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Sharp-edge structures exposed to acoustic fields are known to produce a strong
non-linear response, mainly in the form of acoustic streaming and acoustic
radiation force. The two phenomena are useful for various processes at the
microscale, such as fluid mixing, pumping, or trapping of microparticles and
biological cells. Numerical simulations are essential in order to improve the
performance of sharp-edge-based devices. However, simulation of sharp-edge
structures in the scope of whole acoustofluidic devices is challenging due to the
thin viscous boundary layer that needs to be resolved. Existing efficient modeling
techniques that substitute the need for discretization of the thin viscous boundary
layer through analytically derived limiting velocity fail due to large curvatures of
sharp edges. Here, we combine the Fully Viscous modeling approach that
accurately resolves the viscous boundary layer near sharp edges with an
existing efficient modeling method in the rest of a device. We validate our
Hybrid method on several 2D configurations, revealing its potential to
significantly reduce the required degrees of freedom compared to using the
Fully Viscous approach for the whole system, while retaining the relevant physics.
Furthermore, we demonstrate the ability of the presented modeling approach to
model high-frequency 3D acoustofluidic devices featuring sharp edges, which will
hopefully facilitate a new generation of sharp-edge-based acoustofluidic devices.
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1 Introduction

Acoustofluidic devices commonly exploit two phenomena, namely, acoustic streaming
(AS) and acoustic radiation force (ARF), for an increasing variety of tasks due to their ability
to precisely manipulate fluids and objects on the microscale and in a contactless manner [1].
A particular type of acoustofluidic device features sharp-edge structures inside an
acoustically excited device. In such a configuration, sharp edges produce a strong
response in the form of AS [2–5] and ARF [6, 7], as illustrated in Figure 1. The
literature indicates that in most 2D cases, the AS around a single sharp edge manifests
itself in the form of two counter rotating vortices, one on each side of the tip of the sharp
edge, with the flow above the apex directed away from the edge tip [4]. As for the ARF, it has
been shown that “heavy” microparticles get attracted to the excited sharp edge, whereas
“light” particles get repelled from the edge [7].

Acoustically excited sharp edges can be used for micropumping [8, 9], trapping of
biological cells [6, 10, 11], and powerful mixing [12–14]. Numerical models capable of
predicting the behavior inside such devices and, thus, their performance are a valuable tool
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for design optimization. Especially, since the production of most
acoustofluidic devices requires a cleanroom environment, making
prototyping laborious and expensive. Furthermore, numerical
simulations can give deeper insight into the underlying physics
[2, 4, 5].

The modeling of harmonic acoustic fields at the scale of a typical
acoustofluidic device for micromanipulation requires the modeling
of one-half to several acoustic wavelengths λ = c0/f, with the speed of
sound in the fluid c0 and the driving frequency f. Each wavelength is
normally discretized with several tens of elements, making such a
device possible to simulate as a whole 3D multiphysics problem.
However, when analyzing higher-order steady phenomena in
viscous fluids, such as AS, another characteristic length needs to
be discretized-the viscous boundary layer thickness δ � ��������

η/(πρ0f)
√

,
with the dynamic fluid viscosity η and the density of the fluid ρ0. In a
typical acoustofluidic device, filled with water and driven at f =
1 MHz, we have λ ≈ 1.5 mm and δ = 0.56 µm. This indicates a large
separation of length scales, with the device being O(λ), whereas the
discretization at boundaries is required to resolveO(δ). Muller et al.
[15] introduced a Fully Viscous modeling approach based on the
perturbation theory that resolves both λ and δ, requiring significant
computational effort and is, thus, in most cases limited to simplified
2D models. Over the years, alternative approaches were developed
that analytically solve AS in the viscous boundary layer and use the
solution as a boundary condition for the flow in the fluid bulk. This
so-called limiting velocity method (LVM) was already used in [16],
[17, 18], [19], [20, 21], and others. Recently, [22] and [23] improved
the LVM by accounting for the Stokes drift and thermal boundary
layer, respectively. The LVM approach has already enabled 3D
simulations of AS in a whole acoustofluidic device [19, 21, 24].
There is, however, a general limitation of the LVM, in which the
radius of the curvature of boundaries in the system needs to be much
larger than δ. This makes LVM as such unusable for the simulation
of AS in acoustofluidic devices featuring sharp edges, since the
behavior in such devices is greatly influenced by the behavior near
the tips of sharp edges [5].

