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When we think of clustering in nuclear physics, the astrophysical importance
within light nuclei and structural manifestations with classical analogs immediately
come tomind. 4He, also known as the alpha particle, is themost abundant nucleus
in the Universe, being quite tightly bound for its mass, with a first excited state of
over 20 MeV. The nature of the alpha particle places it in a unique position within
nuclear astrophysics and structure (including geometry). The plurality of energy
release from stellar hydrogen fusion—whether quiescent or explosive—comes
from the conversion of hydrogen to helium. Within more complex nuclei, the
alpha particles are continuously arranged, leading to fascinating phenomena such
as excited rotational bands, Borromean ring ground states, and linear structures.
Nuclei with an equal and even number of protons and neutrons are colloquially
referred to as “alpha conjugate nuclei,”where such special properties are themost
pronounced and easiest to spot. However, when a single nucleon or a pair of
nucleons is added to the system, alpha clustering not only remains evident but it
may also be enhanced. Excited states with large alpha partial widths are a signature
of clustering behavior, and these states can have a profound effect on the reaction
rates in astrophysical systems when the excitation energy aligns with the so-called
Gamow energy—the preferential thermal energy to statistically overcome the
Coulomb barrier. In this article, we will consider in detail the specific ramifications
of alpha clustering in selected scenarios for both nuclear astrophysics and
topology. In particular, we discussed the astrophysical reactions of 7Li (α, γ),
7Be+α, 11C (α, p), and 30S (α, p), where α-clusters may increase the reaction
rates from 10% to an order of magnitude; large α resonances make the
astrophysical rate of 18F (p, α) quite uncertain. We also focused on the α

rotational bands of both positive and negative parities of 11B and 11C, and finally
on the strongest evidence for the linear-chain cluster state observed in 14C.
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1 Introduction

The clustering of α particles in nuclei plays a critical role in both nuclear astrophysics and
nuclear structure. Before delving into the topic, we will review the synthesis of several
elements in the light and medium mass regions as they pertain to α clusters. We will then
discuss by what empirical measurements and which types of experiments are most suitable to
discuss α-clusterization. Once the groundwork is laid, we will review works published over
the last dozen years on α-clusterization in the following nuclei: 11B, 11C, 14C, 15O, 19Ne,
and 34Ar.

Most of the aforementioned nuclei are radioactive, which often requires rare isotope
beams (RIBs). However, clusterization has a long history even in stable isotopes. In
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particular, during the quiescent phases of stellar evolution of a
massive star leading to an iron core in pre-collapse Type II
supernovae, clusterization may not be limited to α-clusters, as
shown in the Cluster Nucleosynthesis Diagram Figure 1, inspired
by the Ikeda diagram [1]. In a massive star (10M⊙) according to one
model, the core burning temperature, density, and lifetime are as
follows: hydrogen, 37 × 106 K, 3.8 g/cm3, and 7.3 × 106 years; helium,
1.80 × 108 K, 620 g/cm3, and 0.72 × 106 years; carbon, 7.20 × 108 K,
6.4 × 105 g/cm3, and 320 years; neon, 1.9 × 109 K, > 106 g/cm3, and
< 10 years; oxygen, 1.8 × 109 K, 1.3 × 107 g/cm3, and 0.5 years;
silicon, 3.4 × 109 K, 1.1 × 108 g/cm3, and < 1 day; and collapse,
8.3 × 109 K, > 3.4 × 109 g/cm3, and 0.45 s [2]. From this example, it
can be seen that α-clusters shape the evolution of stars more than
any other clusterization burning, e.g., the Hoyle state is responsible
for the nucleosynthesis of all heavier elements and helps set the
timescale [3]. Although we will mainly discuss the ]-process, ]p-
process, hot carbon–nitrogen–oxygen (HCNO) cycles, and the αp
process, the aforementioned stellar nucleosynthesis shows us that α
clusters generally play an important role in such scenarios.

The Wigner limit,W, is frequently encountered in the literature,
although it is strongly dependent on the radius, R, without any
specific structural information, and there are several definitions. In
this article, the maximum width of a resonance can be estimated as
follows:

ΓWi �
2Z2

μiR
2
i

Pℓi , (1)

where μ is the reduced mass of the channel, R is the channel radius,
and Pℓ is the channel penetrability for channel i [4,5]. The

penetrability is calculated as Pℓ � ρ
F2
ℓ
+G2

ℓ

where ρ � kR
Z includes the

phase space factor k, and Fℓ and Gℓ are the regular and irregular
Coulomb functions, respectively. The dimensionless partial width is
then θ2i � Γi/ΓWi, which can be used like a spectroscopic factor for a
single-particle state. A typical radius can be calculated as
Ri � R0(A1/3

1 + A1/3
2 ), where R0 is typically chosen from 1.2 to

1.6 fm and A is the atomic mass number. A more refined
concept of α-clusterization can instead be calculated with the
asymptotic normalization coefficient (ANC), but for basic
discussions, the Wigner limit is sufficient. Although the Wigner
limit is model-dependent, it is not widely agreed upon which θ2
defines an α cluster (e.g., it might be 10%, 25%, or 50%). The basic
idea is to obtain Γα from an experiment and simply compare it to ΓW.

