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Vibration induced by dry friction is ubiquitous in various engineering fields. To
explore the vibration characteristics for further studies and/or controls, it is of
great theoretical and practical significances to investigate the non-linear dynamic
behaviors of the friction systems. This study considers the slight vibration of a two-
degree-of-freedom non-linear dry friction excitation system. The differential
equations of system motion are established according to Newton’s law of
motion. Moreover, the system’s non-linear dynamic is studied when the block
velocity is always less than the friction surface velocity. The results indicate that the
linearized matrix of the vibration system has a pair of purely imaginary eigenvalues
for some critical values of the relevant parameters. The Poincaré-Birkhoff normal
forms are utilized to simplify the motion equation under the non-resonant
assumption to obtain a simplified equation with only the resonant terms.
Furthermore, the truncated part of the simplified equation is analyzed in the
case of only linear terms degeneration. Finally, numerical simulations reflect some
qualitative conclusions about the system’s local dynamic properties, including
equilibrium point, periodic motion, torus motion, and their stability.
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1 Introduction

There are numerous dry friction phenomena in engineering practice, including wheel-
rail contact, locomotive braking systems, machine tool guides, tool cutting, drilling, and
friction damping. Indeed, dry friction can cause surface wear and fatigue failure of
mechanical components, and the resulting dynamic behavior (e.g., generating noises)
harms production and living environments. The phenomenon of machine tools, drill
pipe chatter, brake whistle, and other phenomena caused by dry friction excitation will
cause severe problems in engineering. However, dry friction can dissipate system energy to
achieve vibration reduction or stimulate the required motion state. Therefore, studying the
motion law of objects under the dry friction action is particularly important for finding
effective engineering control methods and effectively utilizing the dry friction phenomenon.

Leine et al. [1] investigated the existence and stability of the periodic solutions of the
vector field in the case of continuous, non-smooth, and unique solutions, corresponding to
the existence and stability of the periodic solution of the dry friction system in the pure slip
state. Luo [2] established the Poincaré mapping of the dry friction system in the pure slip
state and analyzed the system’s periodic motion and the mapping bifurcation. A specific
periodic solution was obtained in the presence of adhesion by adjusting the parameters to
satisfy the functional relationship on the vector field interface. The dry friction system’s
periodic motion and chaos were studied by numerical simulations [3–5]. Guo et al. [6]
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established the Poincaré mapping of the single-degree-of-freedom
dry friction vibrator based on the series solution of the differential
equation and investigated the existence and stability of the system
under 1:4 strength resonance for periodic and torus motions. Guo
[7] investigated the existence and stability of subharmonic periodic
and torus motions of single-degree-of-freedom dry friction vibrator
under 1:5 weak resonance. When the amplitude of the vibration
induced by the dry friction reached to some motion constraints,
collisions will occur, which may result in complex non-linear
dynamic phenomena, such as chaos and chaos control [8]. Refs.
[9–14] present the researches of the collision system or the friction
collision coexistence system. By applying the stroboscopic
controlled hybrid Poincaré map and OGY control method, Gritli
and Belghith [9] investigated the non-linear dynamic characteristic
and chaos control of a one-degree-of-freedom impact oscillator with
a single rigid constraint, in which the border-collision bifurcation is
explored for the use of OGY-based state-feedback control method. A
two-degree-of-freedom impact oscillator with dry friction and
external periodically forced excitation is considered by Li et al.
[10] based on the flow switchability theory and G-functions. A one-
degree-of-freedom flexible-impact oscillator is investigated by
Stefani et al. [11], where some possible dynamic scenarios were
obtained by experimental tests and numerical simulations. In
another paper by Stefani et al. [13], a comprehensive numerical
study is conducted, where, compared to Ref. [11], the range of
selected parameters were extended. Based on the numerical results
in Ref. [13], Stefani et al. [12] investigated further the effect of gap
size on the response of a one-degree-of-freedom flexible-impact
oscillator, in which the secondary resonances were observed for
quite small gap and the number of resonances were analyzed by
changing the gap size. Peng and Fan [14] studied a three-degree-of-
freedom rigid-impact oscillator with dry friction by using the flow
switchability theory, and divided the six-dimensional phase space of
the system into different domains and boundaries/edges. It can be
seen from the above mentioned researches that numerical simulation
and experimental method are the main means to explore the non-
linear dynamic phenomena of system with friction and/or collision.
Furthermore, in the previous studies, the bifurcation analysis after
impact generally began with some periodic solution. To the best of the
author’s knowledge, when the amplitude of torus motion reached to
motion constraints and then collision occurs, the non-linear vibration
characteristic (i.e., the bifurcation analysis after impact begin with
some torus motion) is an open problem, which motivated the current
study. As an initial investigation, only the periodic and torus motions
within the smooth case are considered in this paper, which provides a
theoretical basis for further analysis collision with motion constraints.

Non-linear vibrations are widely encountered in engineering
practice. As one of the important characteristics of non-linear
vibrations, the periodic and/or torus motions have attracted
much attention [15–17]. Hopf-Hopf bifurcation is an approach
to investigate the periodic and torus motions of dynamical
system. Wen et al. [18] proposed a new Hopf-Hopf bifurcation
criterion based on the coefficients of the original equation of
dynamics for a dry friction system and the corresponding
feedback control method was investigated. Guo et al. [19]
investigated Hopf-Hopf bifurcation for a simplified railway
wheelset model in the case of non-resonance and near-resonance,
in which the resonant coefficients and the truncated Poincaré-

Birkhoff normal form were computed by use of MATCONT
[20]. A numerical analysis of Hopf-Hopf bifurcation for a non-
linear electric oscillator in the case of 1:2 resonance was performed
by Revel et al. [21], where the resonance could arise more non-trivial
mode interactions and lead to more complex dynamical
phenomena. Hopf-Hopf bifurcation can also be found in other
dynamical systems, for instance in vibro-impact system [22],
high-dimensional maps [23] and infinite dynamical system [24].
It is noted that in the above literature of Refs. [18, 19, 21, 24]
concerning differential equations, the non-linear resonant terms
either were computed numerically in which the analytical
expressions cannot be given or were simplified by use of
symmetry which cannot apply to asymmetric systems. For this
reason, the expressions of non-linear resonant terms for a system
without symmetry will be given analytically in the current paper.