Sharp-edge acoustofluidics has been successfully modeled in
several studies using the Fully Viscous approach, but typically in 2D
[4, 13, 25, 26] and under further simplifications, such as assuming a
periodicity across the device [3], using systems at low frequencies
with the acoustic wavelength larger than the system (subwavelength
system) [2, 5, 27], or exploiting symmetries [28]. Under these

simplified conditions, a few studies featured the direct numerical
simulations that revealed the threshold amplitude of the oscillatory
excitation velocity at which the perturbation-based computation of
the acoustic streaming near a sharp edge fails [2, 5, 29].

Here, we introduce a Hybrid modeling approach that fully
resolves the viscous boundary layers in the vicinity of sharp
edges, analogous to the approach of [15], while the rest of the
acoustofluidic device is modeled using LVM-based approach
derived by [22]. First, we validate the Hybrid approach against
the Fully Viscous approach on a simple single-sharp-edge geometry,
which is used in several previous studies [4, 5, 26]. Second, we apply
the Hybrid approach to model a more complex acoustofluidic device
that features a pair of sharp edges and is capable of pumping, as
introduced recently in [9]. At last, we apply the Hybrid approach to
model high-frequency sharp-edge acoustofluidics in 3D. The
developed approach, depending on the complexity of the device,
significantly decreases the required degrees of freedom (DOF) in the
model compared to fully resolving the viscous boundary layer.

2 Methodology

In the current work, we model only the behavior of fluids
within microfluidic channels, whereas the solids typically
bounding such channels are replaced by suitable boundary
conditions.

We assume a viscous fluid, the motion of which can be described
by the compressible Navier–Stokes equations

ρ
zv
zt

+ v · ( )v[ ] � −p + η∇2v + ηB +
η

3
( )  · v( ), (1)

and the continuity equation

zρ

zt
� − · ρv( ), (2)

with the velocity v, the dynamic viscosity η, and the bulk viscosity ηB.
The fluid is assumed to be barotropic, and the density ρ, therefore,
depends only on the pressure p, namely,

ρ � ρ p( ). (3)
The equations are linearized using the regular perturbation

approach [30]. Accordingly, the physical fields are expanded in a
series □ = □0 + □1 + □2 + . . ., where □ represents the field and the
subscript denotes the respective order. The amplitude of the first-
order velocity v1 is, therefore, assumed to be small with respect to the
speed of sound c0—small Mach number assumption.

2.1 First-order (acoustic) problem

For a fluid quiescent at the zeroth order (v0 = 0), the substitution
of the first-order perturbed fields into governing Eqs. 1, 2 yields the
set of first-order equations

ρ0
zv1
zt

� −p1 + η∇2v1 + ηB +
η

3
( )  · v1( ), (4)

zρ1
zt

� −ρ0 · v1, (5)

FIGURE 1
Illustration of the main phenomena driven by the oscillations of a
sharp edge relative to the surrounding fluid: (A) the sharp-edge-driven
acoustic streaming [4], (B) the attraction of “heavy” particles to the tip
of the sharp edge due to the ARF [7], and (C) the ARF-based
repulsion of “light” particles by the sharp edge [7].
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with the equilibrium density ρ0. The equation of state, namely Eq. 3,
translates to

ρ1 �
1
c20
p1 (6)

and connects the first-order density with the first-order pressure.
The first-order fields are assumed to have a harmonic time
dependency through the factor eiωt, with the angular frequency
ω = 2πf and the imaginary unit i.

