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In this paper, we consider the non-existence and existence of solutions for a
generalized quasilinear Schrödinger equation with a Kirchhoff-type perturbation.
When the non-linearity h(u) shows critical or supercritical growth at infinity, the
non-existence result for a quasilinear Schrödinger equation is proved via the
Pohožaev identity. If h(u) shows asymptotically cubic growth at infinity, the
existence of positive radial solutions for the quasilinear Schrödinger equation is
obtained when b is large or equal to 0 and b is equal to 0 by the variational
methods. Moreover, some properties are established as the parameter b tends
to be 0.
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1 Introduction

The Schrödinger equation [1] is of paramount importance in physics, and there are
many modifications in literature, for example, the Chen–Lee–Liu equation [2] and stochastic
Schrödinger equation [3]. However, the generalized quasilinear Schrödinger equation with a
Kirchhoff-type perturbation was rarely studied in literature, which can be written as

1 + b∫
R3
g2 u( )|∇u|2dx( ) −div g2 u( )∇u( ) + g u( )g′ u( )|∇u|2[ ] + V x( )u � h u( ), (1.1)

where x ∈ R3, b≥ 0, V: R3 → R and h: R → R are continuous functions, g ∈ C1(R,R+)
satisfies (g1), g is even, g′(t) ≤ 0, g(0) � 1, lim

t→+∞g(t) � l, l ∈ (0, 1), and ∀ t ≥ 0.
When b = 0, Eq. 1.1 is reduced to the following quasilinear Schrödinger equation:

−div g2 u( )∇u( ) + g u( )g′ u( )|∇u|2 + V x( )u � h u( ), x ∈ R3. (1.2)
According to [4], let g(u) �

															
1 + 2(φ′(|u|2))2u2

√
, then, Eq. 1.2 is transformed into

−△u − △ φ |u|2( )( )[ ]φ′ |u|2( )u + V x( )u � h u( ), x ∈ R3. (1.3)
It is well-known that the classical case is φ(s) = s or φ(s) � 				

1 + s
√

[5–12].
For Eq. 1.1, another interesting question is b > 0. When g(t) = 1 for all t ∈ R, it is reduced

to the following classical Kirchhoff equation:
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− 1 + b∫
R3
|∇u|2dx( )Δu + V x( )u � h u( ), x ∈ R3. (1.4)

It is well-known that Eq. 1.4 is related to the stationary analog of
the following Kirchhoff-type equation:

utt + 1 + b∫
R3
|∇u|2dx( )Δu + V x( )u � h u( ), x ∈ R3, (1.5)

which was proposed by Kirchhoff as an extension of the classical
D’Alembert’s wave equation for free vibrations of elastic strings
[13,14]. More physical background can be found in [15] and the
references therein. Based on the aforementioned analysis, it is
necessary to study Eq. 1.1.

1.1 Related works and main results

At first, let us briefly review the predecessors’ pioneering works
about the problem [16–20]. However, to the best of our knowledge,
there are no works involving Eq. 1.1 when the non-linearity h(u) is
asymptotically cubic at infinity. More information about the
asymptotically cubic problems is given in [21,22] and the
references therein. The main goal of the present paper is to
investigate this problem. Precisely, we suppose that

(V1) V(x) � V(|x|), 0<V0 ≤V(x)≤V∞ ≔ lim
|x|→+∞

V(x)<∞;

(V2) V ∈ C1(R3,R) and 〈∇V(x), x〉≤ 0,∀ x ∈ R3;
(h1) h ∈ C(R,R), h(t) = 0, ∀ t ≤ 0, and lim

t→0

h(t)
t � 0;

(h2) lim
|t|→+∞

|h(t)|
|t|3 � γ, γ> bl4λ1, where

λ1 ≔ inf ∫
R3
|∇w|2dx( )2

: w ∈ H, ∫
R3
|w|4dx � 1{ }

and H is defined in Section 2;

(h3) 1
4 h(t)t≥H(t) for all t > 0, where H(t) � ∫t

0
h(s)ds.

Remark 1.1: For example, h(t) � γt5

1+t2. By direct calculations, we have

H t( ) � γt4

4
− γt2

2
+ γ

2
ln 1 + t2( ).