By means of the Hopf-Hopf bifurcation theory, the periodic and
torus motions of a two-degree-of-freedom dynamical system with dry
friction are considered both analytically and numerically in this paper.
This paper is organized as follows: In Section 2, the differential equation
of the system motion is established according to Newton’s laws of

FIGURE 1
The schematic of a two-degree-of-freedom dry friction system.

FIGURE 2
The characteristic curve of the dry friction function described by
Eq. 2.
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motion, and the problem is confined to the “smoothmotion” case. This
means the block velocity is considered smaller than the friction surface
velocity. Section 3 employs the Poincaré-Birkhoff normal forms to
process the dynamic equation in Section 2 to obtain a simplified
equation equivalent to the original dynamic equation, which only
contains the resonant terms. Moreover, the calculation formulas of
the resonant terms coefficients and the eigenvalues’ rate of change on
the perturbated parameters are given analytically. In Section 4, the
amplitude equation is studied with specific examples, and the
conclusions of the existence and stability of the equilibrium point
and periodic and torus motions of the original vibration system are
investigated. Some conclusions and discussions are made in Section 5.

2 Mechanical model and motion
equations

Figure 1 shows the schematic of a two-degree-of-freedom dry
friction system [25].

The mass of each mass block is m, placed on two rotating
circles. The speed of the circle’s edge is v. The remote ends of the
two blocks are connected to the fixed end by springs with stiffness
coefficients k1 and k2, respectively, and a spring-damping
element is employed to connect the adjacent ends. The spring
stiffness coefficient is k, and the damping coefficient is c.
According to Newton’s law of motion, taking z1 and z2 as
generalized coordinates, the following motion’s differential
equation can be obtained:

{m€z1 � −k1z1 − k z1 + z2( ) − c _z1 + _z2( ) + F _z1 − v( )
m€z2 � −k2z2 − k z1 + z2( ) − c _z1 + _z2( ) + F _z2 − v( ) (1)

where F( _z1 − v) and F( _z2 − v) are dry frictions defined with the
following general expression [1]:

F vr( ) � −α0sign vr( ) + α1vr − α3v
3
r[ ] ·m (2)

where vr is the relative velocity of the mass block relative to the edge
of the wheel, and α0 � 1.5N, α1 � 1.5Ns/m, α3 � 0.45Ns3/m3. As
shown by Figure 2.

This study considers that the relative velocity between the
mass block and the edge of the wheel is always negative.
Equivalently, a smooth vibration is considered. Thus, Eq. 2
can be written as:

F vr( ) � α0 + α1vr − α3v
3
r( ) ·m (3)

Let €z1 � €z2 � _z1 � _z2 � 0, the system’s equilibrium position can
be obtained as:

z01 �
F −v( )

k1 + k 1 + k1
k2

( ), z02 �
F −v( )

k2 + k 1 + k2
k1

( )
To perform coordinate translation, let

z1 � u1 + z01, z2 � u2 + z02 (4)
Hence, the origin is the system’s equilibrium position.

Substituting Eq. 4 into Eq. 1 gives:

m€u1 � −k1u1 − k u1 + u2( ) − c _u1 + _u2( ) + F _u1 − v( ) − F −v( )
m€u2 � −k2u2 − k u1 + u2( ) − c _u1 + _u2( ) + F _u2 − v( ) − F −v( ){

(5)
Let u1 � y1, _u1 � y2 , u2 � y3 , _u2 � y4, and expand the friction

function according to Taylor’s formula. Equation 5 can be rewritten
in the following matrix form

_y1

_y2

_y3

_y4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � A

y1

y2

y3

y4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

0
1
m

1
2
F″ −v( )y2

2 +
1
6
F‴ −v( )y3

2[ ]
0

1
m

1
2
F″ −v( )y2

4 +
1
6
F‴ −v( )y3

4[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where

A �

0 1 0 0

−k + k1
m

F′ −v( ) − c

m
− k

m
− c

m

0 0 0 1

− k

m
− c

m
−k + k2

m

F′ −v( ) − c

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

let

y � y1, y2, y3, y4[ ]T

F y( ) �
0

1
m

1
2
F″ −v( )y2

2 +
1
6
F‴ −v( )y3

2[ ]
0

1
m

1
2
F″ −v( )y2

4 +
1
6
F‴ −v( )y3

4[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To be sure, the highest order terms of Eq. 3 and Eq. 5 are cubic.

Therefore, Taylor’s formula (6) for Eq. 5 are actually cubic
polynomial rather than infinite series.

FIGURE 3
Parameter region division in Ref. [26] (corresponding to p11 <0;
p22 <0; δ >0; θ >0; δ · θ < 1).
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3 Normal form theory

Generally, the following differential equations are
considered [26]:

_z1 � λ1 α( )z1 + g z1, �z1, z2, �z2, α( )
_z2 � λ2 α( )z2 + h z1, �z1, z2, �z2, α( ){ (8)

where z1, z2, λ1, λ2 are plurals, the parameter α � (α1, α2) is a two-
dimensional real vector, and

λ1 � μ1 α( ) + iω1 α( ), λ2 � μ2 α( ) + iω2 α( ).
where i is an imaginary unit. For all sufficiently small ‖α‖, μ1, μ2, and
ω1,ω2 are smooth functions of α , meeting the following relations

μ1 0( ) � μ2 0( ) � 0, ω1 0( )>ω2 0( )> 0

FIGURE 4
Phase trajectories for different regions in Figure 3 in Ref. [26].

FIGURE 5
The specific form of Figure 3, determined by the specific
parameters of this paper.