2.2 Second-order (streaming) problem

Applying the perturbation theory to the governing equations up
to second order and taking the time average 〈□〉 � 1

T∫T
□ dt over an

oscillation period T lead to the equations of acoustic streaming [31]

〈p2〉 − η∇2〈v2〉 � −ρ0 · 〈v1v1〉, (7)
 · 〈v2〉 � 0. (8)

The time average of a product of first-order fields □1 � ~□1eiωt, with
the spatially-dependent and time-independent complex amplitude
~□1, is computed as 〈□1■1〉 � 1

2 Re[~□1 ~■1*] with □* denoting a
complex conjugate of □ [32]. For 〈v1v1〉 in Eq. 7, the tensor
product is implied. In Eqs 7, 8, the streaming field is considered
to be incompressible, which is in line with related studies [33–36].

At the second order, the no-slip boundary condition is imposed
on the Lagrangian velocity of the fluid at the fluid boundary. The
Lagrangian velocity is defined as the sum of the Eulerian streaming
velocity 〈v2〉 and the Stokes drift [37, 38]

vSD � 〈 ∫ v1dt · ( )v1〉, (9)
leading to the boundary condition on the Eulerian streaming
velocity

〈v2〉 � −vSD at the boundary. (10)
For rigid boundaries that we assume in this work, vSD reduces
to zero.

This theoretical framework is only applicable as long as the
perturbation theory is valid and as long as the streaming remains
laminar. The validity of the perturbation theory approach in the
context of sharp-edge streaming is further discussed in [2], [5].

2.3 Limiting velocity method

To compute the acoustic streaming one needs to solve the first-
and the second-order problems outlined in the previous sections.
Based on the complexity of the formulation, analytical solutions are
rare and rely on basic geometries, simplified boundary conditions,
and various assumptions regarding the relevant characteristic
lengths, as, for example, performed in [16], [39], [34], [40].
However, under additional assumptions, the so-called limiting
velocity method has been developed by [18], [38], [22], wherein
the aforementioned equations are solved separately in the vicinity of
boundaries, where the viscous boundary layer develops. The main
assumption of the LVM is the smallness of the viscous boundary

layer thickness δ relative to the acoustic wavelength λ = c0/f and
relative to the curvature R of the boundary surface. Additionally, the
displacement of a moving boundary surface tangential to the
boundary surface needs to be small relative to R, while the
displacement normal to the boundary surface needs to be small
relative to δ. The derivation of the fields in the boundary layer
assumes a solenoidal first-order velocity field, and the resulting
(limiting) streaming velocity is then applied to a simplified
streaming problem originating from Eqs 7, 8 as a slip velocity at
certain small distance from the boundary [18] or at the boundary
itself [22], depending on the formulation. It is important to note that
the derivations in [22] are developed for e−iωt time dependence,
whereas the interfaces of the Acoustics Module of COMSOL
Multiphysics that we use for implementation assume eiωt. In the
continuation, the formulation from [22] is, therefore, adapted to the
COMSOL Multiphysics-compatible eiωt.

The first-order problem, in the scope of the LVM, is simplified
by assuming that the velocity field in the fluid bulk is irrotational,
which leads to the Helmholtz equation

∇2p1 + k2cp1 � 0, (11)
with p1 as the only unknown variable and with the viscous
compressional wavenumber

kc � 1 − i
Γ
2

( ) ω

c0
, (12)

with the damping coefficient

Γ � ηB +
4
3
η( ) ω

ρ0c
2
0

. (13)

The first-order velocity is separated as

v1 � vb1 + vδ1, (14)
into a sum of the irrotational ( ×□ = 0) long-range velocity in the
bulk of the fluid vb1 and the solenoidal ( ·□ = 0) short-range velocity
in the viscous boundary layer vδ1. The velocity in the bulk is
connected to the pressure through

vb1 �
i − Γ
ωρ0

p1. (15)

To account for the damping of the viscous boundary layer, the
following condition needs to be applied at the boundary:

n · p1 � ωρ0
i − Γ n · V0

1 −
i
ks
 · V0

1[ ]
− i
ks

ω2

c20 1 + iΓ( )p1 + n · ( )2p1[ ],
(16)

with the outward pointing normal of the unit length n, the velocity of
the harmonic boundary V0

