic wave structures. As is expected, apart from the
soliton cores, the solutions v and w rapidly tend to the cnoidal
periodic waves propagating along the x direction.Furthermore, we
would like to illustrate how to control the profiles of the soliton-
cnoidal periodic waves and analyze their dynamical behaviors. First,
the designable of the velocity of the cnoidal periodic wave is to be
considered. Figure 2 exhibits the time-space evolutions of the
soliton-cnoidal periodic wave solution (14). The overtaking
collision processes between solitons and cnoidal waves are shown

in Figure 2A, B. Here both the solitons and the cnoidal waves are
right-moving, but the velocity of cnoidal waves, selected as ω0 = 2, is
slower than the velocity of solitons ω1 = 7.96, which is calculated
from Eq. 19. As time evolves, the soliton collide with every peak of
cnoidal wave, and both the amplitudes and the widths of solitons
and cnoidal periodic waves are unchanged except for a phase shift;
Figure 2C, D show the interactions between solitons and cnoidal
waves with zero velocity. In this situation, the cnoidal waves can be
viewed as the standing waves. The right-going solitons collide with
the standing periodic waves during their propagations. It is also
shown that the collisions between solitons and cnoidal waves are
elastic with a slight phase shift. The head-on collision between

FIGURE 1
(A) and (B): Profiles of the soliton-cnoidal periodic wave interaction solutions with parameters c2=0, λ = δ = b1=1, ω0=2 and m =0.01. (C) and (D):
Soliton cores of the interaction solutions. (E) and (F): Background periodic waves of the interaction solutions.
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solitons and cnoidal waves can be observed from Figure 2E, F, which
display the right-going solitons colliding with the left-going cnoidal
waves (ω0 = −2). In addition, the straight line that the soliton
propagates along is x = ω1t − b1c2, determined by Eq. 23, which is
drawn in Figure 2A, B by solid lines.

As shown in Eq. 21, the wave parameterm indicates not only the
modulus of the Jacobian elliptic function, but also the amplitude of
Jacobian elliptic function. With the increasing ofm, the amplitude of
the cnoidal periodic wave trends to decrease. In particular, under the
asymptotic condition m → 0, the soliton profiles go to be the
classical KdV6 solitons, and the surrounding cnoidal periodic

waves are non-zero and with a slight amplitude periodic wave,
which is displayed in Figure 3.

4 Summary and discussion

In this paper, by making use of the truncated Painlevé expansion,
the residual symmetry of the KdV6 equation was derived. To eliminate
the non-locality of the residual symmetry, we introduced five new field
quantities ϕ1, ϕ2, g, g1 and h to localize it into the local Lie point
symmetry of the enlarged KdV6 system {(3), (6), (9), (11)}. Besides, the

A B

C D

FIGURE 2
Density profiles of the soliton-cnoidal periodic wave with the parameters (A) and (B)ω0=2; (C) and (D): ω0=0; (E) and (F): ω0=−2. Other parameters
are the same as those in Figure 1.
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CTEmethodwas applied to the KdV6 equation to get its soliton-cnoidal
wave interaction solutions. In the process of solving the equation that
the expansion function f satisfies, an intimate connection between this
equation and the equation satisfied by the elliptic functions was
constructed. By choosing any one elliptic function solution, the
corresponding interaction solutions of the KdV6 equation can be
acquired. To show the interaction solution more concretely, the
Jacobian elliptic wave solution (20) of Eq. 18 was introduced. The
results show that the soliton-cnoidal wave interaction solutions of the
KdV6 equation can be viewed as the solitons dressed by the cnoidal
periodic waves. Once the cnoidal wave backgrounds are taken away,
only the soliton cores are left. The results also exhibit that the shapes of
the soliton-cnoidal wave interaction solutions of the KdV6 equation are
designable by selecting different values of wave parameters. In
particular, how to design the velocities and amplitudes of the
cnoidal periodic waves were demonstrated, and the dynamical
behaviors of the soliton-cnoidal periodic wave interaction solutions
were analyzed. In addition, we believe that the method used for getting
non-local residual symmetry in this paper can also be applied to
complex functional equations, such as the non-linear Schrödinger
type equations, and their abundant soliton-nonlinear wave
interaction solutions can also be obtained by symmetry reduction
method. More studies regarding the soliton-nonlinear wave
interaction solutions for other partial differential equations will be
reported in our future research work.
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