FIGURE 6
The specific region to which μ1 ,μ2 belong at the time of α1 �
0.04, α2 � 0.04.
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Let μ � (μ1, μ2) � (μ1(α), μ2(α)), ω10 � ω1(0),ω20 � ω2(0).
The non-linear terms in Eq. 8 can be represented with the

following Taylor expansions with respect to the first four arguments:

g z1, �z1, z2, �z2, α( ) � ∑
j+k+l+m≥ 2

gjklm α( )zj1�zk1zl1�zm1

h z1, �z1, z2, �z2, α( ) � ∑
j+k+l+m≥ 2

hjklm α( )zj1�zk1zl1�zm1

Lemma 1 [26]: For the above system, if.

kω10 ≠ lω20 k, l> 0, k + 1≤ 5( ),
near the equilibrium point, Eq. 8 can be simplified to the
following form through the reversible change of coordinates:

_w1 � λ1 α( )w1 + G2100 α( )w1 w1| |2 + G1011 α( )w1 w2| |2
+G3200 α( )w1 w1| |4 + G2111 α( )w1 w1| |2 w2| |2
+G1022 α( )w1 w2| |4 + O w1, �w1, w2, �w2‖ ‖6( )

_w2 � λ2 α( )w2 +H1110 α( )w2 w1| |2 +H0021 α( )w2 w2| |2
+H2210 α( )w2 w1| |4 +H1121 α( )w2 w1| |2 w2| |2
+H0032 α( )w2 w2| |4 + O w1, �w1, w2, �w2‖ ‖6( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

FIGURE 7
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue lines or points correspond to transient motions, and the red points
correspond to steady-state motions (i.e., the final approach to the equilibrium position).

FIGURE 8
The specific region to which μ1 ,μ2 belong at the time of α1 �
−0.03, α2 � 0.08.
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where w1,2 ∈ C1 , ‖(w1, �w1, w2, �w2)‖2 � |w2
1| + |w2

2|, and the
complex-valued functions Gjklm(α) and Hjklm(α) are smooth and
satisfy the following relation:

G2100 0( ) � g2100 + i
ω10

g1100g2000 + i
ω20

g1010h1100 − g1001
�h1100( )

− i
2ω10 + ω20

g0101
�h0200 − i

2ω10 − ω20
g0110h2000

− i
ω10

g1100

∣∣∣∣ ∣∣∣∣2 − 2i
3ω10

g0200

∣∣∣∣ ∣∣∣∣2
(10)

G1011 0( ) � g1011 + i
ω20

g1010h0011 − g1001
�h0011( ) + i

ω10
(2g2000g0011

− g1100 �g0011 − g0011
�h0110 − g0011h1010)

− 2i
ω10 + 2ω20

g0002
�h0101 − 2i

ω10 − 2ω20
g0020h1001

− i
2ω10 − ω20

g0110

∣∣∣∣ ∣∣∣∣2 − i
2ω10 + ω20

g0101

∣∣∣∣ ∣∣∣∣2
(11)

H1110 0( ) � h1110 + i
ω10

g1100h1010 − �g1100h0110( ) + i
ω20

(2h0020h1100
− h0011�h1100 − g1010h1100 − �g1001h1100)
+ 2i
2ω10 − ω20

g0110h2000 − 2i
2ω10 + ω20

�g0101h0200

− i
2ω20 − ω10

h1001| |2 − i
ω10 + 2ω20

h0101| |2

(12)
H0021 0( ) � h0021 + i

ω10
g0011h1010 − �g0011h0110( ) + i

ω20
h0011h0020

− i
2ω20 − ω10

g0020h1001 − i
2ω20 + ω10

�g0002h0101

− i
ω20

h0011| |2 − 2i
3ω20

h0002| |2

(13)
In relations (10–13), all gjklm, hjklm are taken value at α � 0.
Lemma 2 [26]: Based on Lemma 1, if the following relations are

satisfied.

ReG2100(0) ≠ 0;ReG1011(0) ≠ 0;

ReH1110(0) ≠ 0;ReH0021(0) ≠ 0;

det(zμ
zα

)
∣∣∣∣∣∣∣∣α�0 ≠ 0

Then, Eq. 9 can be transformed into the following form through
coordinate transformation and modular, complex angle
substitution:

_r1 � r1 μ1 + p11 μ( )r21 + p12 μ( )r22 + s1 μ( )r42( ) +Φ1 r1, r2,φ1,φ2, μ( )
_r2 � r2 μ2 + p21 μ( )r21 + p22 μ( )r22 + s2 μ( )r41( ) +Φ2 r1, r2,φ1,φ2, μ( )
_ϕ1 � ω1 μ( ) + Ψ1 r1, r2,φ1,φ2, μ( )
_ϕ2 � ω2 μ( ) + Ψ2 r1, r2,φ1,φ2, μ( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(14)

where r1, r2 are modulus variables, and φ1,φ2 are argument variables.
The relevant coefficient satisfies the following relationship:
p11(0) � ReG2100(0), p12(0) � ReG1011(0)p21(0) � ReH1110(0),
p22(0) � ReH0021(0); s1, s2 are real numbers.

In the case of simple degeneration, considering the truncated
part of the modular equation in Eq. 14, we have

_r1 � r1 μ1 + p11r
2
1 + p12r

2
2 + s1r

4
2( )

_r2 � r2 μ2 + p21r
2
1 + p22r

2
2 + s2r

4
1( ){ (15)

Accordingly, the primary motion forms of the system near the
equilibrium position and their mutual transformations with
parameter changes can be obtained. The orbit structure on a
torus in Eq. 14 is generically different from that in the truncated
Equation 15 due to phase locking. Nevertheless, for the non-
resonance case [i.e., kω10≠lω20, (k, l > 0, k + l ≤ 5)] in this paper,
the qualitative dynamical characteristics for Eq. 14 are the same as
Eq. 15 from the observability point of view [26, p. 368].