1, and the shear wavenumber

ks � 1 − i
δ

. (17)

The second-order problem for the streaming in the bulk of the
fluid is in LVM governed by

 · vb2 � 0, (18)
〈pb

2〉 − η∇2〈vb2〉 � 〈Lb
ac〉 +

Γω
c20

〈Sbac〉, (19)
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with the bulk Lagrangian density

〈Lb
ac〉 � 1

2
1

ρ0c
2
0

〈p2
1〉 −

1
2
ρ0〈vb1〉 (20)

and the energy-flux density

〈Sbac〉 � 〈p1v
b
1〉. (21)

The boundary condition that constrains the second-order problem
is given in a form of a slip velocity

vb02 � A · t1( )t1 + A · t2( )t2 + B · n( )n, (22)
with orthogonal unit vectors t1 and t2 that are tangential to the
boundary surface and with

A � − 1
2ω

Re vδ0p1 ·  1
2
vδ01 − iV0

1( ){
+ iV0p

1 · vb1 +
2 − i
2

 · vδ0p1[
+ i  · V0p

1 − n · ( )vbp1n( )]vδ01 },
(23)

B � 1
2ω

Re ivb0p1 · vb1{ }, (24)

with vbp1n � n · vbp1n ; vδ01 follows from the no-slip boundary condition
at the first order as

vδ01 � V0
1 − vb01 . (25)

The superscript □0 indicates that □ is evaluated at the boundary.

2.4 Numerical model

The numerical models implementing the first- and the second-
order problems are developed in the finite-element method
framework of COMSOL Multiphysics 5.6 [41]. In the analysis
that follows, we use three kinds of numerical models, namely, (I)
the Fully Viscous model that numerically solves Eqs. 4–8, 10 in line
with the approach introduced in [15] and used in many studies
since [5, 9, 28, 42], (II) the Full Limiting Velocity Method (FLVM)
model that is based on the LVM of [22] and incorporates Eqs. 11,
16, 18, 19, and 22, and (III) the Hybrid model that uses the
formulation of the Fully Viscous model in the vicinity of sharp
edges and the LVM formulation in the rest of the fluid domain, as
illustrated in Figure 2.

2.4.1 Fully viscous model
The Fully Viscous model is implemented in COMSOL

Multiphysics by using the adiabatic form of the Thermoviscous
Acoustics interface for the first-order problem, which is then solved
with a Frequency Domain study. The second-order problem is
implemented using the Creeping Flow interface, with the
streaming source term −ρ0 · 〈v1v1〉 from Eq. 7, which is the
spatial variation of the Reynolds stress, and added to the
governing equations of the Creeping Flow interface as a volume
force. The second-order problem is solved with the Stationary study.

The boundary conditions in the Fully Viscous model at the first
order are the no-slip condition applied on all the non-moving (rigid)
walls; specifically,

v1 � 0 at the non−movingwalls, (26)
while at the moving walls, the applied wall velocity is imposed as

v1 � vwall at themovingwalls, (27)
with the velocity vwall defined on the case-by-case basis. At the
second order, the no-slip boundary condition is applied to all the
walls, but on the Lagrangian velocity, as in Eq. 10. However, the
Stokes drift that appears in Eq. 10 only at the moving walls.

2.4.2 Full Limiting Velocity Method model
The first-order problem of the FLVM model is implemented

through the Pressure Acoustics interface, with the boundary
condition on the pressure gradient from Eq. 16 that accounts for
viscous boundary layer damping imposed as an inward velocity at all
boundaries. The first-order problem is solved with a Frequency
Domain study. The second-order problem is implemented via the
Creeping Flow interface, same as for the Fully Viscous model. The
source term from Eq. 19 is implemented as a volume force.