It is easy to observe that h satisfies the assumption (h1) − (h3).
The first result involves non-existence for the Kirchhoff-type

perturbation problem.
Theorem 1.1: Assume that (g1) holds with 1

3≤ l≤ 1 and 〈∇V(x), x〉≥
0. For any b > 0, Eq. 1.1 has no non-trivial solutions with h(u) = |
u|p−2u, p ≥ 6.

The next result describes the existence for generalized
quasilinear Schrödinger equations with the Kirchhoff term.
Theorem 1.2: Assume that (V1), (V2), (g1), (h1), and (h2) are
satisfied. Then, Eq. 1.1 has a positive radial solution.

The third result shows the existence for generalized quasilinear
Schrödinger equations without the Kirchhoff term.
Theorem 1.3: Assume that (V1), (V2), (g1), and (h1) − (h3) are
satisfied. Then, Eq. 1.2 has a positive radial solution.

Compared with Theorem 1.2, without the Kirchhoff term∫
R3g2(u)|∇u|2dx, we find that we need to add the condition

(h3). Until now, we have not been able to remove it. A natural

question is that what happens if Kirchhoff-type perturbation occurs,
that is, when b → 0, can we build a relationship between Theorem
1.2 and 1.3? In this regard, we state the following.
Theorem 1.4: Assume that (V1), (V2), (g1), and (h1) − (h3) hold and
{ubn} ⊂ H are the positive radial solutions obtained in Theorem
1.2 for each n ∈ N. Then, ubn → u0 inH as bn→ 0, n→∞, where u0
is a positive radial solution for Eq. 1.2.

1.2 Our contributions and methods

We should mention that our results are new since we focus on
the asymptotically cubic case. Compared with [16,19,20], we know
that in Theorem 1.1, our non-linear term in the autonomy problem
Eq. 1.1 is supercritical, so we invoke the Pohožaev-type identity. As
for Theorem 1.2, the problem is asymptotically 3-linear at infinity
(i.e., h(t) ~ t3), so it is different from [16]. We take full advantage of
the condition h2, and this is our paper’s highlight. We borrow the
idea from [16], but we require more elaborate estimates (see Lemma
3.2–3.4) to prove Theorem 1.3. It is worth pointing out that in
Theorem 1.3, it seems that the condition (h3) is fussy, but our pursuit
is not to relax the condition. Our condition (h3) is different from
([16], h5), and we adopt the idea from [23], Lemma 2.2 to obtain
mountain pass geometry (see Lemma 3.5). Finally, we study the
behavior of the positive radial solutions as b → 0. Since we do not
know whether u0 is unique, we cannot draw the conclusion that u0 is
obtained in Theorem 1.2.

1.3 Organization

This paper is organized as follows. Section 2 provides some
preliminaries, and Section 3 is divided into three parts, which will
prove Theorems 1.1–1.3, respectively. The proof of Theorem1.4 is given
in Section 3. Throughout this paper, the following notations are used:

• ‖u‖p (1 < p ≤ ∞) is the norm in Lp(R3);
• → and . denote strong and weak convergence, respectively;
• 〈·, ·〉 denotes the duality pairing between a Banach space and
its dual space;

• on(1) denotes on(1) → 0 as n → ∞.

2 Preliminary results

Since the condition (V1), we use the work space

H ≔ u ∈ H1 R3( ): u x( ) � u |x|( ){ },
equipped with the norm

‖u‖2H � ∫
R3

|∇u|2 + V x( )u2( )dx. (2.1)

According to [16], the energy functional associated with Eq. 1.1 is

Ib u( ) � 1
2
∫

R3
g2 u( )|∇u|2dx + 1

2
∫

R3
V x( )|u|2dx + b

4
∫

R3
g2 u( )|∇u|2dx( )2

−∫
R3H u( )dx,

whereH(t) � ∫t

0
h(s)ds. We require the change of variable [24–27]
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v � G u( ) � ∫u

0
g t( )dt, (2.2)

and I(u) can be reduced to

Jb v( ) � 1
2
∫

R3
|∇v|2dx + 1

2
∫

R3
V x( )|G−1 v( )|2dx + b

4
∫

R3
|∇v|2dx( )2

−∫
R3
H G−1 v( )( )dx, (2.3)

where G−1(v) is the inverse of G(u).
Clearly, we have the following lemma (see [16]).

Lemma 2.1: Assume that (V1) holds. If v ∈ H is a critical point of Jb,
then u = G−1(v) is a weak solution of Eq. 1.1.

