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With the emergence of various high-powered electrical equipment, the demand
for electric energy has increased rapidly. Subsequently, it has highlighted some
issues of electricity consumption, such as the adjustment of electricity
consumption peak. Although many electricity scheduling schemes have been
proposed to adjust and control user load of electricity consumption, the current
regulation of user load is not accurate and effective because the load regulation of
different regional grid users is a complex network system. In this paper, we
propose a reputation-based user electricity scheduling scheme for the
complex network of user electricity consumption, whose purpose is to
accurately adjust the electricity consumption of related users to further
improve the adjustment of electricity consumption peak. In our scheme, we
first model a complex network of user electricity consumption. Then we
construct a reputation calculation method for electricity users, where the
calculated reputation of users is one of the basis for assigning scheduling tasks
to users and calculating the price subsidy received by users who complete the
scheduling tasks. Further, we use the machine learning method to train a
computation model to calculate the adjustment coefficients of electricity load,
and then the electricity scheduling tasks are adjusted based on the calculated
adjustment coefficients. Finally, the corresponding electricity scheduling tasks are
assigned to the selected electricity users respectively for adjusting the electricity
consumption of these users. Experiment results show the effectiveness of our
proposed scheme. Our scheme can effectively calculate the reputation values of
users based on their historical data, and the corresponding electricity scheduling
tasks are effectively assigned to related users to accurately adjust the electricity
consumption of these users according to their reputation values and the real-time
adjustment coefficients, so as to efficiently improve the adjustment of electricity
consumption peak.
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1 Introduction

1.1 Background

With the continuous innovation of science and technology,
various electrical equipment has emerged, which enriches
people’s lives and provides greater security for people’s lives.
However, the increase of electrical equipment has created greater
demands for electricity. People also need to use many high-power
electrical appliances in their daily lives. Therefore, huge electricity
loads are generated, which can influence the stability of power grid
systems and people’s daily life. Figure 1 shows the electricity
consumption framework of power grid system. At present, the
most common forms of electricity generation in daily life are
thermal power generation, hydroelectric power generation, wind
power generation and nuclear power generation, etc. Although there
are various electricity generation forms and the amount of electricity
generated is considerable, all aspects of life need electricity power to
drive, leading to the total electricity load of all users is a too large or
too small in certain periods, which increases the burden of electricity
lines. And it will also increase the maintenance cost of power grid
systems.

Due to the diversity and uncertainty of electricity demand, the
electricity generation capacity set to meet the maximum demand of
users is largely idle during the low demand period. Therefore, it not
only increases the cost of electricity generation, but also increases the
electricity bills burden of users. In order to change this situation,
electric power enterprises have embarked on research and taken
measures to manage the electricity load. In the early stage, some
studies adjusted the production shift or the commuting time by
guiding enterprises. And some studies suggest shut down large
electrical equipment during peak hours to achieve off-peak
electricity consumption. These schemes improve the load rate of
the power grid. Subsequently, some new studies introduce economic
incentives linked to the interests of users, and it further encourages
users to voluntarily change the time and modes of their electricity
consumption. This could further increase the power grid’s load rate
and reduce users’ electricity bills. With the development of science

and technology, power enterprises have adopted direct load control
technology for some users.

In recent years, many researchers have devoted themselves to
reducing the operation cost of electricity systems and improving the
quality of electricity consumption in people’s daily life. However,
many existing traditional solutions are using energy storage to
reduce the occurrence of peak and trough of electricity
consumption, which solves the problem of storage and waste of
electric energy. But these schemes are all used after the occurrence of
peak and valley of electricity consumption periods, which uses
additional energy storage resources. The emergence of demand-
side response avoids the above problems. In order to achieve the
demand-side response, there are many studies suggest that indirectly
affect the consumption time of users by adjusting the electricity price
in different periods. This is a scheme specified for the consumption
behavior of users, which prevents the occurrence of peak and valley
of electricity consumption. And it does not need additional
equipment to store electric energy.

[1] take into account the uncertainty of user’s response behavior
and construct a high-dimensional parameter space that including
multiple influencing factors such as participation, response time and
net load power. And this scheme quantifies user’s response ability by
utilizing the expectation of net load envelope domain before and after
response. Then they propose a response capability gradient evaluation
index that comprehensively considers power grid incentive cost and
user’s response cost. There are also some works on the realization of
demand-side response by encouraging users to participate in incentive
demand response. The incentive demand response requires a contract
signed between the power grid and users. The upregulated and
downregulated capacity are directly controlled by the scheduling
center, which can effectively suppress real-time electricity deviation.
In order to fully improve the enthusiasm of users to participate in the
incentive demand response, the real-time electricity deviation of the grid
could be better suppressed. [2] propose a new idea of users’
participation in incentive demand response: for the incentive
demand response with faster response speed, the power grid adjusts
the incentive price of the incentive demand response according to the
real-time electricity deviation. And the power grid allows users to re-
declare the incentive demand response capacity of the future incentive
demand response operating cycle 1 h before each rolling optimization.
Therefore, the scheme achieves the goal that the incentive demand
response capacity can increase or decrease with the trend of power
deviation. But for the incentive demand response with slower response
speed, the contract capacity declare before the day is executed.