The boundary conditions of the FLVM model at the first order
are the slip condition with the additional artificial velocity in the

FIGURE 2
Geometry of the Hybrid model of a single sharp edge in a
rectangular channel. The model is divided into a Fully Viscous domain
(yellow) and a limiting velocity method domain (dark blue). The
boundary conditions of the first-order problem are graphically
indicated. The system is excited by an oscillatory velocity boundary
condition along the x-axis, at x =±a/2 (dash-dotted line) with the
velocity amplitude va. All walls of the LVM domain, including the
driving wall, have an additional artificial velocity imposed according to
[22] that accounts for damping inside the viscous boundary layer δ.
The sharp edge in the Fully Viscous domain is modeled using the no-
slip boundary condition, while the walls at the bottom of the edge are
constrained with a slip boundary condition to improve the fully
viscous-LVM interface. The geometric parameters describing the
model are the channel width a, the Fully Viscous domain width b, the
sharp-edge tip height h, the apex angle of the sharp edge α, and the
radius of the rounding of the sharp-edge tip that is defined as δ/2,
unless specified otherwise.
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direction normal to the wall that imposes viscous damping resulting
from the viscous boundary layer; specifically,

n · v1 � n · p1

iωρ0
at the walls, (28)

where n · p1 is defined in Eq. 16. The case-specific oscillatory
velocity of the moving walls is imposed directly in the expression
from Eq. 16, by setting V0

1 � vwall, with the case-specific vwall. At the
second order, the slip velocity defined in Eq. 22 is imposed to the
fluid at the walls. Specifically,

〈v2〉 � vb02 at the walls. (29)
For the 2D cases, the boundary condition in Eq. 29 simplifies
as t2 = 0.

2.4.3 Hybrid model
In the Hybrid model, the Fully Viscous domain is implemented

analogously to the implementation of the Fully Viscous model,
whereas the LVM domain is implemented analogously to the
FLVM model. The Thermoviscous Acoustics interface and the
Pressure Acoustics interface are coupled through the Acoustic-
Thermoviscous Acoustic Boundary interface. In the Creeping Flow
interface, the gradient of the Lagrangian density (Lac) is omitted
from the LVM domain for numerical stability, since it does not
contribute to the streaming [43]. Consequently, the gradient of the
Lagrangian density needs to be subtracted from the streaming source
term −ρ0 · 〈v1v1〉 in the Fully Viscous domain, to avoid a non-
physical source of streaming at the interface of the LVM and the Fully
Viscous domains. In the LVM domain, we also omit the streaming
source Γω

c20
〈Sbac〉 from Eq. 19 for numerical stability, as it contributes to

bulk-driven streaming, which is insignificant in the cases analyzed
here, but might be important in some other configurations [44].

The boundary conditions in the Fully Viscous domain of the Hybrid
model resemble the boundary conditions applied in the Fully Viscous
model, while the boundary conditions imposed in the LVM domain of
the Hybrid model resemble those in the FLVM model. There are two
exceptions to this at the first order: Thewalls in the FullyViscous domain
are coupled to the LVM domain, where the slip velocity is applied
(indicated in Figure 2) through the following conditions:

n · v1 � 0 at the slip walls, (30)
σn − σn · n( )n � 0 at the slip walls, (31)

with

σn � −p1I + η v1 + v1( )T[ ] − 2
3
η − ηB( )  · v1( )I( )n, (32)

with the identity tensor I; the second exception is at the coupling
boundary between the Fully Viscous domain and the LVM domain,
where the following coupling conditions are applied:

n · p1

iωρ0
|LVM � n · v1|Full. visc. at the coupling boundary, (33)

np1|LVM � σn|Full. visc. at the coupling boundary, (34)
with the left-hand side evaluated in the LVMdomain and the right-hand
side in the Fully Viscous domain, at the coupling boundary. At the
second order, there is no special coupling between the two domains,
except for the volume force accounting for the spatial variation of the

Reynolds stress on the right-hand side of Eq. 7, which is applied only in
the Fully Viscous domain and not in the LVM domain.

The size of the LVM domain in the Hybrid model, here defined
through the length b in Figure 2, should be chosen such that it
surrounds the region of the high curvature of the boundary,
satisfying the condition b ≫ δ under the assumption that δ ≳ 1/R.