3 Proof of the main results

3.1 Proof of Theorem 1.1

By a standard argument in [28], we can obtain the following
Pohožaev type.
Lemma 3.1: If v ∈ H is a weak solution of Eq. 1.1 with h(t) = |t|p−2t,
p ≥ 6, then v satisfies

1
2
∫

R3
|∇v|2dx +3

2
∫

R3
V x( )|G−1 v( )|2dx + 1

2
∫

R3
〈∇V x( ), x〉|G−1 v( )|2dx

+b
2

∫
R3
|∇v|2dx( )2

� 3
p
∫

R3
|G−1 v( )|pdx.

Based on the identity, we can provide the proof of Theorem 1.1.
Indeed, v satisfies

∫
R3 |∇v|2dx + ∫

R3
V x( ) G−1 v( )

g G−1 v( )( ) vdx + b ∫
R3
|∇v|2dx( )2

� ∫
R3

|G−1 v( )|p−2G−1 v( )
g G−1 v( )( ) vdx.

Since 1
3≤ l≤ 1, using (5) of Lemma 2.1 in [29], jointly with 〈∇V(x),

x〉≥ 0, we can obtain 0 = u = G−1(v).

3.2 Proof of Theorem 1.2

This section provides the proof of Theorem 1.2. Clearly, as
mentioned previously, we are devoted to studying the functional Jb
[Eq. 2.3]. Since our case is asymptotically cubic, it is hard to prove
the boundedness of the PS-sequences of Jb. Hence, we use [30],
Theorem 1.1 to find a special bounded PS-sequence of Jb,μ, where

Jb,μ v( ) ≔ 1
2
∫

R3
|∇v|2dx + 1

2
∫

R3
V x( )|G−1 v( )|2dx + b

4
∫

R3
|∇v|2dx( )2

−μ∫
R3H G−1 v( )( )dx,

μ ∈ [1, 2]. We have the following lemma.
Lemma 3.2: Assume that (h1)–(h2) are satisfied, then

(i) for μ ∈ [1, 2], there exists v ∈ H\{0} such that Jb,μ(v) < 0.
(ii) there exists ρ, α > 0 such that Jb,μ(v) ≥ α and ‖v‖H � ρ.

Proof. (i) It is well-known that λ1 > 0 is attained [ ([31]; Section
1.7)]. In other words, ϕ ∈ H satisfied∫

R3 |ϕ|4dx � 1 and ϕ> 0 such that

λ1 � ∫
R3
|∇ϕ|2dx( )2

.

In view of (h2), 1< 1
l2, and 1 ≤ μ ≤ 2, jointly with (3) and (4) of Lemma

2.1 in [29], we have

lim
t→+∞

Jb,μ tϕ( )
t4

< lim
t→+∞

1

l2t2
‖ϕ‖2H + b

4
∫

R3
|∇ϕ|2dx( )2

− μ∫
R3

H G−1 tϕ( )( )
|G−1 tϕ( )|4 |G−1 tϕ( )|4

|tϕ|4 |ϕ|4dx[ ]
≤
b

4
∫

R3
|∇ϕ|2dx( )2

− bλ1
4
∫

R3
|ϕ|4dx

� 0.

Hence, when t is large, let v≔ tϕ, and we obtain the results.
(ii) Let ε ∈ (0, l2V0

2μ ), then we obtain

Jb,μ v( )≥ 1
2
∫

R3
|∇v|2dx + 1

2
∫

R3
V0 − με

l2
( )|v|2dx − Cεμ

qlq
∫

R3
|v|qdx.

(3.1)
Hence, we can choose ‖v‖H � ρ> 0 small enough such that
Jb,μ(v) > 0.

Define

A v( ) ≔ 1
2
∫

R3
|∇v|2 + V x( )|G−1 v( )|2[ ]dx + b

4
∫

R3
|∇v|2dx( )2

,

B v( ) ≔ ∫
R3H G−1 v( )( )dx.

It is deduced from (V1) and (3) of Lemma 2.1 in [29] that

A v( )> 1
2
‖v‖2H → +∞, as ‖v‖H → ∞, ∀ v ∈ H.