There are several experiments for determining Γα. Elastic α-
scattering has a large cross section, although owing to the Coulomb
barrier, elastic scattering of a charged particle rarely shows a
resonant structure near the α separation energy, Sα, because of
the Rutherford peak. The Trojan horse method is able to measure
two-body reactions with extremely low cross sections via a two-to-
three-body reaction in a quasi-free kinematics condition [6–8]. α-
transfer reactions, such as (6Li, d) or (7Li, t), are also quite good near
Sα and even below it for sub-threshold energies to obtain the ANCs
of peripheral reactions [9]. Photodisintegration is useful to study the
radiative capture on an unstable species when the recoil is stable
(Utsunomiya et al. [10]), and moreover, the type and origin of the
background differ from those of the radiative capture (Smith et al.
[11]). Coulomb dissociation (Baur et al. [12]) and time reversal
studies have sizable cross sections and can be used at higher beam
energies. In the case when Γα is smaller than another competing

FIGURE 1
Cluster Nucleosynthesis Diagram (CND) [83] for nucleosynthesis during the evolution of a massive star. The small open circles are α-clusters. As the
chart starts on the upper left with the lightest elements, energy generation is produced going down, shown on the right side. The image shows in a simple
way which nuclei may have clusters. © 1994 Elsevier. Reprinted with permission.
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partial width, say (α, p) or (α, n) direct measurements, application of
the isolated, narrow-resonance condition for the reaction A (i, j)B as

γ ≡
Γi · Γj
Γi + Γj

≈ Γj 5 Γj ≪ Γi, (2)

where γ is the reduced width [5] and the smaller partial width
controls the contribution to the reaction rate.

Most of the experiments discussed in this paper use an RIB on
gaseous helium targets using the thick target in the inverse
kinematics (TTIK) technique [13], which has several advantages.
First, the intensity of short-lived RIBs is several orders of magnitude
less than the primary beam, so the statistics would be very poor using
a thin target of implanted helium (Lennard et al. [14]). One way to
increase the total yield is obviously using a thicker target. Second, the
impinging beam loses significant energy within the target (often
times being stopped entirely), and using the kinematic equations, the
measured energy of the reaction point and, hence, the beam energy
at that point can be deduced if the energy loss functions and the
specific reaction are known. Because the reaction of interest is
measured over a large range of energy, it, moreover, prevents the
time-consuming retuning of the RIB. In this manuscript, all
reactions are written in the astrophysical, normal kinematics
nomenclature for convenience despite the fact that most of the
experiments were performed in inverse kinematics.

2 Rotational bands and astrophysics of
11B and 11C

Lithium, beryllium, and boron are relatively less abundant than
other light and medium mass nuclei, and the astrophysical sites of
their production and destruction continue to pose challenges today,
for example, the cosmological lithium problem (Hou et al. [15];
Hayakawa et al. [16] and references therein). The nuclei 11B and 11C
are mirror nuclei, and some excited states show a dilute form of
alpha-clusterization as either 2α + t or 2α +3He, respectively [17–19].
Furthermore, both have been observed to have positive- and
negative-spin rotational bands, represented as α-clusterization
(Yamaguchi et al. [20], Yamaguchi et al. [21] and references
therein). These α-clusters can play an essential role in many
explosive environments: ]-process, pp-V, rap (II, III, and IV),
and the ]p-process. The aforementioned processes may be found
in a number of stellar environments: supermassive stars with low
metallicity, novae, big-bang nucleosynthesis, and core-collapse
supernovae. Considering the number of theoretical and
experimental studies, the diverse manifestation of α-clusters, and
a large range of astrophysical impact, the present review will mainly
focus on 7Li (α, α) and 7Be (α, α).

The ]-process occurs in core-collapse supernovae where
neutrinos are emitted from the proto–neutron star [22]. In the
]-process, 11B is mainly produced via 4He (], ]′p)3H (α, γ)7Li (α, γ)
11B, although it can be enhanced by (anti-)neutrino inelastic and
breakup reactions on 12C as well. Therefore, a precise measurement
of 7Li (α, γ)11B at > 1 GK can provide valuable information to
reactions and oscillations of neutrinos. The 7Be (α, γ) reaction can
either take place in the pp-V chain as 7Be (α, γ)11C (β+])11B (p, 2α)
4He or in a number of the rap-processes and also the ]p-process
[23–25] (Section 4). Except in the case where 11C decays (~ 20 min),

this reaction can bridge the gap from the pp region to the CNO
region, similar to the triple-α process. Although the (α, γ) reactions
at high temperature are important on 7Li and 7Be, looking at Eq. 2, it
is mainly Γγ (typically on order eV), spin-parity, and energy which
dominate the analytic reaction rate from these alpha-clusters, not Γα.
Experiments on α-scattering can determine or constrain the energy
and spin-parity but not Γγ. The dominance of Γγ was recently
confirmed by a direct measurement of 7Be (α, γ) [26, 27] when
compared with the evaluation by Kelley et al. [28]. However, in
converse to α scattering, no information was obtained on Γα and
hence the cluster structure of 11C.