For all the models, the Creeping Flow interface contains a
pressure constraint in the form of a zero average across the
whole fluid domain. All the studied 2D cases were solved with
the default solvers, suggested by COMSOLMultiphysics. For the 3D
cases featured here, the solver had to be manually switched to a
Direct solver.

It is important to note that the first-order problem implemented
using COMSOL Multiphysics through the native Thermoviscous
Acoustics or Pressure Acoustics interfaces needs to be consistent
with the time dependency with a factor of eiωt, whereas the
acoustofluidic theories often assume e−iωt, as, for example,
assumed in [22], [23].

For all the studies herein, we assume the fluid to be water with
ρ0 = 1000 kg m−3, c0 = 1481 m s−1, η = 1.02 mPa s, and ηB =
3.09 mPa s [45].

Exemplary 2D meshes for the Fully Viscous model and the
Hybrid model are compared in Figure 3. The inherently larger
bulk element size of the Hybrid model and the absence of mesh
refinements at the boundaries promise a substantial reduction in
the computational effort for the Hybrid model compared to the

FIGURE 3
Comparison of the converged meshes of (A) the Fully Viscous
model with the total DOF of 379′349 and (B) the Hybrid model with
the total DOF of 98′095 at f = 720 kHz in water, with a = 1 mm, h =
100 μm, α = 10°, and b = 150 µm; (C) closeup of the mesh of the
Hybrid model near the sharp-edge tip, where the viscous boundary
layer mesh is distinguishable.
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Fully Viscous model, especially for larger problems. The larger
bulk element size admissible in the LVM domain, compared to
the Fully Viscous domain, stems from the lack of the divergence
of the Reynolds stress in Eq. 19 that requires a refined mesh [22].
The difference in the total DOF is further increased due to the
Fully Viscous model solving the velocity field and the pressure
field in the fluid bulk in the first-order problem, whereas the
hybrid model only solves for the pressure field in the fluid bulk.

The convergence of representative models with respect to the
mesh element size is discussed in Supplementary Material.

In the Fully Viscous model, the first-order pressure and velocity
were discretized using cubic Lagrange and quartic Lagrange
elements, respectively. The second-order pressure and velocity
were discretized with quadratic and cubic elements, respectively.
In the Hybrid model, cubic Lagrange elements were used for the
first-order pressure in the LVM domain, while the pressure and
velocity in the Fully Viscous domain were discretized with quadratic
and cubic Lagrange elements, respectively. At the second order, the
discretization was quadratic and cubic for pressure and velocity,
respectively.

FIGURE 4
Different modeling approaches validated with a rectangular channel without the presence of a sharp edge. We compare the performance of the
Fully Viscous model according to [15], the FLVM model from [22], and the Hybrid model outlined in Figure 2 that combines the two former approaches.
The comparison ismade for the first three resonancemodes in water along the channel width a= 1 mm,with b= 200 μm;mode 1 is shown in (A), (D), (G),
and (J); mode 2 in (B), (E), (H), and (K); and mode 3 in (C), (F), (I), and (L). The first row shows representative acoustic pressure fields (FLVM), the
second row shows representative Eulerian streaming velocity fields (FLVM) with streamlines and arrows revealing the direction of the velocity, the third
row shows the average acoustic energy density Eac, and the fourth row shows themaximalmagnitude of the Eulerian streaming velocity |〈v2〉|. To support
the build-up of the corresponding resonances, the excitation at x =±a/2 with va = 1 mm s−1 is imposed in the same direction (in phase) for modes 1 and
3 and in the opposing directions (π phase shift) for mode 2.
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The results of numerical simulations are evaluated through the
base variables (p1, v1, and 〈v2〉) as well as through the time- and
space-averaged acoustic energy density [46]

Eac � 1
Ω∫

Ω
〈 1
2ρ0c

2
0

p2
1 +

ρ0
2

v1 · v1( )〉dΩ, (35)

within a spatial domainΩ that corresponds to the volume in a 3D or the
area in a 2D configuration. The first term within 〈□〉 in Eq. 35 represents
the potential energy density, while the second term represents the kinetic
energy density. In the LVMsubdomains ofΩ, v1 is computed fromEq. 15.