1.2 Our contribution

To prevent the occurrence of electricity consumption peaks and
valleys in complex network of user electricity consumption, we propose
a reputation-based electricity scheduling scheme for complex network
of user electricity consumption. In our scheme, we first model a
complex network of user electricity consumption, which reflects the
relationship and function of each entity in the network. Then in this
model, we construct a reputation calculation method for electricity
users, and then the users who participate in the incentive demand
response of electricity scheduling are selected according to the
calculated reputation of users. Further, we use the machine learning

FIGURE 1
Electricity consumption framework of power grid system.
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method to train a computation model to calculate the adjustment
coefficients, and then the electricity scheduling tasks are adjusted based
on the calculated adjustment coefficients. Finally, the corresponding
electricity scheduling tasks are assigned to the selected electricity users
respectively for realizing electricity peak load shifting. The main
contributions of our scheme are summarized as follows.

• We propose a user electricity scheduling task allocation
scheme in complex network of user electricity
consumption, which can allocate corresponding electricity
scheduling tasks for related users according to the
calculated reputation of users to improve the reliability of
power grid scheduling tasks. A two-layer user selection
scheme is constructed to select related users participating in
the incentive demand response of electricity scheduling, where
these users are filtered based on their historical and real-time
electricity consumption data.

• The machine learning method is used to train a computation
model to calculate the adjustment coefficients of electricity
load, and then the electricity scheduling tasks are adjusted
based on the calculated adjustment coefficients.

• Experiment results show our proposed scheme is efficient and
effective for adjusting electricity consumption peaks and
valleys. Our scheme can effectively calculate the reputation
values of users based on their historical data, and the
corresponding electricity scheduling tasks are effectively
assigned to related users.

1.3 Paper organization

The structure of the rest of this paper is as follows: In Section 2,
we describe related works about the adjustment of electricity
consumption. In Section 3, a reputation-based electricity
scheduling scheme for complex network of user electricity
consumption is proposed. In Section 4, we make some
experiments to test the efficiency and effectiveness of our
scheme. In Section 5, we draw our conclusions.

2 Related works

In order to solve the issues of electricity consumption, many
scholars have proposed various schemes for efficient electricity
scheduling, including the use of energy storage system in the peak
discharge and trough of the power grid charging to alleviate the problem
of peak and trough of electricity consumption, a scheme that indirectly
affects the consumption habits of users through the change of electricity
price, and a scheme that adjusts the consumption behavior of users and
other schemes based on incentives.

2.1 Application of complex network in power
system

Complex network refers to a network with self-organization,
self-similarity, attractor, small world, scale-free, partial or total
properties network. Over the years, many researchers have

applied complex networks to power systems. In [3], a new
methodology for stability assessment of a smart power system
was proposed. The key to this assessment was an index called
betweenness index which was based on ideas from complex
network theory. [4] studied the vulnerability analysis and
recognition of key nodes in power grids from a complex network
perspective. To effectively analyze the behavior and verify the
correctness of node electrical centrality, the net-ability and
vulnerability index were introduced to describe the transfer
ability and performance under normal operation and assess the
vulnerability of the power system under cascading failures,
respectively. When a single failure occurs in a vulnerable part of
a power system, this may cause a large area cascading event.
Therefore, an advanced method that could assess the risks during
cascading events is needed. Therefore, [5] proposed an improved
complex network model for power system risk assessment. Risk was
defined by consequence and probability of the failures in their
model, which were affected by both power factors and network
structure. Compared with existing risk assessment models, the
proposed one can evaluate the risk of the system
comprehensively during a cascading event by combining the
topological and electrical information. As a promising approach
to modeling complex systems, complex networks could provide a
sound theoretical framework for developing proper simulation
model. [6] proposed a complex network model of the bilateral
power transaction market. Unlike other general commodity
transactions, both of the financial layer and the physical layer
were considered in the model. Through simulation analysis, the
feasibility and validity of the model were verified.

2.2 Traditional electricity scheduling
schemes

To implement effective electricity scheduling, the traditional
schemes use the energy storage method to realize peak load shifting.
[7] investigated the potential of peak shaving through battery
storage. For each user, they studied the peak load reduction
achievable by batteries of varying energy capacities (kWh),
ranging from 0.1 to 10 times the mean power (kW). The results
showed that for 75% of the users, the peak reduction stayed below
44% when the battery capacity was 10 times the mean power.
Furthermore, for 75% of the users the battery remained idle for
at least 80% of the time. [8] proposed a decision-tree-based peak
shaving algorithm for the islanded micro-grid. The proposed
algorithm helped an islanded micro-grid to operate its generation
units efficiently; [9] tried to summarize the response modeling for
different types of demand-side resources by analyzing the
characteristics of different demand-side resources. Then they
established a scheduling-response mode, which took optimal
peak shaving response as its goal and took the power and
electricity quantity as the constraint conditions to solve the
model; [10] carried out a long-term distribution system (DS)
planning model considering the peak shaving of the Energy
station (ES), which was achieved by scheduling the input energy
of ES. By regarding DS and ES as different stakeholders, a
decentralized framework was devised to shave the electric peak
loads in the DS planning, where the coupling relationship between
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the time-of-use (TOU) price and exchanged power (e.g., the input
power of ES) was clearly expressed. [11] proposed a novel peak load
shaving algorithm for peak shaving application in a hybrid
photovoltaic (PV) generation system and Battery Energy Storage
System connected isolated micro-grid (IMG) system, which helped
an IMG system to operate its generation systems optimally and
economically along with a PV generation unit.