An experiment on 7Li+α in inverse kinematics showed only
ground-state transitions [20], and the total cross section of 7Li (α,
p) was comparable to a normal kinematics experiment [29]. The best-
fit R-Matrix parameters are shown in Table 1, although a major
enhancement in the reaction rate compared to the Nuclear
Astrophysics Compilation of REaction rates (NACRE) was not
found [30]. Conversely, in the 7Be+α inverse kinematic
experiment, several channels were seen, (α, α0), (α, α1), (α, p0),
and (α, p1), measuring the charged particles and gamma rays in
coincidence [21]. Freer et al. [31] also carried out a similar experiment,
except not separating out the inelastic component. Although the two
spectra show a basic similarity of the peak shape and relative location,
Freer et al. [31] showed a factor of two to three lower cross sections,
and the centroids of the peak structure were shifted down by
approximately 500 keV. Yamaguchi et al. [21] were able to explain
nearly all the resonances with known peaks rather than introducing
new resonances. A factor of approximately 10% enhancement in the
reaction rate over NACRE could be expected between 1.5 and 3 GK
[30]. Although the experiments do not agree on the exact quantum
values, it is clear alpha-clusterization is prominent in both sets of
experiments, with the best-fit R-Matrix parameters shown in Table 2.
Most recently, Psaltis et al. confirmed the astrophysical reaction rate
for 7Be (α, γ) suggested in NACRE II [26, 27, 32] with a significantly
improved precision.

Although the astrophysical reaction rate was not significantly
changed by any of these measurements, the rotational bands in 11B
and 11C are interesting from a structure perspective. Previously
known rotational bands, as well as those found by Yamaguchi et al.
are shown in Figures 2, 3. Both theK = 5/2+ and K = 3/2+ bands show
a linear dependence of Eex on J (J + 1) and may be related to their
oblate, multi-centered α-cluster structure (Soić et al. [33] and
references therein). Inspection of the figures indicates mirror
levels offset by approximately 500 keV, which diminishes at a
higher excitation energy, possibly from a phase transition from
the shell model to cluster states (Freer et al. [31] and references
therein). It might be strange that the ground state of 11B, which is 3/
2−, appears above the 1/2− state, but Ragnarsson et al. [34] found a
similar energy of the two states, suggesting the 3/2− state is lower
than expected. As the figures show, the negative parity bands in both
11B and 11C do not show a perfect linear correlation, and there is a
commonality that the energies of two of the bandheads are lower
than expected. A calculation using antisymmetrized molecular
dynamics (AMD) qualitatively reproduced these findings,
attributing this difference to a weaker interaction between the
three-center cluster bandhead compared to a more rigid structure
of higher-energy states [35]. Finally, the 9/2+, 12.4-MeV state in 11C
observed may be a missing member of the K = 3/2+ band.
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3 Linear state and rotation in 14C

Cluster states where all the clusters fall in a line—the linear-
chain cluster state (LCCS)—have been of theoretical interest since
the 1950s [36]. Linear clusters are seen in other quantummechanical
systems, such as chemistry. Carbon dioxide (CO2) shows a linear
geometry with an atom of carbon covalently double-bonded
between two oxygen atoms at 180°; the molecule can rotate and/
or vibrate, which are also observed in the nuclear structure. The
shapes of nuclei and their excited states have been frequently studied
(and even used to explain certain shape isomers), but until the last
several years, no experiment had found strong evidence to verify the
LCCS in nuclei. From an intuitive perspective, we may think of
modeling the nucleus as a pair of atoms, where most of them are
joined into one of the clusters and only a small number of nucleons
are used to bond them together. Efforts in the cluster shell model of
adding a single nucleon to α-conjugate nuclei may, in the future, add
multiple nucleons to gain better understanding of this phenomenon
[37]. Initial theories on the LCCS looked at α-nuclei like 12C and 16O

with no bonding nucleons, but other theoretical topologies better fit
the experimental data. For example, the Hoyle state in 12C was found
to be either a molecular-like state of 8Be+α or a weak coupling of
three α-particles [38], and the 0+ state just above the four-α
threshold in 16O showed quenching of the moment of inertia
consistent with a superfluid state [39]. Until now, 14C is the only
species where the experimental work shows a strong indication of a
theoretical LCCS.