3 Results

We study several cases using the described numerical models,
which validate the Hybrid model on various 2D geometries in

combination with fluidic channel resonances. In the last part, the
benefit of the Hybrid model is demonstrated on the analysis of an
exemplary 3D case that would have been very difficult if not
impossible to model using preexisting approaches.

3.1 Rectangular channel in 2D

We first analyze a simple case of a 2D rectangular fluidic
channel that is geometrically equivalent to the case presented in
Figure 2, but without the sharp edge. The analysis, presented in
Figure 4, compares the FLVM model and the Hybrid model
against the Fully Viscous model, in order to validate the
implementation in COMSOL Multiphysics and to estimate
the baseline error caused by the coupling of Fully Viscous
and LVM domains within the Hybrid model. In the Hybrid

FIGURE 5
Different modeling approaches validated with a rectangular channel containing a sharp-edge structure. We compare the performance of the Fully
Viscous model according to Muller et al. [15], the FLVM model from [22], and the Hybrid model outlined in Figure 2 that combines the two former
approaches. The comparison is made for the first resonance mode in water along the channel width a = 1 mm, with h = 100 μm, b = 150 μm, and α = 10°.
(A) Average acoustic energy density Eac, (B) maximal root-mean-square acoustic velocity RMS|v1|, and (C) maximal Eulerian streaming velocity
magnitude |〈v2〉|. (D), (G) Half of the acoustic pressure fields that are otherwise antisymmetric. (E), (H) Half of the root-mean-square acoustic velocity
magnitudes that are otherwise symmetric. (F), (I) Half of the Eulerian streaming velocity fields that are otherwise symmetric. (J), (K) Zoomed-in fields
corresponding to (H) and (I), respectively. (D)–(F) From the Fully Viscous model; (G)–(K) from the Hybrid model. All the displayed fields correspond to f =
720 kHz. The fields from the FLVMmodel are omitted, since they are erroneous due to the inherent assumptions of the model (as a note, the direction of
the streaming velocity from the FLVMmodel is inverted relative to the actual pattern). The excitation is imposed in the same direction (in phase) at x=±a/2
with va = 1 mm s−1.

Frontiers in Physics frontiersin.org07

Pavlic et al. 10.3389/fphy.2023.1182532

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1182532


model, the Fully Viscous domain is defined with length b, while
the LVM formulation is applied to the rest of the rectangular
domain defined with length a, as specified in Figure 2.

The 2D geometry of the rectangular fluidic channel in Figure 4 is
frequently used for studies in acoustofluidics [15, 25, 39, 46, 47]. The
geometry is defined through the lengths a = 1mm and b = 200 µm.
Predictions of the three models are compared around the first three
resonance modes across the width of the rectangular channel in the x-
direction.We apply the excitation at x=±a/2with va = 1mm s−1 imposed
in the samedirection at both sides of the channel (in phase) to support the
build-up of the resonance modes 1 (Figure 4A) and 3 (Figure 4C) across
the channel width. For the resonance mode 2 in Figure 4B, the velocity
va = 1 mm s−1 is imposed in the opposing directions (π phase shift) at the
two sides of the channel.

Qualitatively, the first- and second-order fields look the same
for all models and modes; therefore, only reference normalized
fields are shown in Figures 4A-F. The frequency sweeps around
the three resonance frequencies in Figures 4G-L, which further
validate our COMSOL Multiphysics implementation of the
LVM, as particularly the FLVM model matches the Fully

Viscous model perfectly. While the Hybrid model matches
the Fully Viscous model well for all three modes in terms of
the corresponding resonance frequency, it overestimates the
acoustic energy density Eac and maximal streaming velocity
max(|〈v2〉|). The error for the first mode is 7% and 6% for
Eac and max(|〈v2〉|), respectively. In the case of the two higher
modes, the errors reach up to 76%. The error comes from the
coupling of the LVM with Fully Viscous domains and can be
minimized by reducing the length of the boundary section that
assumes a Fully viscous formulation and by positioning the Fully
Viscous domain close to the pressure node (see Supplementary
Material for further analysis). However, for frequencies away
from the center of the resonance peak, the errors are minimized
and all three models agree well.