2.3 Demand-side response

Demand-side response refers to that when the wholesale
electricity market price rises or the system reliability is
threatened, electricity users change their habitual mode of
electricity consumption after receiving the direct compensation
notice of induced load reduction or the signal of electricity price
rise sent by the electricity supplier. Therefore, the electricity supplier
reduces or delays the electricity load in a certain period and responds
to the electricity supply. Then it ensures the stability of the power
grid system and restrains the short-term behavior of electricity price
rise [12]. This scheme is a basic platform for communication
between the power grid and users. According to different
demand response modes of users, demand-side response
technology in the smart power grid can be divided into a price-
based and an incentive-based demand side response. According to
the different response ways of users, demand response can be
divided into two categories: price-based demand response and
incentive-based demand response. Price-based demand response
can be divided into time-of-use electricity price, real-time electricity
price and peak electricity price. Price-based demand response
adjusts the consumption time of users through the difference of
electricity price in different periods. Compared with the period of
high electricity price, users are more inclined to use electricity in the
period of low electricity price. Incentive-based demand response
refers to the demand response implementer making policies to
encourage users to reduce the load when the system burden is
large or the electricity price is high. Incentive-based demand
response can be divided into direct load control, interruptible
load, demand-side bidding, emergency demand response and
capacity/auxiliary service plan, etc. The existing incentive-based
demand response mainly consists of direct load control and
interruptible load.

There are many schemes to implement demand-side response.
Some studies indirectly regulate users’ electricity consumption
behavior through TOU, so as to achieve scheduling goals. [13]
derived the optimal capacity investment and pricing decisions for
the electricity company. Furthermore, they used real data from a
case study to validate the results and derived insights for
implementing the TOU tariff. [14] proposed an analytical
method that incorporated the TOU strategy into the reliability
evaluation of the electricity system. A price-based demand
response was modeled to calculate the hourly load using an
apportionment method. By using the particle swarm optimization
algorithm, a TOU-based optimization model with a penalty was
constructed to find the optimal electricity price in their scheme. [15]
proposed models of costs to utility companies arising from user
demand fluctuations, and models of user satisfaction with the
difference between the nominal demand and the actual

consumption. They designed utility functions for the company
and the users, and obtained a Nash equilibrium using backward
induction. Some studies have implemented different measures for
different users based on their behaviors, so as to better develop
demand response schemes. [16] based on system dynamics,
constructed a demand response incentive signal strength analysis
model, analyzed the demand response behavior of different users,
and calculated demand response incentive subsidies standards for
different types of users. [17] decomposed the users’ electricity
consumption situation by using the additive model, extracted
various influencing factors, and constructed the modulus one
vector to describe and analyzed the electricity consumption
behavior of different users. [18] based on the research of feature
optimization method for the behavior analysis of intelligent
electricity users in the early stage proposed a cluster number
optimization method for user behavior analysis to effectively
improve the data clustering effect of electrical behavior analysis.
[19] proposed a Python-based K-means plus clustering algorithm to
classify Taiyuan electricity data. The K-means plus clustering
algorithm classified the data of electricity consumption and
finally got five different kinds of users. [20] discussed the cluster
analysis of electricity consumption behavior and the selection of
demand target users, and proved that the selection could guide the
implementation of demand response projects. A reasonable
assessment of demand response potential was of great
significance for effectively gathering demand-side resources. [21]
took Jiangxi Province as an example to predict the load after the
analysis of adjustable load, analyzed the adjustable load of users, and
evaluated the demand response potential of different users. There
are also some other demand-side response schemes. [22] proposed a
new economic scheduling model combined with wind power, which
considered incentive-based DR And reliability measures. Compared
with the traditional model, this model considered the response of the
users’ electricity consumption to the incentive price. The expected
cost of unsupplied energy was added to the target in order to strike
an optimal balance between the economy and the reliability of
electricity system operation. [23] proposed a safe optimal scheduling
model of the electricity system considering the demand response of
electricity price under the incentive mechanism of the electricity
market aiming at the traditional day-ahead scheduling scheme.
Based on the peak valley TOU price, the incentive compensation
mechanism should be established to encourage users to actively use
it. Participating in demand-side resource scheduling, which made
the effect of peak load shifting more obvious.

3 Proposed scheme

In this section, we propose a reputation-based electricity
scheduling scheme for complex network of user electricity
consumption. In our scheme, we first construct a complex
network model of the user’s electricity consumption, which
reflects the relationship and function of each entity in the
network. Then in this model, we construct a reputation
calculation method for electricity users, and then the users who
participate in the incentive demand response of electricity
scheduling are selected according to the calculated reputation of
users. Further, we use the machine learning method to train a
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computation model to calculate the adjustment coefficients, and
then the electricity scheduling tasks are adjusted based on the
calculated adjustment coefficients. Finally, the corresponding
electricity scheduling tasks are assigned to the selected electricity
users respectively for realizing electricity peak load shifting.