In the proposed model, it can be seen that its linearized matrix A
has two pairs of purely imaginary eigenvalues if F′(−v) and c are
zero simultaneously. Let vc be the critical velocity of F′(−v) � 0 and
α � (α1, α2) � (v − vc, c) as the perturbed parameter. Then, matrix
A is a function of α1, α2, which can be written as:

A α( ) �

0 1 0 0

−k + k1
m

F′ −vc − α1( ) − α2
m

− k

m
−α2

m
0 0 0 1

− k

m
−α2

m
−k + k2

m

F′ −vc − α1( ) − α2

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

let k1
m � ω2

1,
k2
m � ω2

2 , k
m � ω2.

A 0( ) �

0 1 0 0

−k + k1
m

0 − k

m
0

0 0 0 1

− k

m
0 −k + k2

m
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 1 0 0

− ω2 + ω2
1( ) 0 −ω2 0

0 0 0 1

−ω2 0 − ω2 + ω2
2( ) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

A(0) has two pairs of purely imaginary eigenvalues: ± iω10, ± iω20

(ω10 >ω20 > 0), assuming that it satisfies the non-resonance
condition, namely:

kω10 ≠ lω20 k, l> 0, k + l≤ 5( ).
When α1, α2 are slightly perturbed, the eigenvalues and the

eigenvectors of A(α) depend on α1, α2 smoothly. Let
λ1(α) � μ1(α) + iω1(α), λ2(α) � μ2(α) + iω2(α) be the
eigenvalues of A(α), satisfying μ1(0) � μ2(0) � 0,ω1(0) �
ω10,ω2(0) � ω20; And q1(α), q2(α)(∈ C4) are its corresponding
eigenvectors, namely,

A α( )q1 α( ) � λ1 α( )q1 α( )
A α( )q2 α( ) � λ2 α( )q2 α( ){ (18)

Consider the following transformation

y � B α( )x (19)
where B(α) � [Req1(α),−Imq1(α),Req2(α),−Imq2(α)] (20)
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By substituting Eq. 19 into Eq. 6, we have:

_x � T α( )x + ~F x, α( ) (21)

T α( ) � B−1 α( )A α( )B α( ) �
μ1 α( ) −ω1 α( )
ω1 α( ) μ1 α( )

μ2 α( ) −ω2 α( )
ω2 α( ) μ2 α( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

~F x, α( ) � B−1 α( )F B α( )x( ) (23)
Let z1 � x1 + x2i, z2 � x3 + x4i , the following equation can be

obtained:

x1 � z1 + �z1
2

, x2 � z1 − �z1
2i

, x3 � z2 + �z2
2

, x4 � z2 − �z2
2i

By substituting the above equations into Eq. 21, the following
plural form similar to Eq. 8 can be obtained:

_z1 � λ1 α( )z1 + F1 z1, �z1, z2, �z2, α( )
_z2 � λ2 α( )z2 + F2 z1, �z1, z2, �z2, α( ){ (24)

Since only the case of linear terms degeneration is considered, it
is only necessary to consider the first-order approximate expression
of the eigenvalues’ real part μ of matrix A(α) near α1 � α2 � 0, and
to calculate the third-order resonant terms’ coefficients of normal
form at α1 � α2 � 0.

First, the coefficients of the cubic resonant terms are calculated. In
order to obtain the resonant terms’ coefficients in normal form, take α1 �
α2 � 0 in Eq. 24, and substitute its coefficients into Equations 10-13.

Let

FIGURE 10
The specific region to which μ1 ,μ2 belong at the time of α1 �
−0.04, α2 � 0.04.

FIGURE 9
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue line or point corresponds to transient motion, and the red line or point
corresponds to steady-state motion (i.e., eventually trending towards periodic motion).
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q1 0( ) �
q11
q21
q31
q41

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

i

−ω10

i ω2
10 − ω2 − ω2

1( )
ω2

−ω10 ω2
10 − ω2 − ω2

1( )
ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

q2 0( ) �
q12
q22
q32
q42

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

i

−ω20

i ω2
20 − ω2 − ω2

1( )
ω2

−ω20 ω2
20 − ω2 − ω2

1( )
ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

Now, when α1 � α2 � 0, Eq. 19 can be written as:

y1

y2

y3

y4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

− x2 + x4( )
−ω10x1 − ω20x3

ω2 + ω2
1 − ω2

10

ω2 x2 + ω2 + ω2
1 − ω2

20

ω2 x4

ω2 + ω2
1 − ω2

10

ω2 ω10x1 + ω2 + ω2
1 − ω2

20

ω2 ω20x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

Equation 27 is substituted into Eq. 21 and is transformed into
the form of Eq. 24. According to Equations 10–13, one can obtain:

p11 � 1
16m

F‴ −vc( )
ω2
10 − ω2

20( )ω10
[ ω2 + ω2

1 − ω2
20( )ω3

10

+ ω2
10 − ω2 − ω2

1( )3ω3
10

ω4 ]
(28)

FIGURE 11
(A), (B), (C) are the phase trajectories, (D) is the Poincaré map. The blue line or point corresponds to the transient motion, and the red line or point
corresponds to the steady-state motion (i.e., the final trend towards torus motion).

FIGURE 12
The specific region to which μ1 ,μ2 belong at the time of α1 �
0.03, α2 � −0.08.
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p12 � 1
8m

F‴ −vc( )
ω2
10 − ω2

20( )ω10
[ ω2 + ω2

1 − ω2
20( )ω10ω

2
20

− ω2 + ω2
1 − ω2

10( ) ω2 + ω2
1 − ω2

20( )2
ω4 ω10ω

2
20]

(29)

p21 � 1
8m

F‴ −vc( )
ω2
10 − ω2

20( )ω20
[ ω2

10 − ω2 − ω2
1( )ω2

10ω20

+ ω2 + ω2
1 − ω2

10( )2 ω2 + ω2
1 − ω2

20( )
ω4 ω2

10ω20]
(30)

p22 � 1
16m

F‴ −vc( )
ω2
10 − ω2

20( )ω20
[ ω2

10 − ω2 − ω2
1( )ω3

20

+ ω2 + ω2
1 − ω2

20( )3ω3
20

ω4 ]
(31)

In order to calculate the first-order approximate expression of
the real part μ of the eigenvalues of matrix A(α) near α1 � α2 � 0,
the adjoint eigenvectors p1(α), p2(α)(∈ C4) are introduced, which
satisfy

AT α( )p1 α( ) � �λ1 α( )p1 α( )
AT α( )p2 α( ) � �λ2 α( )p2 α( ){ (32)

The corresponding p1(α), p2(α) are chosen such that the
following relations are satisfied

< p1 α( ), q1 α( )> � < p2 α( ), q2 α( )> � 1 (33)
where < ·, ·> is the inner product in C4. Accordingly, if ξ �
[ξ1, ξ2, ξ3, ξ4]T and η � [η1, η2, η3, η4]T ∈ C4, then

FIGURE 13
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue line or point corresponds to transient motion, and the red line or point
corresponds to steady-state motion (i.e., eventually trending towards periodic motion).