Suhara and Kanada-En’Yo [40] proposed a prolate band starting
a few MeV above the α threshold of 14C as an LCCS using the AMD
method. The wavefunction dominating the LCCS and an intuitive
cartoon are shown in Figure 4. The LCCS was demonstrated to be
stabilized by orthogonality to underlying states, and it has a nature of
Jπ = 0+, 2+, and 4+. Independently, several groups around the world
began looking for this LCCS using a 10Be beam on a helium target for
elastic scattering [41–43]. Similar to the 7Be case mentioned
previously, Freer et al. [41] and Yamaguchi et al. [43] had a
reasonable agreement in the spectral shape but the absolute cross
sections did not agree. Unlike the case of 7Be, Freer et al. [41] found a

TABLE 1 Best-fit resonance parameters of 11B determined by Yamaguchi et al. [20]. Values in italics were fixed to those found in the literature [85,86]. The
penetrability limit, γ2α , was calculated by Γα/2Pℓα . R0 was initially set to 1.15 fm, but the R-Matrix fit could not reproduce the valleys; thus, R0 was set to 0.9 fm for the
R-Matrix fit and ΓWα .

Eex (MeV) Jπ ℓ Γα (keV) ΓWα (keV) γ2α

10.24 3/2− 2 4 (< 9) 72 0.089

10.34 5/2− 2 19 ± 4 94 0.32

10.60 7/2+ 3 10 ± 3 15 1.1

11.06 ± 0.04 5/2+ (3/2+, 7/2+, 9/2+) 3 32 ± 20 41 1.25

11.29 9/2+ 3 35 ± 4 63 0.89

(11.59) (7/2−) 4 270 (Γn = 580) (7)

12.63 ± 0.04 (3/2+, 5/2+, 7/2+, 9/2+) 3 33–400 330 0.20–1.3

13.03 9/2− 4 140+110−80 58 2.5

TABLE 2 Best-fit resonance parameters of 11C determined by Yamaguchi et al. [21]. Values in italics were fixed to those found in the literature [85,86]. Other Jπ

values are possible but are omitted here. R0 was set to 1.2 fm for ΓWα .

Eex (MeV) Jπ ℓα0 Γα0 (keV) Γp0 (keV) Γα1 (keV) Γp1 (keV) Γtot (keV) ΓWα (keV)

8.90 (9/2+) 3 8 6.4

9.20 5/2+ 0 13 500 21

9.65 (3/2−) 2 20 50 210 1,310

9.78 (5/2−) 2 19 100 240 450

9.97 (7/2−) 3 153 ± 55 35 30 120 580

10.083 7/2+ 3 25 230 230 90

10.679 9/2+ 3 58 ± 36 110 200 230

11.03 (5/2−) 1 130 ± 83 25 45 120 300 360

11.44 (3/2+) 3 80 30 150 360 2,680

12.40 9/2+ 3 460 ± 150 90 1,000–2000 1,100

12.65 (7/2+) 3 420 ± 178 110 360 1,270
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cross section about a factor of four higher than Yamaguchi et al. [43].
As Freer et al. [41] used a normalization factor for the absolute cross
section and Yamaguchi et al. [43] only relied on the experimental
parameters, the latter might be considered more reliable. Similar to
7Be, the peak structure showed less consistency toward the lower
energy side, where the energy loss function plays an important role.
Although Freer et al. [41] did not find evidence for a prolate
rotational band, Yamaguchi et al. [43] found striking similarity in
the energy and spin for the LCCS of Suhara and Kanada-En’Yo [40],
as shown in Figure 5. Fritsch et al. [42] used an active target but
showed deviation from these results, such as much smaller absolute
cross sections (even than Rutherford scattering), no goodness of fit
between their theoretical and measured Jπ, and a sharp Ec. m. locus
for inelastic scattering.

Table 3 shows a strong indication of an LCCS, only plotting the
relevant states. Although the widths show some differences, their
average downward trend is the same. Moreover, it is not
straightforward to ascertain θ2α from the AMD calculation, and
so, the theoretical width was extracted by an overlap of the AMD
and Brink wavefunctions [44]. The cause of this disagreement is an
open question, which could be an experimental issue, a theoretical
ambiguity, the physical states themselves, or some combination of
the aforementioned issues. As the 4+ state is in a doublet with a 5−

state, it is possible that the 4+ component is actually stronger due to
limited orthogonality between these two resonances. As Γα(5+) =

9.4% was measured experimentally, the maximum limit of this effect
was evaluated as θ2α(4+) � 7%. Another possibility is that the 4+

resonance has a large Γn ≥ 300 keV, resulting in θ2α ≥ 5%—although
there are no predictions available, nearby resonances having Γn of a

FIGURE 2
Rotational bands in 11B from Yamaguchi et al. [20]. The positive
parity bands show very good linearity, whereas the proposed negative
parity bands demonstrate some deviance, as described in the text. ©

2011 American Physical Society. Reprinted with permission.

FIGURE 3
Rotational bands in 11C from Yamaguchi et al. [21]. The positive
parity bands have excellent linearity, but the proposed negative band
shows a non-linear behavior similar to the second negative parity band
in 11B in Figure 2. © 2013 American Physical Society. Adapted with
permission.

FIGURE 4
Wavefunction of the predominated LCCS determined by the
AMD method [40, 84]. (A) Proton density, neutron density, and their
difference. (B) Intuitive image of the wavefunction. © 2016 Yamaguchi
et al. [43] under the CC BY license.
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similar order. The AMD calculation also did not include several
factors such as the rotational motion of 10Be, the radial motion of the
α particle, and the possible fragmentation of the state; the first point
is most relevant for the 0+ state, while the second aspect may explain
the 2+ and 4+ widths. More work should be carried out to determine
the values both experimentally and theoretically to determine if it is
a true LCCS.