3.1 System framework

In this section, we show a system framework of user electricity
scheduling, which consists of users, user areas (aggregators) and
grid company. In our framework, Due to the interconnection of
various entities and various interrelationships, the whole power
grid system can be regarded as a complex network. In Section 3.2,
we introduce the construction of a complex network model for
user electricity consumption in detail, which demonstrates the
distribution of individual entities in the system and the
relationships between individual entities, such as users,
aggregators and grid companies.

In the system, various entities cooperate with each other to
realize the electricity scheduling. Among them, the electricity data of
users is the basis of the whole scheduling scheme. At the same time,
the realization of scheduling task also needs the cooperation of
electricity users. Due to the big size of the power grid system,
interacting directly with area users through the power grid side will
incur relatively large resource consumption. Aggregator plays the
role of an intermediate agent in the system, the electricity data of
users are aggregated and sent to the power grid side through the
aggregator. The tasks assigned by the users and the incentives
obtained by the users for completing the scheduling tasks are
also distributed to the electricity users in the region through the
aggregator. Power grid company is the initiator of the data
processing center and scheduling tasks. Due to the emergence of
the peak will increase power grid company of power circuit
operations costs, even cause damage to the power circuit, so the
grid company interacts with the user response by publishing power
scheduling task to users. In order to mobilize users to complete the
scheduling task, the grid side distributes the corresponding subsidies
for the users who complete the scheduling task. The framework is
shown in Figure 2. The functions of each entity are summarized as
follows.

• Users: The users are the object that participate in the incentive
demand response. By responding to the task assigned by the
power grid, the users can assist the power grid to complete the
scheduling tasks. Meanwhile, the users can also obtain the
corresponding price subsidies through their own reputation
values and the scheduling tasks completed by users.

• User areas (Aggregators): Each area will firstly collect the
electricity consumption data of the users in the area, send data
to the server, and accept the scheduling tasks assigned by the
power grid company for the area. Then the aggregators will
assign the corresponding scheduling tasks to users according
to the reputation values and adjustable load of users.

• Grid company: The server of grid company calculates the
adjustable load of users after receiving the user electricity
consumption data sent by various aggregators. In this paper
we assume that electricity consumption directly interacts with
users, and the reputation value of each user is stored in the
server. By calculating the adjustable load of users and the
weight of the reputation values of users, the corresponding
scheduling tasks are assigned to users.

3.2 Modeling complex network of user
electricity consumption

Because the load control of power grid users in different areas is
a complex network system, the current user load control method is
not accurate and effective for electricity consumption. Based on the
above system framework, we further model the complex network of
user load regulation. Since the users in each region have different
habits of using electricity, the task allocation for the users in each
region is different, even though the users’ electricity consumption
data at the same time is the same. Therefore, groups of electricity
users are typically complex systems. We regard a single user in each
region as a node, and each node will be linked to the aggregation
server in each region, where the aggregation server is the
intermediate node. When the node interacts with the
intermediate node, that is, when the user participates in the
incentive demand response, the user’s reputation value will
change with the completion of the scheduling task. Therefore, the
weight of the connection between this node and the intermediate
node is increased, and the user’s reputation value is taken as the
weight. Similarly, the aggregation servers in each region and the grid
company’s servers can be represented by the network relationship
described above. For the convenience of the experiment, in this
paper we assume that the power grid directly interacts with users in a
certain area. In actual application, aggregators are still used to
complete the overall implementation of this scheme. The
complex network model of user electricity consumption is shown
in Figure 3.

3.3 User electricity scheduling scheme

In this section, we show the details of our electricity scheduling
scheme for the complex network of user electricity consumption in
the model. In our scheme, for users in a certain area, their real-time
adjustable loads are calculated based on the users’ historical

FIGURE 2
System framework.
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electricity consumption data and real-time electricity consumption
data. It is convenient for users that they don’t need to upload their
adjustable load before participating in incentive demand response
every time. Assigning corresponding scheduling tasks to users based
on the users’ reputation values is conducive to improve the reliability
of users participating in completing scheduling tasks. While the
power grid allocates scheduling tasks to users participating in
incentive demand response by combining users’ reputation values
with real-time adjustable load of users. We firstly outline the five
steps of this scheme, and then introduce the implementation details
of each step. The process of implementation of this scheme is shown
in Figure 4.

• Initialization: The server of grid company receives the data of
users. Subsequently, the power grid company adjusts
coefficient s according to total load scheduling announced
price subsidies;

• Calculation of Reputation Values: The server calculates the
reputation values of users based on the number of times that
users accept their scheduling tasks and the number of times
they complete their scheduling tasks;

• Filtering of Participating Users: According to the users’
historical electricity consumption data and real-time
electricity consumption data, the users’ load elasticity
coefficients and adjustable load coefficients are calculated

respectively. These coefficients are used as reference for
filtering of users;

• Assignment of Tasks: The server sends incentive demand
response request to filter users, users can choose whether to
participate in the incentive demand response. Then the server
assigns the scheduling tasks to the users who finally participate
in the incentive demand response according to the users’
reputation values and real-time adjustable load;

• Calculation of Price Subsidies: The server assigns
corresponding subsidies to users based on the reduced load
and the reputation values of users who completed the
scheduling tasks.