FIGURE 14
The specific form of Figure 3, determined by the specific
parameters of this paper.
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< ξ, η> � ∑4
i�1

�ξiηi. According to the inner product definition, the

following relationship is satisfied between the eigenvector and the
accompanying eigenvector:

< p2 α( ), q1 α( )> � < p1 α( ), q2 α( )> � 0

By differentiating Eq. 18 with respect to αj (j � 1, 2), we
have [26]

Aαj
′ α( )q1 α( ) + A α( )q1αj′ α( ) � λ1αj

′ α( )q1 α( ) + λ1 α( )q1αj′ α( )
Aαj

′ α( )q2 α( ) + A α( )q2αj′ α( ) � λ1αj
′ α( )q2 α( ) + λ1 α( )q2αj′ α( ){ (34)

Taking the inner product of p1(α) with the first equation in Eq.
34, one can obtain

〈p1 α( ),Aαj
′ α( )q1 α( )〉 + 〈p1 α( ),A α( )q1αj′ α( )〉

� 〈p1 α( ), λ1αj′ α( )q1 α( )〉 + 〈p1 α( ), λ1 α( )q1αj′ α( )〉 (35)

In consideration of the inner product definition, Eq. 35 can be
written as

〈p1 α( ),Aαj
′ α( )q1 α( )〉 + 〈AΤ α( )p1 α( ), q1αj′ α( )〉

� 〈p1 α( ), λ1αj′ α( )q1 α( )〉 + 〈p1 α( ), λ1 α( )q1αj′ α( )〉 (36)

It follows from Eq. 32 that

〈p1 α( ),Aαj
′ α( )q1 α( )〉 + 〈�λ1 α( )p1 α( ), q1αj′ α( )〉

� 〈p1 α( ), λ1αj′ α( )q1 α( )〉 + 〈p1 α( ), λ1 α( )q1αj′ α( )〉 (37)

In view of the inner product definition, Eq. 37 can be written as

〈p1 α( ),Aαj
′ α( )q1 α( )〉 + λ1 α( )〈p1 α( ), q1αj′ α( )〉

� λ1αj
′ α( )〈p1 α( ), q1 α( )〉 + λ1 α( )〈p1 α( ), q1αj′ α( )〉 (38)

From Eq. 33 and eliminating the terms λ1(α)〈p1(α), q1αj′ (α)〉, we
have:

〈p1 α( ),Aαj
′ α( )q1 α( )〉 � λ1αj

′ α( ) (39)

FIGURE 15
The specific region to which μ1 ,μ2 belong at the time of: (A) α1 � 0.03, α2 � 0.03; (B) α1 � −0.04, α2 � 0.06; (C) α1 � −0.06, α2 � 0.03;
(D) α1 � 0.02, α2 � −0.06.
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Taking the inner product of p2(α) with the second equation
in Eq. 34 and repeating the processes of Eqs 35–38, then one
obtains

〈p2 α( ),Aαj
′ α( )q2 α( )〉 � λ2αj

′ α( ) (40)

Taken value at α � 0, Eqs 39, 40 can be written into the following
unified form:

λiαj
′ 0( ) � < pi 0( ),Aαj

′ 0( )qi 0( )> i � 1, 2; j � 1, 2( ) (41)

Taking its real part, the change rate of μ at α1 � α2 � 0 can be
obtained. Thus, its first-order approximate expression can be easily
obtained as:

μ1 ≈ μ1α1
′ · α1 + μ1α2

′ · α2 � Re λ1α1
′ 0( )( ) · α1 + Re λ1α2

′ 0( )( ) · α2
μ2 ≈ μ2α1

′ · α1 + μ2α2
′ · α2 � Re λ2α1

′ 0( )( ) · α1 + Re λ2α2
′ 0( )( ) · α2

⎧⎨⎩
(42)

Specifically, let

p1 0( ) �
p1
1

p2
1

p3
1

p4
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � iω4

2ω10 ω4 + ω2
10 − ω2 − ω2

1( )2[ ]

ω10

i

ω10 ω2
10 − ω2 − ω2

1( )
ω2

i ω2
10 − ω2 − ω2

1( )
ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(43)

p2 0( ) �
p1
2

p2
2

p3
2

p4
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� iω4

2ω20 ω4 + ω2
20 − ω2 − ω2

1( )2[ ]

ω20

i

ω20 ω2
20 − ω2 − ω2

1( )
ω2

i ω2
20 − ω2 − ω2

1( )
ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(44)

From Eq. 16, we have:

Aα1
′ �

0 1 0 0

0 1
m

zF′ −α1−vc( )
zα1

∣∣∣∣∣ α1�0 0 0

0 0 0 0

0 0 0 1
m

zF′ −α1−vc( )
zα1

∣∣∣∣∣ α1�0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(45)

Aα2
′ �

0 0 0 0

0 − 1
m

0 − 1
m

0 0 0 0

0 − 1
m

0 − 1
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(46)

FIGURE 16
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue lines or points correspond to transient motions, and the red points
correspond to steady-state motions (i.e., the final approach to the equilibrium position).
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Substituting equations (25-26) and (43–46) into Eq. 41, one can
obtain:

μ1α1′ � Reλ1α1′ � Re< p1 0( ),Aα1′ 0( )q1 0( )>

� 1
2m

zF′ −α1 − vc( )
zα1

(47)

μ1α2′ � Reλ1α2′ � Re< p1 0( ),Aα2′ 0( )q1 0( )>

� − 1
2m

ω2
10 − ω2

1( )2
ω4 + ω2

10 − ω2 − ω2
1( )2[ ]

(48)

μ2α1′ � Reλ2α1′ � Re< p2 0( ),Aα1′ 0( )q2 0( )>

� 1
2m

zF′ −α1 − vc( )
zα1

(49)

μ2α2′ � Reλ2α2′ � Re< p2 0( ),Aα2′ 0( )q2 0( )>

� − 1
2m

ω2
20 − ω2

1( )2
ω4 + ω2

20 − ω2 − ω2
1( )2[ ]

(50)

4 Case study and Hopf-Hopf
bifurcation

For the system shown in Figure 1, taking
m � 1, k � 2, k1 � 9, k2 � 19, it can be calculated that:

ω10 � 4.6244,ω20 � 3.2580

It can be easily verified that it satisfies the non-resonance
condition. vc � 1.0541 can be calculated from the dry friction
function expression. Substituting the relevant values into relations
(28–31) and (47–50) gives:

p11 � −93.9517; p12 � −0.2562;
p21 � −13.9188; p22 � −1.7296.{ (51)

μ1α1′ � −1.4230; μ1α2′ � −0.6857;
μ2α1′ � −1.4230; μ2α2′ � −0.3143.{ (52)

Let

θ � p12

p22
� 0.1481

δ � p21

p11
� 0.1481

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (53)

δ · θ � 0.0219 (54)

FIGURE 17
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue line or point corresponds to transient motion, and the red line or point
corresponds to steady-state motion (i.e., eventually trending towards periodic motion).
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From Eq. 52, we have

det
zμ

zα
( )∣∣∣∣∣∣∣∣

μ�0
≠ 0 (55)

Substituting Eq. 52 into Eq. 42, one can obtain:

μ1 ≈ μ1α1
′ · α1 + μ1α2

′ · α2 � −1.4230 · α1 − 0.6857 · α2
μ2 ≈ μ2α1

′ · α1 + μ2α2
′ · α2 � −1.4230 · α1 − 0.3143 · α2{ (56)

Substituting Equations (51) and (56) into Eq. 15, the specific
form of Eq. 15 can be obtained. It is noted from Eqs. (51), (54) and
(55) that the system undergoes Hopf-Hopf bifurcation in the
“Simple” case [26]. Furthermore, since s1, s2 in Eq. 15 do not
affect its qualitative dynamical behavior, they are not calculated
here. Let ρk � r2k. Substituting it into Eq. 15, one can obtain:

_ρ1 � 2ρ1 μ1 + p11ρ1 + p12ρ2 + s1ρ
2
2( )

_ρ2 � 2ρ2 μ2 + p21ρ1 + p22ρ2 + s2ρ
2
1( ){ (57)

From Eq. 51, it is easy to see p11p22 > 0 , p11 < 0 , and p22 < 0. Let
ξ1 � −p11ρ1, ξ2 � −p22ρ2 , and τ � 2t , then Eq. 57 can be written
as [26]

_ξ1 � ξ1 μ1 − ξ1 − θξ2 + Θξ22( )
_ξ2 � ξ2 μ2 − δξ1 − ξ2 + Δξ21( )

⎧⎨⎩ (58)

where Θ � s1
p2
22
, Δ � s2

p2
11
(since Θ and Δ do not affect the system’s

qualitative dynamic behavior, they should not be calculated). In Eqs
(25), (26), (43) and (44), the vectors q1, q2 and p1, p2 are
eigenvectors, which means kq1, lq2 and mp1, np2 are also
eigenvectors. Indeed, the special selection of these eigenvectors
has effects on the coefficients p11, p12, p21 and p22. However, it
has no effects upon the coefficients θ and δ, then which has no effects
upon the final simplified Equation 58 after these transformations
ξ1 = -p11ρ1, ξ2 = -p22ρ2 and τ = 2t. The process of proof can be found
in Ref. [26, p. 383], which is too tedious to be suitable presenting it in
this paper.

For all values of μ1, μ2, E0 � (0, 0) is the equilibrium point of
Eq. 58.

If μ1, μ2 are both negative, then Eq. 58 has only one stable
equilibrium point E0 � (0, 0), as described with region ① in
Figure 3.

If at least one of μ1, μ2 is positive, then from the branch straight
line

H1 � μ1, μ2( ): μ1 � 0{ }
and

H2 � μ1, μ2( ): μ2 � 0{ }

FIGURE 18
(A), (B), (C) are the phase trajectories, (D) is the Poincaré map. The blue line or point corresponds to the transient motion, and the red line or point
corresponds to the steady-state motion (i.e., the final trend towards torus motion).
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the trivial equilibrium points E1 � (μ1, 0) (μ1 > 0) and E2 � (0, μ2)
(μ2 > 0) are branched at the origin, respectively, as described with
region ②③⑪⑫ in Figure 3. Notably, the equilibrium point at
this time is the equilibrium point of the amplitude equation: E1 �
(μ1, 0) and E2 � (0, μ2) represent the periodic motion of
amplitude ξ1 ≠ 0, ξ2 � 0 and ξ1 � 0, ξ2 ≠ 0, respectively.

θδ − 1 ≠ 0 is known from Eq. 54. Thus, for sufficiently small ‖μ‖,
Eq. 58 has a non-trivial equilibrium point in the neighborhood of
origin of the phase space:

E3 � −μ1 − θμ2
θδ − 1

+ O μ
���� ����2( ), δμ1 − μ2

θδ − 1
+ O μ

���� ����2( )( )
Specifically, θδ − 1 � −0.9781, which is negative. Thus, the

parameter region where a non-trivial equilibrium point E3 exists is:

− μ1 − θμ2( )< 0 and δμ1 − μ2 < 0 (59)
which is the area below T1 and above T2, described as the following
(see the region ⑤ shown in Figure 3):

T1: μ1 � θμ2, μ2 > 0;
T2: μ2 � δμ1, μ1 > 0.