4 Astrophysics of the compound
nucleus 15O

The ]p-process occurs in the neutrino-driven wind of core-
collapse supernovae [24, 25, 45], where owing to the neutrino
interactions, the material is actually proton rich similar to the rp-
process (Section 6). Light p-nuclei such as 92,94Mo and 96,98Ru,
which cannot be explained by other astrophysical sites, might
originate from this process. Because of the environment, a
sequence like 7Be (α, γ)11C (α, p) can compete with the triple-

alpha process to bridge the gap between the pp-chains and the
CNO region. In this case, it begins the αp-process, which can
increase the energy generation by two or three orders of magnitude
in less than one second. However, unlike the rp-process, some
longer-lived species such as 56Ni and 64Ge can be bypassed by (n, p)
reactions as a small amount of protons are turned into neutrons by
neutrino interactions. The amount of the material to be processed
depends on bridging the A = 5, 8 mass gaps, requiring knowledge
of the 11C (α, p) reaction. Most recently, the 11C (α, p) reaction was
found to be one of the two most important processes in the

FIGURE 5
Rotational band of the LCCS comparing the AMD calculation [40]
to the experimental data [43]. The best R-Matrix fit did not take any
guidance from the theory. The agreement between the two is
excellent and is strong evidence of an LCCS. © 2016 Yamaguchi
et al. [43] under the CC BY license.

TABLE 3 Selected experimental data on 14C [43] and an AMD calculation
predicting an LCCS [40]. R0 was set to 1.34 fm for the experimental ΓWα .

Experiment AMD theory

Jπ Eex (MeV) Γα (keV) θ2α Eex (MeV) θ2α

0+ 15.07 760 (250) 34 ± 12% 15.1 16%

2+ 16.22 190 (550) 9.1 ± 2.7% 16.0 15%

4+ 18.87 45 (18) 2.4 ± 0.9% 19.2 9%

FIGURE 6
Experimental setup for 11C (α, p) using an extended, thick gas cell
to allow a measurable time-of-flight (TOF) between the 11C-beam
ions and outgoing protons [48], as shown in Figure 7 for Tel1. Two
beam monitors and segmented silicon detectors enable a
calculation of the precise depth of each interaction. © 2016 American
Physical Society. Reprinted with permission.

FIGURE 7
Detected energy of protons vs. the relative time-of-flight (TOF)
for 11C (α, p) measurement [48] for Tel1 (Figure 6). Simulations for
different transitions are shown in red and reproduce the centroids of
the loci. © 2016 American Physical Society. Reprinted with
permission.
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]-process in core-collapse supernovae Yao et al. [46], as described
in Section 2.

Prior to the work on a direct measurement, the compilations
relied on the time-reversed reaction 14N (p, α)11C via the
activation method [30, 47]. The method is quite successful
and determines the 11C (α, p0) rate at all angles, but it does
not give any information on excited-state transitions. With a
fairly simple setup (Figure 6), Hayakawa et al. [48] measured the
(α, p0), (α, p1), and (α, p2) reactions on 11C without gamma-
detectors (such as used to separate states in Section 2). The
experiment used beam tracking monitors to get a system time-of-
flight (TOF) for each incoming beam that coincided with the
proton detected using a silicon strip detector. Using the TTIK
method, the depth of the beam’s interaction in the target gas
determines Ecm, which can be measured by the system TOF. The
events are shown in Figure 7 for both high and low energies,
where the difference in beam energy is from the energy loss in the
second beamline monitor used (multi-channel plate or parallel
plate avalanche counter). Protons show loci and the correct
gradient along the calculated lines for p0−2, except for
broadening toward lower energy, owing to the resolution of
the silicon detector.

The results show that the (α, p1−2) cross sections were about an
order of magnitude lower (maximum 20%) than the (α, p0) rate. The
summed reaction rate was higher than compilations as much as 40%
[30, 47], specifically due to resonances at 0.9 and 1.35 MeV which
were not considered. Conversely, the Hauser–Feshbach statistical
rate over-estimates the total experimental rate at low energies but
begins to match at higher temperatures [49]. As the
Hauser–Feshbach rate suggests only a small difference between
(α, p0−2) and the total rate (αall, pall), the experiment has likely
measured the main transitions.