3.3.1 Initialization
The historical data of electricity consumption of users are stored

in the grid company. The server can directly obtain the historical
data of users and the situation of users’ participation in incentive
demand response and completion of scheduling tasks. However, the
power grid company does not have the data of the users’ adjustable
load, so the users need to upload the real-time adjustable load lit to
the server. In this paper, we take each week as a cycle. For the
convenience of users, we set the users to upload their data once every
four cycles. What’s more, the power grid company needs to
determine the budget for each interaction response. Then the
price subsidies coefficient s is calculated according to the total

FIGURE 3
Complex network model of user electricity consumption.

Frontiers in Physics frontiersin.org06

Tang et al. 10.3389/fphy.2023.1183419

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1183419


load to be scheduled and the budget for completing the scheduling
task:

s � B

E
× δ (1)

Where δ is the floating coefficient and δ ∈(0, 1), E is the total load
needed to be reduced this time, B is the budget for this scheduling
task. The price subsidy coefficient is a reference for the calculation of
the users’ price subsidies.

3.3.2 Calculation of reputation values
In this section, we propose a method to calculate the reputation

values of users. The reputation value is a measurement that reflects
the reliability of the users to complete their scheduling tasks. It is
calculated by the number of scheduling tasks completed by users and
the number of scheduling tasks accepted by users in the scheduling
task assigned by the server. Besides, the reputation values of users
will be used as the reference for users to obtain the price subsidies
after completing their scheduling tasks. However, the reputation
value of the users participating in scheduling task in the first time
cannot be calculated, so we need to initialize the credit value of the
users who have not participated in the scheduling task to ensure the
amount of scheduling tasks for users who participate in the

scheduling task for the first time. We set the reputation value of
the users who participate in the scheduling task for the first time
as 0.5.

The calculation process of reputation value is as follows. Firstly,
users upload their data to the server, and then the users’ reputation
values are calculated according to the incentive demand response
data of users. The user’s reputation value is:

Ri �
0.5, The user i accepts a scheduled task first time

γ ×
Di

Gi

⎧⎪⎪⎨⎪⎪⎩ (2)

where γ is a hyper-parameter and γ � 10, Di is the number of
scheduled tasks completed by the user i, Gi is the number of
scheduled tasks accepted by the user i. The user’s reputation
value is related to two factors, one is the number of scheduling
tasks assigned when the user participates in electricity scheduling,
the other is the price subsidies the user gets after completing the
scheduling task. It is used for the subsequent calculation of the user’s
reputation level.

3.3.3 Filtering of participating users
In this section, we show how users are assigned related electricity

scheduling tasks. Due to some users have no adjustable load at a

FIGURE 4
The process of user electricity scheduling.
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certain period, users involved in the scheduling task need to be
filtered. We define the load used by the user in a certain period as
follows: There are 60 min in each hour. We take the maximum load
value generated by the power user per minute as the load within
1 minute, and the load within each hour is the average of the load
within 60 min during that period. Then based on the historical and
real-time electricity consumption data of users, users are selected to
participate in scheduling. We use a two-layer scheme to select
participating users. Firstly, the load elasticity coefficient is
calculated according to the users’ historical data, and the users
whose load elasticity coefficient meeting the requirements are
selected preliminarily. Then, users meeting the requirements are
further filtered according to the real-time electricity load of users,
and the process of users filtering is shown in Figure 5.

3.3.3.1 The first layer
First of all, the user set meeting the requirements of this

scheduling task is preliminarily obtained by processing the users’
electricity usage habits and historical data of electricity
consumption. In this scheme, each week is divided into 7 days as
a cycle. In each cycle, the electricity consumption of user i in each
period of 24 h and the maximum electricity load of users in each
week are standardized to obtain the standardized load of users in
each period:

Pwidt � Nwidt

Nwidm
(3)

Where w represents the statistical period number and it is a natural
number greater than or equal to 1. d represents the number of dates

within a period and d = 1,2,3, . . ., 7. t represents t periods of day and
t = 0,1,2, . . ., 23. Nwidt is the electricity load of the user i at the t
period of the d day in the w cycle. Nwidm is the maximum daily
electricity load of the user i on day d of the w cycle.

In order to analyze the data better, we initially process the
data. Firstly, after standardizing the load in each period for user i,
the server calculates the mean square deviation of the
standardized load in the same period of every day in a cycle.
Then the average standardized load of user i in each period is
calculated:

uidt � 1
C
∑C

l�1Plidt (4)

Where C is the total number of cycles, and C is taken as 5 in the
experimental section of this paper. Secondly, the mean square
deviation of the standardized load σ idt in each period of the day
in a cycle is calculated according to the average standardized load:

σ idt �
����������������
1
C
∑C

l�1 Plidt − uidt( )2
√

(5)

Firstly, the server calculates the mean square deviation of the
standardized load of user on a certain day according to the mean
square deviation of the standardized load:

uidw � 1
24

∑23

t�0σ idt (6)

Secondly, according to the mean square deviation of the user’s
average standardized load, the user’s load elastic coefficient on that
day is obtained:

FIGURE 5
Selection frame of participating users.
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φidw �
�����������������
1
24

∑23

t�0 σ idt − uidw( )2
√

(7)

Then, the server selects the user whose load elastic coefficient is
greater than the threshold as the candidate.