It should be noted that the “equilibrium point” at this time is the
equilibrium point of the amplitude equation. Moreover, the non-
trivial equilibrium point E3 represents the coupling of two non-zero

vibrations ξ1 ≠ 0, ξ2 ≠ 0, corresponding to the torus motion of the
original Eq. 1 (generally quasi-periodic motion).

The phase trajectories corresponding to the parameter region
①②③⑤⑪⑫ are shown in Figure 4.

As shown in Figure 4, there is only a stable equilibrium point in
region①. There are stable periodic motions in both regions②⑪ and
③⑫; the difference is that ③⑫ has one more unstable periodic
motion than ②⑪. The unstable periodic motion is saddle point type
and cannot be observed by numerical simulations. There are stable
torus motion and two unstable periodic motions (saddle point type) in
region⑤, and numerical simulations can observe stable torus motion.

According to equations (51) and (53), the specific form of
Figure 3 can be drawn, as shown in Figure 5. Now, T1 and T2

are described as:

T1: μ1 � 0.1481μ2, μ2 > 0
T2: μ2 � 0.1481μ1, μ1 > 0

According to Eq. 56, μ1, μ2 can be determined from α1, α2. α1 is
the increment of the wheel edge velocity, and α2 is the damping c, as
shown in Eq. 16. For given values of α1, α2, μ1, μ2 can be calculated
according to Eq. 56. The equilibrium position is stable if they belong
to the region between the two blue lines in Figure 5. If they belong to
the area sandwiched by the blue and red lines in Figure 5, the stable
periodic motion can be observed through numerical simulations.
Suppose they belong to the area sandwiched by the two red lines in

FIGURE 19
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue line or point corresponds to transient motion, and the red line or point
corresponds to steady-state motion (i.e., eventually trending towards periodic motion).
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Figure 5. In that case, the stable torus motion can be observed
through numerical simulations.

Take the first set of parameters: α1 � 0.04, α2 � 0.04 , μ1 � −0.0843
and μ2 � −0.0695 can be calculated fromEq. 56, while their positions are
denoted by "*". It is easy to see that they belong to the region sandwiched
by two blue lines (see Figure 6). Hence, the equilibrium position of
system (1) is stable, and its phase trajectories and Poincaré map (with
_z2 � 0 as the Poincaré section) are shown in Figure 7.

Take the second set of parameters: α1 � −0.03, α2 � 0.08, μ1 �
−0.0122 and μ2 � 0.0175 can be calculated from Eq. 56, while their
positions are denoted by "*". It is easy to see that they belong to the area
sandwiched by the blue and red lines (see Figure 8). Therefore, system
(1) has a stable periodic motion, and its phase trajectories and Poincaré
map (with _z2 � 0 as the Poincaré section) are shown in Figure 9.

Take the third set of parameters: α1 � −0.04, α2 � 0.04 , μ1 �
0.0295 and μ2 � 0.0443 can be derived from Eq. 56, and their
positions are represented by "*". Thus, it can be seen that they
belong to the region sandwiched by two red lines (see Figure 10).
Hence, system (1) has a stable torus motion, where its phase
trajectories and Poincaré map (with _z2 � 0 as the Poincaré
section) are presented in Figure 11.

Take the fourth set of parameters: α1 � 0.03, α2 � −0.08, μ1 �
0.0122 and μ2 � −0.0175 can be derived from Eq. 56, and their
positions are represented by "*". Thus, it can be seen that they belong
to the region sandwiched by the red and blue lines (see Figure 12).

Hence, system (1) has a stable periodic motion, where its phase
trajectories and Poincaré map (with _z2 � 0 as the Poincaré section)
are presented in Figure 13. To be honest, the parameter α2
(i.e., damping coefficient c) in this area need to be negative,
which is attainable mathematically but is not achievable physically.

In order to validate further the expressions (28–31, 47–50) and
the analysis from Eq. 56 to Figure 5, the relevant numerical
calculations for the system shown in Figure 1 are conducted with
another set of parameters; m � 1, k � 3, k1 � 8, k2 � 14. And then
one can calculate that; ω10 � 4.2711; ω20 � 3.1237, which satisfies
the non-resonance condition; vc remains 1.0541. Substituting the
relevant values into Eqs. (28-31) and Eqs. (47-50), the corresponding
values and relations in the expressions (51–56) can be written as:

p11 � −15.7657; p12 � −0.9645;
p21 � −10.5105; p22 � −1.4468.{ (60)

μ1α1′ � −1.4230; μ1α2′ � −0.8536;
μ2α1′ � −1.4230; μ2α2′ � −0.1464.{ (61)

Let

θ � p12

p22
� 0.6667

δ � p21

p11
� 0.6667

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (62)

δ · θ � 0.4444 (63)

FIGURE 20
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue line or point corresponds to transient motion, and the red line or point
corresponds to steady-state motion (i.e., eventually trending towards periodic motion).
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From Eq. 61, we have

det
zμ

zα
( )

∣∣∣∣∣∣∣∣
μ�0

≠ 0 (64)

Substituting Eq. 61 into Eq. 42, one can obtain:

μ1 ≈ μ1α1
′ · α1 + μ1α2

′ · α2 � −1.4230 · α1 − 0.8536 · α2
μ2 ≈ μ2α1

′ · α1 + μ2α2
′ · α2 � −1.4230 · α1 − 0.1464 · α2{ (65)

According to equations (60) and (62), the specific form of Figure 3
can be drawn, as shown in Figure 14. Now, T1 and T2 are described as:

T1: μ1 � 0.6667μ2, μ2 > 0
T2: μ2 � 0.6667μ1, μ1 > 0

Taking four sets of parameters of (α1, α2), i.e.,
α1 � 0.03, α2 � 0.03, α1 � −0.04, α2 � 0.06,

α1 � −0.06, α2 � 0.03 and α1 � 0.02, α2 � −0.06,
(μ1, μ2) can be derived from Eq. 65, which are

μ1 � −0.0683, μ2 � −0.0471, μ1 � 0.0057, μ2 � 0.0481,

μ1 � 0.0598, μ2 � 0.0810 and μ1 � 0.0228, μ2 � −0.0197,
respectively, and their positions are represented by "*" in Figure 15.