Moreover, from (h1), it can be observed that B(v) �∫
R3H(G−1(v))dx≥ 0,∀ v ∈ H.
Using [30], Theorem 1.1 or [16], Theorem 4.1, it shows that for

a.e. μ ∈ [1, 2], there is a bounded (PS)cμ sequence {vn} ⊂ H, where cμ
is the mountain pass level.
Lemma 3.3: Up to a subsequence, vn → vμ in H.
Proof: Since {vn} ⊂ H is bounded, up to a subsequence, there exists
vμ ∈ H such that vn. vμ, inH, vn→ vμ, in Lp(R3) for 2 < p < 6, and
vn(x) → vμ(x) a.e. x ∈ R3. Obviously, Jb,μ′ (vμ) � 0. Then,

on 1( ) � 〈Jb,μ′ vn( ) − Jb,μ′ vμ( ), vn − vμ〉

� ∫
R3
|∇ vn − vμ( )|2dx + ∫

R3
V x( ) G−1 vn( )

g G−1 vn( )( ) − G−1 vμ( )
g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦

vn − vμ( )dx + b[∫
R3
|∇vn|2dx∫

R3
∇vn∇ vn − vμ( )dx

− ∫
R3
|∇vμ|2dx∫

R3
∇vμ∇ vn − vμ( )dx]

− μ∫
R3

h G−1 vn( )( )
g G−1 vn( )( ) − h G−1 vμ( )( )

g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦ vn − vμ( )dx.
(3.2)

We define φ: R → R by φ(t) =G−1(t)/g(G−1(t)). Noting that l < g(t) ≤
1 for t ∈ R, jointly with [29], (2) of Lemma 2.1, we have

φ′ t( ) � 1
g2 G−1 t( )( ) 1 − G−1 t( )g′ G−1 t( )( )

g G−1 t( )( )[ ]≥ 1
g2 G−1 t( )( )≥ 1.
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According to the mean value theorem, for any x ∈ R3, there exists a
function ξ(x) between vμ(x) and vn(x) such that

∫
R3V x( ) G−1 vn( )

g G−1 vn( )( ) − G−1 vμ( )
g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦ vn − vμ( )dx � ∫

R3V x( )φ′ ξ( )|vn − vμ|2dx
≥∫

R3V x( )|vn − vμ|2dx.
(3.3)

It is easy to check that

∫
R3 |∇vn|2dx∫

R3
∇vn∇ vn − vμ( )dx−

∫
R3
|∇vμ|2dx∫

R3
∇vμ∇ vn − vμ( )dx

� ∫
R3

|∇vn|2 − |∇vμ|2[ ]dx∫
R3
∇vn∇ vn − vμ( )dx

+∫
R3
|∇vμ|2dx∫

R3
|∇ vn − vμ( )|2dx

→ 0, n → ∞ . (3.4)
Noting that [29], (3) of Lemma 2.1, we obtain

∫
R3

h G−1 vn( )( )
g G−1 vn( )( ) − h G−1 vμ( )( )

g G−1 vμ( )( )⎡⎢⎣ ⎤⎥⎦ vn − vμ( )dx
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
≤C∫

R3
|vn| + |vn|q−1 + |vμ| + |vμ|q−1( )|vn − vμ|dx. (3.5)

Therefore, vn → vμ in H.
It is easy to check the following lemma.

Lemma 3.4: If v ∈ H is a critical point of Jb,μ(v), then v satisfies

1
2
∫

R3
|∇v|2dx +3

2
∫

R3
V x( )|G−1 v( )|2dx + 1

2
∫

R3
〈∇V x( ), x〉|G−1 v( )|2dx

+b
2

∫
R3
|∇v|2dx( )2

� 3μ∫
R3
H G−1 v( )( )dx.

Up to this point, we can prove Theorem 1.3. In fact, it is deduced
from Lemma 3.2 and 3.3 that there exists {μn} ⊂ [1, 2] such that
lim
n→∞ μn � 1, vμn ∈ H satisfies Jb,μn(vμn) � cμn > 0, Jb,μn′ (vμn) � 0. Next,
we prove {vμn} is bounded inH. Since themap μ→ cμ is non-increasing,
combining with Lemma 3.4 and condition (V2), we obtain

M ≥ Jb,μn vμn( )
� 1
3
∫

R3
|∇vμn|2dx − 1

6
∫

R3
〈∇V x( ), x〉|G−1 vμn( )|2dx + b

12
∫

R3
|∇vμn|2dx( )2

≥
1
3
∫

R3
|∇vμn|2dx. (3.6)

It is easy to check that

∫
R3 |∇vμn|2dx + ∫

R3
V x( ) G−1 vμn( )

g G−1 vμn( )( )vμndx + b ∫
R3
|∇vμn|2dx( )2

� μn∫R3

h G−1 vμn( )( )
g G−1 vμn( )( )vμndx

≤
εμn
l2
∫

R3
|vμn|2dx + Cεμn

l6
∫

R3
|vμn|6dx

≤
εμn
l2
∫

R3
|vμn|2dx + CεμnS

l6
∫

R3
|∇vμn|2dx( )3

≤
εμn
l2
∫

R3
|vμn|2dx + CεμnS

l6
3M( )3.