No Γα partial widths were previously known. However, the
statistics, resolution, and overlapping widths suggested that a new
R-Matrix fit to the data was unlikely to bring new information.
Some α-elastic scattering was observed at rather high energies but
not reported since it was well over the three GK region of known
astrophysical importance. Approximately 50 years ago, the α-
cluster structure of 15O was studied up to 8 MeV over the α-
threshold via the 12C (3He, α)11C and 14N (p, α)11C reactions
(Weller [50], Weller [51]; Huttlin and Rollefson [52], and
references therein). Weller assumed an α-particle of ℓ = 1
orbital angular momentum couples to one of the states in the
11C core. The lowest-lying cluster states in 15O would have an
excitation associated with the α-decay threshold, while higher-
lying states are based on excitations of the 11C core and different
couplings of the α-particle with the core’s intrinsic angular
momenta. To test this theory, Huttlin and Rollefson made
higher-energy measurements of 14N (p, α)11C and found some
similarities with 12C (3He, α); the study was ultimately inconclusive
as definitive spin-parity assignments were unavailable for many
states, which began to overlap. Unfortunately, further investigation
seems to have waned in both theoretical and experimental work on
the α-cluster structure of 15O in the intervening years. Considering
the continued astrophysical attention to the 11C (α, p) reaction
since the mid-2000s, additional studies of the α-cluster structure of
15O—including reanalysis of old data with modern methods—may
be warranted.

5 Subthreshold alpha states in 19Ne

Typically, when a given channel has a significantly smaller width
than its competing astrophysical channel, the smaller width
dominates the analytic reaction rate, as shown in Eq. 2. However,
when a nearby resonance has the same Jπ, these resonances can
interfere depending on the widths and sometimes drastically change
the reaction probability. In general, it requires a direct measurement
as the interference sign cannot otherwise be deduced, but
measurements of the widths, spin-parity, and energy can reduce
the uncertainty. Such resonances are often outside the Gamow
window and can also be the subthreshold. A key example of this
case is the α-cluster structure of 19Ne which affects the 18F (p, α)
reaction, where the proton threshold is above the α-threshold, but
the ℓ = 0 resonances interfere with each other (Jπ = 1/2+, 3/2+) for
temperatures below 0.3 GK [53, 54].

Classical novae occur in explosive binary star systems, typically
with recurrence times greater than a thousand years. One partner is
a white dwarf which accretes matter from a low-mass, less-evolved
companion until the accreted material builds up enough pressure to
induce thermonuclear runaway in the compact object’s envelope. In
addition to supernovae and neutron star mergers, novae are the
most powerful thermonuclear explosions in the universe. The 18F (p,
α) reaction is one of the few remaining nuclear structure cases where
the uncertainty is large enough to influence the outcome of classical
novae simulations; the other two cases are 25Al (p, γ) and 30P (p, γ).
The 2-h half-life of 18F is comparable to the timescale for the nova
ejecta to become transparent to γ radiation, making it an ideal
radiotracer of the explosion. Its decay to 18O emits a neutrino and
positron, the latter of which annihilates with an electron to form a
pair of γ-rays, and is thought to be the main source of 511-keV γ-
rays from a nova explosion. However, thus far, no such signal from
nearby novae has been detected by a satellite telescope.

From a nuclear physics perspective, it is difficult to calculate the
maximum distance to a nova to determine the expected 511-keV
flux because the 18F (p, α) rate remains quite uncertain despite nearly
three decades of research since 18F was produced as a radioactive
beam. Interference between ℓ = 0 states (Jπ = 1/2+, 3/2+) near the
proton threshold with higher-lying states is a major source of this
uncertainty. There is a well-known 3/2+ resonance at Er = 664.7 keV
(Eex = 7.0747 MeV) with Γp = 15.2 keV and Γα = 23.8 keV [55]. A
broad 1/2+ state was predicted [56] and also observed by several
works near Er ≈ 1.5 MeV but not resolved [53, 57, 58]. A state with
ℓ = 0 was resolved at Er = 1.38 (3) with a smaller total width Γ = 130
(10) keV, as shown in Figure 8 [59]. The partial widths of the 1/2+

state remain uncertain, but it was shown that as long as the width is
broad, the partial widths of Γp and Γα do not affect the interference
pattern [60]. The uncertainty of 30 keV of the state also does
influence the magnitude or location of the interference [60].
Enough information on the higher-lying states in 19Ne to
constrain the experiment is extant, and so the focus of the
community is looking at ℓ = 0 states nearby the proton threshold
in addition to pushing the direct measurement to lower energies.
According to mirror symmetry, there are two 3/2+ states and one
1/2+ state near the proton separation energy of 19Ne in 19F.

Several experiments were published in the last several years [59,
61, 62], which were analyzed by Kahl et al. [60]. Since then, new
experiments [63, 64] and further analysis of the existing data were
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also presented [65, 66]. The subthreshold state at 6.132 (5) MeV was
unambiguously identified as an ℓ = 0 transition by a model-
independent method, as shown in Figure 8 [59], and its spin-
parity in combination with that of Kahl et al. was determined as
3/2+ [64]. Another subthreshold state is approximately 6.29 MeV
and was measured to be 1/2+ [67], which is now confirmed as a
doublet [59, 61, 64, 68, 69]. It is noted that for low-spin states in this
region, the calculated mirror energy displacement (MED) is 70 ±
50 keV [64], and pairing the 6.13 MeV state with a known 3/2+ state
in 19F requires an MED of over 350 keV; this may suggest an
unknown 3/2+ state in 19F. The final 3/2+ state(s) in this region
should be above the proton separation energy, and two such states
with tentative assignments were provided by Hall et al. [61] at 6.423
(3) and 6.441 (3) MeV.