According to the analysis from Eq. 56 to Figure 5, it can be seen
from Figure 15A that the equilibrium position of system (1) is stable,
and its phase trajectories and Poincaré map (with _z2 � 0 as the
Poincaré section) are shown in Figure 16.

It is noted from Figure 15B that "*" belong to the area
sandwiched by the blue and red lines. Then, system (1) has a
stable periodic motion, and its phase trajectories and Poincaré
map (with _z2 � 0 as the Poincaré section) are shown in Figure 17.

The location of "*" in Figure 15C means that system (1) has a
stable torus motion, where its phase trajectories and Poincaré
map (with _z2 � 0 as the Poincaré section) are presented in
Figure 18.

As shown in Figure 15D, "*" belong to the region sandwiched by
the red and blue lines, which indicates that system (1) has a stable
periodic motion, where its phase trajectories and Poincaré map
(with _z2 � 0 as the Poincaré section) are presented in Figure 19.

5 Conclusions and discussions

5.1 Discussions

Comparing this paper with the previous works, the non-linear
resonant terms are given analytically for a system without symmetry.

FIGURE 21
(A), (B), (C) are the phase trajectories, and (D) is the Poincaré map. The blue line or point corresponds to transient motion, and the red line or point
corresponds to steady-state motion (i.e., eventually trending towards periodic motion).
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In the previous studies: the non-linear resonant termswere not given and
only the eigenvalues of linearization matrix and their derivatives were
computed [18]; the non-linear resonant terms were obtained by
numerical methods [19]; the non-linear resonant terms were derived
analytically for a systemwith O (2) symmetry [24], where the non-linear
resonant terms were simplified tremendously by the O (2) symmetry of
the system. In the previous Ref. [18], the Hopf-Hopf bifurcation is
“Subcritical” and the periodic and torus motions are unstable, where an
inversion of time (i.e., t→-t) was needed for the visualization of the
periodic and torus motions. However, the current paper gives an
example of dynamical system in which “Supercritical” Hopf-Hopf
bifurcation could occur; this complements the previous study.

In fact, the methods used in this paper can also be used to analyze
the periodic and torus motions of high-dimensional systems.
Nevertheless, before calculating the non-linear resonant terms, a
longitudinal simplification is needed to reduce the high-
dimensional systems to a set of four-dimensional ordinary
differential equations, where the center manifold theory will be
applied to obtain the reduced equations and the whole
computational process could be tedious and numerical. For infinite
dynamical systems, e.g., the analysis of vibration characteristics of
structures with geometry non-linear caused by large deformation, the
current methods are also applicable after reducing the non-linear
partial differential equations to a set of four-dimensional ordinary
differential equations. However, this process will be more difficult
than that of high-dimensional system, which involved the two-point
boundary values problem of linear partial differential equation and the
projection of function spaces (see Ref. [24] as a simple example).
Incidentally, the methods applied in this paper can accurately predict
the qualitative dynamical behavior for systems having a pair of purely
imaginary eigenvalues for some critical values of the relevant
parameters. Nevertheless, the advantages are restricted to some
neighborhood of the critical parameters values. Indeed, for the
analysis of global bifurcations of mechanical systems, only using
the current methods are inadequate.

In lemma 1, there is a non-resonant condition kω10≠lω20, (k, l >
0, k + l ≤ 5). If the eigenvalues ω10, ω20 fail to meet the non-resonant
condition, i.e., kω10 equate or equate approximately to lω20 (k, l > 0,
k + l ≤ 5), richer dynamical phenomena will happen. Meanwhile, the
normal form (9) will become more difficulty and the differential
equations in regard to argument variables ϕ1, ϕ2 in Eq. 14 should be
considered. For this, the detailed analysis remains to be further
studied in the future. Some numerical investigations for two kinds of
resonant cases are given in what follows.

Case 1: ω10 = 2ω20. Taking m � 1, k � 1, k1 � 2.23, k2 � 11.38, it
can be calculated that:

ω10 � 3.5338,ω20 � 1.7669

They do not satisfy the non-resonance condition because ω10 =
2ω20 (k, l > 0, k + l = 3 ≤ 5). Take the set of parameters:
α1 � −0.08, α2 � 0.005. Numerical simulations indicate that
system (1) has a stable periodic motion whose frequency is near
ω10/2 = ω20, and its phase trajectories and Poincaré map (with _z2 � 0
as the Poincaré section) are shown in Figure 20.

Case 2: 2ω10 ≈ 3ω20. Takingm � 1, k � 0.24, k1 � 4.05, k2 � 9.06, it
can be calculated that:

ω10 � 3.0515,ω20 � 2.0685

They do not satisfy the non-resonance condition because 2ω10 ≈
3ω20 (k, l > 0, k + l = 5 ≤ 5). Take the set of parameters:
α1 � −0.05, α2 � 0.01. Numerical simulations indicate that system
(1) has a stable periodic motion whose frequency is nearω10/3 = ω20/
2, and its phase trajectories and Poincaré map (with _z2 � 0 as the
Poincaré section) are shown in Figure 21.

5.2 Conclusions

This paper studied the periodic and torus motions of a two-degree-
of-freedom dynamical system with dry friction by theoretical analysis
and numerical simulations in the non-resonance case. The Poincaré-
Birkhoff normal form was calculated analytically, and the simplified
equations were obtained. The analysis of the simplified equations
reflected stable periodic and torus motions for suitable parameter
regions. Numerical simulations were compatible with the theoretical
results. The novelty of this paper is focused on the analytical calculations
of non-linear resonant terms for the current asymmetric mechanical
system and the discovery of “Supercritical” Hopf-Hopf bifurcation.
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