3.3.3.2 The second layer
Users need to be filtered more accurately after the first layer of

filtering for them. According to the user’s real-time electricity load,
the real-time adjustable load coefficient is obtained:

τ it � Pit − Pl

Pim − Pl

(8)

where Pit is the user’s real-time electricity load at time t, Pl represents
the average electricity load of the user on the day. We take the
maximum load used by the user within a certain minute as the load
within that minute, and then calculate the average load of the user
within an hour according to this method, and then calculate the
average load of the user within a day. Pim represents the maximum
electricity load of the user on the day. According to the above load
determination method, we can determine the maximum average
load used by users in 1 hour of the day, and use it as Pim. If τit is
greater than 0, the user i is selected as a participant in the incentive
demand response.

3.3.4 Assignment of tasks
In this section, we describe how to perform the task assignment

in detail. After the server selects the users who meet the
requirements, it sends to them an invitation message to
participate in the incentive demand response. The users can
choose whether to participate in the response or not, and then
the server assigns tasks to the users who finally participate in the
incentive demand response. Reasonable allocation of scheduling
tasks is conducive to solving the problem of electricity consumption
in the grid company. The details of the task assignment are as
follows:

Firstly, users participating in the response are selected by server
according to the period when the power grid publishes scheduling
tasks, the reputation values of users and the adjustable load
coefficients of users. Then the users choose whether to
participate in the incentive demand response. The users with a
high reputation value are assigned more scheduling tasks. Finally,
the user set su which includes users who participate in this incentive
demand response are obtained, and su is
ui|θit > 0 and ui selects to participate in the scheduling task{ }.
According to the number of users in the user set su and the
reputation value of each user, the corresponding scheduling tasks
are generated and sent to users.

3.3.4.1 Calculation of users’ adjustable load
To select high-quality users, users’ adjustable load needs to be

ensured. The user’s adjustable load is calculated according to the
user’s real-time adjustable load coefficient and the user’s real-time
electricity load:

Pi � Ht × τ it × Pit (9)
Where theHt is the adjustment coefficient when the total electricity
load is too high in time period t.

3.3.4.2 Determination of parameter Ht

To determine the parameter Ht, we use the machine learning to
train a computation model. The first step is to build a training set,
which includes the real-time electricity consumption data and the
real-time adjustable load of users. We adjusted the division of the
data set in the model training, and divided the data set containing
50 users into three sub-data sets: training set, validation set and test
set, and the number of users in each sub-data set was
30,10,10 respectively. The adjustable load coefficient can be
calculated according to the real-time adjustable load coefficient
and the real-time adjustable load of users. Since users upload
data every four cycles, the parameters are updated every four
cycles to ensure the accuracy of the scheme. Then through the
formula (9), each user’s Hit is calculated to construct a data set
{(τit, lit; pit)| Hit}, i ∈ [0, 50], t ∈ [0, 23]. And then we use the training
set {(τit, lit; pit)| Hit}, i ∈ [0, 30], t ∈ [0, 23] to train a linear regression
model. The objective function is:

J θit( ) � minimize
θit

1
2m

∑m

n�1 hθit xn( ) −Hit
n( )2 (10)

The optimal parameters of the model are obtained by
minimizing the objective function through the gradient descent
algorithm. Since the parameters of each period are different, we need
to train the models for 24 periods. After that, the real-time electricity
load of the user and the period are taken as the input of the model to
obtain the parameters Hit. After the parameters are trained
according to the data of each user, the average value of the
parameters of each user in the same period is taken as the final
parameter value Ht.

3.3.4.3 Assignment of tasks
After the server calculates the users’ adjustable load, it assigns the

corresponding tasks to users according to the users’ reputation values.
But the scheduling task should not exceed the range of the user’s

FIGURE 6
Values of Ht in each period.
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adjustable load. Otherwise, most users may fail to complete their
scheduling tasks. The following is a detailed description of our task
allocation scheme. First of all, according to the users’ reputation values,
the server calculates the reputation weight of all users in the su:

Wi � Ri∑M
l�1Rl

(11)

Where M is the total number of user and M � |su|. When the
reputation value of the user is 0, that is, when the reputation weight
of the user is 0, the minimum scheduling task is assigned to the user
according to the total load of the scheduling task:

P0 � E∑M
l�1Rl

, Rl ∈ 1, 10[ ] (12)

If P0 is greater than Pi, the user’s scheduling task is Pi. When the
user’s reputation value is greater than 0, the scheduling task of the
user can be calculated as follows according to the user’s reputation
weight:

Pib � Wi − M× Wi − 1∑M
l�1Rl

( ) × E (13)

If Pib is greater than Pi, the user’s scheduling task is Pi. Above all, the
scheduling task of user i is as follows:

Pid �
Pib, Ri ≠ 0 andPi>Pib

P0, Ri � 0 andPi >P0

Pi, Others

⎧⎪⎨⎪⎩ (14)

3.3.5 Calculation of price subsidies
In this section, we propose a method to calculate the incentive.

In order to mobilize the enthusiasm of users to participate in
incentive demand response, we need to give certain subsidies to
users who have completed scheduling tasks. In this way, users will be
more willing to receive scheduling tasks, and help the grid company
to achieve peak load shifting and other scheduling tasks. In our
scheme, users’ corresponding subsidies are generated according to
their reputation values and the values of the scheduled load
completed by users. The incentive obtained by the user is directly
proportional to the user’s reputation value and the scheduling task
completed by the user. If users receive and complete the scheduling
task, their reputation values will increase. If users receive a task, but
they don’t complete it, then their reputation values will decrease. If
users don’t receive the scheduling task, their reputation values
remain unchanged. The users’ original reputation value before
updating are used as the basis to calculate the subsidies for the
completion of the scheduling task. We divide the reputation value
levels into ten levels, from 1 to 10 respectively. The users’ reputation
ratings are rounded up to their reputation values, denoted as �Ri�,
where Ri ∈ [1, 10]. If the user’s reputation values are greater than the
threshold value r after participating in the incentive demand
response, the user’s price subsidies (incentive) can be calculated
by the users’ own reputation values and the schedule load of the
users participating in the schedule:

Si � �Ri� × s × Pid, �Ri�> r (15)

FIGURE 7
Comparison between scheduling tasks and adjustable load of users with different load elastic coefficient threshold (threshold ∈ [1,9]).
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where r is the threshold of the price subsidies users can get after
completing the scheduling tasks, and s is the price subsidy
coefficient used by the power grid company to adjust the
subsidies to the users. Users are more active in participating in
demand response and completing scheduling tasks by providing
incentives to users in the form of price subsidies. When the users
pay the electricity bills, the corresponding amount can be offset
with the price subsidies obtained by participating in the incentive
demand response.

4 Experiment

In this section, the experimental process and results are
introduced in detail. The experimental part of this paper is
described below. Due to the difficulty in obtaining power grid
data and the innovation of the method adopted in this paper, the
data set adopted in this experiment is generated based on our daily
consumption habits. And then we reasonably generate the data of
electricity load of 50 users for 24 h a day within 5 weeks, as well as
the times of each user accepting and completing scheduling tasks, so
as to obtain the reputation values of each user. In this paper, every
week is taken as a cycle, and the electricity consumption of users is
different every day in each cycle. Therefore, in the experiment, a
certain period from Monday to Sunday should be selected as the

target regulation period, and the total regulation load should be
input. Then, we calculate the parameter Ht by machine learning
method, and show the influence of load elasticity coefficient
threshold and reputation threshold on scheduling task allocation
and the incentives users can get. In the end, this experiment proves
the effectiveness of this scheme by simulating the assignment of
tasks and the allocation of price subsidies to users.

4.1 Calculation of parameter Ht

In this section, we show the calculation results of the parameter.
The server uses the electricity data of every moment in one specified
day provided by users and adjustable load for the users eachmoment
to combine the adjustable load coefficients calculated at this
moment. And the server takes the users’ adjustable load
coefficients, real-time electricity loads, real-time adjustable load
and parameter Hit calculated by each user data to constitute
training set (θit, lit, pit) |Hit{ }, t ∈ [0, 23]. Since the simulation
data of 50 users are used in this experiment, the data of 30 users
are taken as the training data. After the parameters are trained
according to the data of each user, the average value of the
parameters of each user in the same period is calculated as the
final parameter value Ht. Figure 6 shows the value of Ht for each
period.

FIGURE 8
Changes of users’ scheduling tasks and subsidies with different load elastic coefficient threshold (threshold ∈ [1,9]).
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4.2 Assignment of scheduling tasks

In this section, we show the influence of load elasticity coefficient
threshold and reputation threshold on scheduling task allocation
and the incentives users can get. The assignment of users’ scheduling
tasks is a relatively important link in this scheme. The price subsidies
obtained by users participating in incentive demand response are
not only related to their own electricity consumption data, but also
related to some parameters selected at the grid company side, such as
load elastic coefficient threshold and reputation value threshold. The
load elasticity coefficient threshold and reputation value threshold
are determined according to the range of load elasticity coefficient
and reputation value. Because the load elasticity coefficient is small,
the load elasticity coefficient threshold is the amplified value for the
sake of observation. In practical application, the most appropriate
threshold is selected by the grid end to screen users and assign
scheduling tasks.

4.2.1 Influence of load elastic coefficient threshold
In this section, we discuss the impact of the load elastic

coefficient threshold on the scheme performance. After the daily
load elastic coefficient within a cycle is calculated according to
the historical electricity consumption data of the user, the daily
load elastic coefficient of the user compares with the threshold
value. The users, whose load elastic coefficient is larger than the
threshold value, are preliminarily selected. The selection of
different load elastic coefficients will affect the selection of
users participating in scheduling tasks. Thus, different

scheduling tasks are assigned to users, and the price subsidies
users get after completing the scheduling tasks are different. The
adjustable load coefficient of the user is obtained through
multiple calculations based on the historical electricity
consumption data and real-time electricity consumption data
of each user. The parameters Ht are obtained through a linear
regression model, and then the adjustable load of the user is
calculated based on the real-time electricity consumption data of
the user and parametersHt. There is a certain difference between
the users’ adjustable load and the tasks assigned to the users by
the power grid according to the users’ reputation values. Figure 7
shows the difference between the calculated scheduling tasks that
should be assigned and the users’ adjustable load when the load
elastic coefficient threshold is different.