Moreover, using (3) and (5) of Lemma 2.1 in [29], it is deduced from
condition (V1) that

∫
R3
V0|vμn|2dx≤∫

R3
|∇vμn|2dx + ∫

R3
V x( ) G−1 vμn( )

g G−1 vμn( )( )vμndx
+b ∫

R3
|∇vμn|2dx( )2

≤
εμn
l2
∫

R3
|vμn|2dx + CεμnS

l6
3M( )3.

Let ε � l2V0
2μn

, then we obtain

∫
R3
|vμn|2dx≤

2SCεμn
l6V0

3M( )3. (3.7)

From Eqs 3.6, 3.7, we know that {vμn} is bounded in H.
A subsequence of {vμn} is selected and also denoted by {vn}, such

that vn. v inH. Similar to the proof of Lemma 3.3, we obtain vn→
v inH. It is well-known that μ↦cμ is continuous from the left [ ([16],
Theorem 4.1)]. So,

lim
n→∞

Jb vμn( ) � lim
n→∞

Jb,μn vμn( ) + μn − 1( )∫
R3
H G−1 vμn( )( )dx[ ]

� lim
n→∞

cμn � ~c.

In addition,

lim
n→∞ 〈Jb′ vμn( ),ψ〉 � lim

n→∞ 〈Jb,μn′ vμn( ), ψ〉 + μn − 1( )∫
R3

h G−1 vμn( )( )
g G−1 vμn( )( )ψdx⎡⎢⎣ ⎤⎥⎦

� 0,

for any ψ ∈ C∞
0 (R3), which means that Jb′(v) � 0 satisfies

Jb(v) � ~c> 0. Let v− = min{v, 0}. Using (3) and (5) of Lemma
2.1 in [29], we have

0 � 〈Jb′ v( ), v−〉
� ∫

R3 |∇v−|2 + V x( ) G−1 v−( )
g G−1 v−( )( )v−( )dx

≥ ∫
R3 |∇v−|2 + V x( )|v−|2( )dx.

(3.8)

It shows that v−≡ 0. Applying the strong maximum principle, we
obtain v(x) > 0.

3.3 Proof of Theorem 1.3

This section studies the case 1
4 h(t)t≥H(t) for all t > 0 and

without the Kirchhoff term ∫
R3g2(u)|∇u|2dx. At first, let us check

the mountain pass geometry of the functional J0.
Lemma 3.5: Assume that (h1)–(h2) are satisfied, then

(i) there exists v ∈ H\{0} such that J0(v) < 0.
(ii) there exist ρ, α > 0 such that J0(v) ≥ α, ‖v‖H � ρ.
Proof (i) Motivated by Lemma 2.2 of [23], we need to study the
following equation:

−Δv + V∞
G−1 v( )

g G−1 v( )( ) �
h G−1 v( )( )
g G−1 v( )( ), x ∈ R3. (3.9)

The corresponding functional is J0,∞(v). We also define the
mountain pass min–max level

c∞ � inf
ξ∈Γ∞

max
t∈ 0,1[ ]

J0,∞ ξ t( )( ),

where

Γ∞ � ξ ∈ C 0, 1[ ],H: ξ 0( ) � 0 ≠ ξ 1( ), J0,∞ ξ 1( )( )( < 0{ }.
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By the standard arguments, it shows that w ∈ H1(RN) is a solution
of Eq. 3.9, which satisfies J0,∞(w) = c∞. A continuous path
α: [0,+∞) → H is defined by α(t) (x) = w(x/t), if t > 0 and
α(0) = 0. Taking the derivative, we know that

d

dt
J0,∞ α t( )( ) � 1

2
∫
R3

|∇w|2dx + 3
2
t2∫

R3
V∞|G−1 w( )|2dx

−3t2∫
R3
H G−1 w( )( )dx.