The clusters in 19F and 19Ne have been described in terms of
oscillator shells including s, p, and sd harmonics [56, 66]. The ℓ =
1 α cluster states (Jπ = 1/2+, 3/2+) are interesting in a comparison
with 20Ne, where n = 3 nodes are Pauli-blocked in 16O+α but not in
the A = 19 mirror case [66]. A broad 1/2+ state was paired with the
5.94-MeV state in 19F by the generator coordinate method (GCM)
[56], and experiments looking for a broad state near 6 MeV in 19Ne
have been reported [63]. Twenty years ago, Descouvemont and
Baye [70] used the GCM and paired the same state with a
resonance at 5.34 MeV in 19F rather than the 5.94-MeV state as
they found the energies were up to 1 MeV smaller in experiment vs.
theory. If one takes the experiments from Di Leva et al. [71] on 19F
and Torresi et al. [72] for 19Ne, it can be seen there may be no
missing state from GCM studies, as shown in Table 4. These 1/2+2
and 3/2+4 theoretical states are strongly coupled to the n = 4 node α
channel, which were also assigned to the experimental energies
shown here [66]. Assuming the aforementioned analysis is correct,
the “missing,” broad, 1/2+ state in 19Ne has no significant
interference effect on 18F (p, α), being shielded by another
resonance, having significantly smaller Γα, and being far from
the proton threshold.

The 18F (p, α) reaction requires not only knowledge of 19Ne but
also further investigation of its mirror 19F.

6 Astrophysics of the compound
nucleus34Ar

Type I X-ray bursts (XRBs) are similar to classical novae, except
the compact object is a neutron star rather than a white dwarf. As
such, XRBs are a class of astronomical phenomena where in a binary
pair, a low mass star accretes matter onto a neutron star and regular
explosions take place. Indeed, there are over 100 known XRBs within
our galaxy. Characteristic bursting behavior shows a very sharp rise
time (one to 10 s) and then a thermal decline. The energy output is
around 1039–1040 ergs for 10–100 s, and the bursts repeat much
more frequently than in classical novae, in the order of hours to days,
owing to the compactness of the neutron star. The amount of the
accreted material per time, _M, is inversely proportional to the
luminosity and time between bursts because the HCNO cycle can
operate longer between bursts and increase the amount of helium.
The sharp rise time and maximum luminosity are modeled as
coming from a series of (α, p) (p, γ) reactions [73], for example,

FIGURE 8
Focal plane data from Grand RAIDEN for the 19F (3He, t)19Nemeasurement at 420 MeV [59]. Peaks are labeled and shown overlaid from the lowest to
the highest angle: Θ = 0.0° − 0.5° (white), Θ = 0.8° − 1.2° (gray), and Θ = 1.6° − 2.0° (black). Peaks at different angles are normalized to the 1/2+, 5.345-MeV
state. Δℓ = 0 (Jπ = 1/2+ and 3/2+) states are forward focused and appear white, Δℓ = 1 states appear at larger angles and are black, and a mixture indicates
another angular momentum transfer or overlapping states.

TABLE 4 Second GCM states from Dufour and Descouvemont [56] with the
spectroscopic factors Sα , experimental excitation energies and Γα from 19F [71]
and 19Ne [72], and the Wigner limit of Eq. 1 with R0 = 1.4 fm. It should be noted
that for the 19F 1/2+ state, we have assigned it to 5.34 MeV [70] rather than
5.94 MeV [56]. The cluster pairing between the theory and experiment
proposed here is supported by Volya et al. [66].

19F 19Ne

Jπ Eex Γα Sα θ2α Eex Γα Sα θ2α

1/2+ 5.346 2.51 0.806 71% 5.359 10 0.786 66%

3/2+ 5.501 6.0 0.543 59% 5.487 9 0.476 36%
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starting from 14O and going to around 38Ca. Schematically, this is
pure helium burning without waiting for β-decays as the hydrogen
content is not changed.

34Ar is, like 14O, an N−Z
2 � −1 nucleus and important for X-ray

bursts in the αp-process as the compound reaction for 30S+α. The
species is an α nucleus (28Si) with two additional protons. The 30S
(α, p) reaction is identified as a potentially important reaction,
contributing more than 5% to the total energy generation (Parikh
et al. [74]), influencing the elemental abundances in the burst ashes
(Parikh et al. [74]) relevant to compositional inertia (Taam [75] for a
description of this phenomenon), moving the material away from
the 30S waiting point (Iliadis et al. [76]), and possibly accounting for

double peaked XRBs (Fisker et al. [77]). Another study found the 30S
(α, p) reaction sensitivity in XRBs among the top four in a single-
zone model (Cyburt et al. [78]), as well as having a prominent (but
unquantified) impact on the burst light curve in a multizone model.