As can be seen from Figure 7, the load elastic coefficient
threshold should not be too large or too small. If the threshold of
load elasticity coefficient is too small, many low-quality users
will also be selected. Although more users are selected to
participate in scheduling tasks, the quality of users
participating in scheduling tasks is not high, which will affect
the completion of the overall tasks of power grid scheduling.
When the load elastic coefficient threshold is too large, users
participating in scheduling tasks are over-filtered. When the
load elastic coefficient threshold is equal to 9, no users even meet
the requirement to participate in scheduling tasks. In the
selection of the final scheduling tasks of users, if the values of
the calculated scheduling task assigned to the user is smaller
than the adjustable load of the user, the calculated scheduling

FIGURE 9
Differences of subsidies obtained by users under different reputation thresholds (r ∈ [1,9]).
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tasks are selected as the final scheduling tasks. If not, the user’s
adjustable load is selected as the final scheduling task. The load
elastic coefficient threshold will also affect the subsidies obtained
by users when they complete scheduling tasks by affecting the
assignment of their scheduling task. Figure 8 shows the change
of subsidies obtained by users when the load elastic coefficient
threshold is different.

As we can see from Figure 8, the number of users
participating in scheduling tasks changes with the change of
the load elastic coefficient threshold. When the load elastic
coefficient threshold is small, the number of users
participating in scheduling tasks is large, and the average
scheduling tasks assigned to users are small, so the subsidies
obtained by users also decrease. In this case, although there are
more users participating in scheduling tasks, there are more users
who are not highly likely to complete scheduling tasks. Because
the load elastic coefficient is small while the time limit of
participating in scheduling tasks is large, then the complete
degree of overall scheduling tasks may be low. As the load
elastic coefficient threshold increases, the number of users
participating in scheduling tasks also decreases. Accordingly,
users participating in scheduling tasks are assigned more
scheduling tasks and get more price subsidies. However, due
to the limitation of users’ adjustable load, the scheduling tasks
that users can complete will not exceed their adjustable load.
Therefore, too few people participating in the overall scheduling
task will lead to a low completion degree of the overall scheduling
task. Therefore, the threshold of load elastic coefficient should
not be too small or too large.

4.2.2 Influence of reputation threshold
In this section, we discuss the impact of the reputation

threshold on the scheme performance. Firstly, the server
calculates the weight of the users participating in this
scheduling task among all participating users based on their
reputation values. And the server considers them as the weight of
the scheduling tasks assigned to users in the total scheduling
tasks. Then, the server compares the user’s adjustable load with
the scheduling tasks assigned to the user. If the scheduling task
of the user is smaller than the adjustable load, the scheduling
task is taken as the final scheduling value. Otherwise, the
calculated adjustable load of the user is taken as the final
scheduling value. After completing the scheduling task, users
will get the corresponding subsidies according to their
reputation levels and the size of the scheduling tasks
completed by users, but the users whose reputation value is
less than the reputation value threshold will not get the price
subsidies. The difference of the reputation value threshold will
affect the users who participate in the incentive demand
response to get their subsidies. Figure 9 shows the differences
of the users’ subsidies under different reputation value
thresholds.

As can be seen from Figure 9, when the reputation threshold
increases, the number of users who can get price subsidies
decreases. When the reputation threshold reaches nine, no
user can get price subsidies. If the reputation threshold is too
large, it will reduce the enthusiasm of users to participate in

scheduling tasks. If the reputation threshold is too small, it will
increase the cost of the power grid. Because users with small
reputation value are less likely to complete scheduling tasks, it is
necessary to set an appropriate reputation threshold, and users
with low reputation can get subsidies after reaching the
threshold. Then the enthusiasm of low-reputation users to
complete their scheduling tasks can be improved.

5 Conclusion

To solve the issues of user electricity consumption in complex
network, we propose a reputation-based electricity scheduling
scheme for complex network of user electricity consumption in
this paper. We first construct a complex network model of the user’s
electricity consumption. Then we construct a reputation calculation
method for electricity users, and then we use the machine learning
method to train a computation model to calculate the adjustment
coefficients of electricity load, which is the basis for adjusting the
electricity scheduling tasks. Further, the corresponding electricity
scheduling tasks are assigned to the selected electricity users
respectively for realize electricity peak load shifting when the
total electricity load is too high. Finally, the incentives of users
who participate in the incentive demand response of electricity
scheduling are calculated according to the calculated reputation
and the completed scheduling tasks of users. Experiment results
show our scheme can effectively calculate the reputation values of
users based on their historical data, and the corresponding electricity
scheduling tasks are effectively and efficiently assigned to related
users according to the users’ reputation values and the real-time
adjustable load.
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