Since w is a solution of Eq. 3.9, it satisfies the Pohožaev identity,

1
2
∫

R3
|∇w|2dx + 3

2
∫

R3
V∞|G−1 w( )|2dx � 3∫

R3
H G−1 w( )( )dx.

Therefore,

d

dt
J0,∞ α t( )( ) � 1

2
1 − t2( )∫

R3
|∇w|2dx.

The map t ↦ J0,∞(α(t)) achieves the maximum value at t = 1. By
choosing L > 0 sufficiently large, we have J0,∞(α(L)) < 0. Taking ζ(t) =
α(tL), we have ζ ∈ Γ∞. If ζy(t) ≔ w(·−ytL ), noting that (V1), we obtain

J0 ζy 1( )( ) � J0,∞ ζy 1( )( )
+ 1
2
∫

R3
V x + y( ) − V∞( )|G−1 ζy 1( )( )|2dx< 0,
for |y| is large.

Choosing e = ζy(1), we can obtain the result.
(ii) Similar to (ii) of Lemma 3.2, we obtain

J0 v( ) ≥
1
2
∫

R3
|∇v|2 + V x( )|v|2( )dx − ∫

R3

ε

2
|G−1 v( )|2 + Cε

q
|G−1 v( )|q( )dx

≥
C

4
‖v‖2H − C1Cε

qlq
‖v‖qH.

Hence, choosing ‖v‖H � ρ> 0 small enough, we can obtain the
desired conclusion.

Therefore, there is a (PS) c0 sequence {vn} ⊂ H where c0 is the
mountain pass level of the J0.
Lemma 3.6: {vn} is bounded.
Proof: Since G−1(vn)g(G−1(vn)) ∈ H, jointly with (h3) and [29], (2)
of Lemma 2.1], we obtain

c + on 1( ) � J0 vn( ) − 1
4
〈J0′ vn( ), G−1 vn( )g G−1 vn( )( )〉

≥
1
4
‖vn‖2H.

Hence, {vn} is bounded in H.
Similar to Lemma 3.3, we obtain the following result.

Lemma 3.7: Up to a subsequence, vn → v in H.
Proof of Theorem 1.3: It deduces from lemmas 3.5, 3.6, and

3.7 that Eq. 1.2 has a non-trivial solution v. Similar to Eq. 3.8, we
know that v(x)> 0, x ∈ R3.

4 Asymptotic properties of the positive
radial solution

Proof of Theorem 1.4: If vbn is a critical point of Jbn , which is
obtained in Theorem 1.2 for each n ∈ N. Similar to the proof of
Lemma 3.2, for bn → 0, n → ∞, {vbn} is a (PS)c sequence, which is
bounded in H. There exists a subsequence of {bn}, still denoted by
{bn}, such that vbn.v0 in H. It is easy to obtain

‖vbn − v0‖2H ≤ 〈Jbn′ vbn( ) − J0′ v0( ), vbn − v0〉
−bn∫

R3
|∇vbn|2dx∫

R3
∇vbn∇ vbn − v0( )dx

+∫
R3

h G−1 vbn( )( )
g G−1 vbn( )( ) − h G−1 v0( )( )

g G−1 v0( )( )[ ] vbn − v0( )dx
� on 1( ).

On one hand, in view of (3) of Lemma 2.1 in [29], we can use the
Lebesgue dominated convergence theorem to obtain

lim
n→∞∫

R3
V x( ) G−1 vbn( )ϕ

g G−1 vbn( )( )dx � ∫
R3
V x( ) G−1 v0( )ϕ

g G−1 v0( )( ) dx,

lim
n→∞∫

R3

h G−1 vbn( )( )ϕ
g G−1 vbn( )( ) dx � ∫

R3

h G−1 v0( )( )ϕ
g G−1 v0( )( ) dx.

On the other hand, we have 〈Jbn′ (vbn),ϕ〉 � on(1) and
〈J0′(v0), ϕ〉 � on(1). Moreover,

lim
n→∞∫

R3
∇vbn∇ϕdx � ∫

R3
∇v0∇ϕdx,

lim
n→∞

bn∫
R3
|∇vbn|2dx∫

R3
∇vbn∇ϕdx � 0.

Thus,

∫
R3
∇v0∇ϕdx + ∫

R3
V x( ) G−1 v0( )

g G−1 v0( )( ) ϕdx � ∫
R3

h G−1 v0( )( )
g G−1 v0( )( ) ϕdx.

It shows that v0 is a positive solution of Eq. 1.2.
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