The only experimental paper to measure Γα in 34Ar is by Kahl et al.
[79] using an active target. The center-of-mass energies of that study are
near 3 GK, being rather higher than the peak XRB temperature of
1.3–2.0 GK. There have been several theoretical works to determine 30S
(α, p), but here, we focus mainly on the experimentally determined
values for Γα. Three states with the proposed α-cluster structure were
observed between approximately 4.3 and 5.5 MeV,which had θ2α ranging
from8% to 100%, as shown inTable 5. The dip-like structures are shown
in Figure 9 along with χ2. It may be unusual if all the strong resonances
have Jπ = 2+, and if the first resonance observed is 4+, the order is the
opposite for a rotational band. However, a measurement of 36Ar (6Li, d)
40Ca showed several resonances of the same spin-parity emerged at
similar energies with large spectroscopic factors (Yamaya et al. [80]),
including twomultiplets with 2+ each, and 40Ca is nearby inmass to 34Ar.

The 33Cl (p, α) time-reversal reaction was measured previously to
constrain the 30S (α, p) reaction around 3 GK [81]. They found a
comparable cross section from the NON-SMOKER code, whereas
Kahl et al. [79] found a factor of 10 times increase in the reaction rate
compared to the statistical model [49]. The difference could be
attributed to Deibel et al [81] measuring the 30S (α0, p0) rate,
similar to the case of 11C (α, p). These rates are, as mentioned
previously, outside the astrophysical region of interest for XRBs.
However, Long et al. [82] performed an 36Ar (p, t) spectroscopy
experiment over the XRB Gamow window with 30-keV resolution.
No 34Ar states were observed with a width larger than the resolution.
Therefore, they estimated Γα for the levels they observed from a shell-
model calculation and found a cross section in the astrophysical
region of interest significantly lower than that of the NON-SMOKER
statistical model. Unfortunately, as the experiment did not overlap
with the other two studies, a comparison between their results at
different energies is not possible. More experiments to measure Γα in
34Ar and also 30S (α, p) at astrophysical energies are certainly
warranted. According to the data in Table 5, Γα either dominates
or contributes strongly to the 30S (α, p) resonant reaction rate (at least
at higher temperatures). A confirmation of the total widths of these
states would be helpful to rule out contributions from Γp.

7 Conclusion

We presented studies on several nuclei both from a nuclear
astrophysics and/or structural perspective. Alpha-clusters are found
in a variety of lighter-mass species on both sides of the valley of

TABLE 5 Best fit level parameters of 34Ar determined by Kahl et al. [79]. The proton width was controlled by the reduced dimensionless partial widths ξ”θ2p/θ
2
α as α

elastic scattering is much less sensitive to Γp (as shown by the errors); it turns out 〈ξ〉 = 3%, the same as found in a measurement of 21Na (α, α) [87]. The 12.08-MeV
level is shown in italics as there is a large systematic uncertainty associated with it. R0 was set to 1.45 fm for ΓWα .

Eex (MeV) Er (MeV) Jπ ℓα Γα (keV) θ2α (%) Γp (keV) ξ (%)

11.092 (85) 4.353 (85) (2+, 4+) 2, 4 20+80−17, 0.5+1.4−0.4 40+180−33 , 8+10−6 25+500−20 , 0.3+3.5−0.3 1, 0.1

11.518 (89) 4.779 (89) 2+ 2 100+120−60 90+110−55 210+600−170 4

12.079(95) 5.340(95) (2+) 2 260+400−120 100+150−45 340+550−200 6

FIGURE 9
30S+α elastic scattering excitation function including fits from Table 5 [79].
(A) Energy of the entire spectrum; bumps near 3.5 MeV are
background-induced. Two R-Matrix fits are compared against pure
Coulomb scattering. (B) All physically allowed ℓα values for the
Er = 4.78 MeV resonance, showing the unambiguous assignment of
ℓ = 2. © 2018 American Physical Society. Reprinted with permission.
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stability. Although most of the works call for future studies, we
emphasize that it is not necessarily finding alpha-clusters in the
atomic nuclei but why. It is hard to imagine that alpha-clusters do
not play an essential role in the nuclear structure, particularly in light
nuclei. Yet, simply identifying them without an overarching
framework would likely lead to a preponderance of data, looking
for a good model or scenario to justify. We showed that the
application of alpha-clusters in the selected nuclei spread over a
large, somewhat mutually exclusive, domain.

For high-temperature astrophysical reactions like (α, γ), α,
clusters may be involved, but typically, Γγ has the smallest width
and thus, dominates the rate. On the other hand, for (α, p) reactions,
despite clusterization, which leads to large Γα values, these reduced
widthsmay be quite important even if Γp is just a few percentage of the
Wigner limit. We infer a similar situation is true with (α, n) reactions
but did not review them. Sometimes, from the interference between
states of the same Jπ, often from the α-width, it can have a huge impact
on the lower energy rate like 18F (p, α), and the interference sign
cannot be predicted by theory.We found that positive parity, α-cluster
rotational bands show an excellent linearity, whereas negative parity
bands require deeper understanding for the non-linear structure.
Finally, we reviewed the strongest experimental evidence for an
experimental linear-chain cluster state in 14C.
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