3.2 Rectangular channel with a sharp-edge
structure in 2D

In Figure 5, we look at the same 2D rectangular fluidic channel
as in Figure 4, whereas a sharp edge has been added. A comparable

FIGURE 6
Influence of the channel width a on the performance of the
Fully Viscous model and the Hybrid model for a subwavelength
system with a sharp edge. The channel width is varied in the range
of 0.3 mm ≤ a ≤ 50 mm at a fixed low frequency of f = 10 kHz
to avoid channel resonances. The channel contains a single sharp
edge, as indicated in Figure 2, with h = 100 μm, b = 150 μm, α = 10°,
and the sharp-edge rounding radius of 0.3 µm. (A) Average
acoustic energy density Eac, (B) maximal Eulerian streaming
velocity magnitude |〈v2〉|, and (C) scaling of the DOF with the
channel width. The excitation is imposed in the same direction (in
phase) at x =±a/2, with a channel-width-dependent amplitude va �
vmid cos[2xfπ/c0] that enforces a constant acoustic velocity
amplitude vmid = 1 mm s−1 in the middle of the channel at the sharp
edge.

FIGURE 7
Influence of the channel width a on the performance of the Fully
Viscous model and the Hybrid model for a resonant system with a
sharp edge. Channel width is varied in the range of 0.3 mm ≤ a ≤
3.5 mm at a fixed frequency of f = 720 kHz to induce channel
resonances. The channel contains a single sharp edge, as indicated in
Figure 2, with h = 100 μm, b = 150 μm, α = 10°, and the sharp-edge
rounding radius of δ/2. (A) Average acoustic energy density Eac, (B)
maximal Eulerian streaming velocity magnitude |〈v2〉|, and (C) scaling
of the DOF with the channel width. The excitation is imposed in the
same direction (in phase) at x =±a/2, with a fixed amplitude va =
1 mm s−1. The imposed excitation supports the odd resonances
(modes 1, 3, . . . ) that have a symmetric acoustic velocity field about
the plane of the symmetry x =0 at the sharp edge.
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geometry is featured in several prior experimental [2, 4, 7, 14] and
numerical [2, 5, 25, 26] studies of sharp-edge acoustofluidics.

We apply the excitation at x = ±a/2 with va = 1 mm s−1 imposed
in the same direction at both sides of the channel (in phase) to
facilitate the build-up of the first resonance mode across the channel
width. The first resonance mode was chosen for the analysis as it
induces a pressure node and, thus, a velocity antinode at the location
of the sharp-edge tip, producing strong sharp-edge phenomena.

The presence of the sharp edge shifts the resonance frequency of
the first mode in Figure 5 from ~ 740.1 kHz down to ~ 720.8 kHz,

when compared to a channel without the sharp edge in Figure 4. The
lower resonance frequency in the rectangular fluidic channel
featuring a sharp edge, compared to the channel without the
sharp edge, was already observed in simulations in [26]. This
frequency shift might be due to the increased path of waves, as
they have to circumvent the sharp edge, analogously to the presence
of other objects dispersed in an acoustic field that decrease the
resonance frequency, for instance, bubbles [30].

Figure 5 reveals a good agreement between the Hybrid model
and the Fully Viscous model, whereas the FLVM model

FIGURE 8
Different modeling approaches validated on a complex 2D geometry containing a pair of sharp edges that can facilitate pumping. The geometry is
inspired by the experimental device from [9]. We compare the performance of the Fully Viscous model and the Hybrid model that combines the Fully
Viscous domain with the limiting velocity method domain. The comparison is made for one of the resonance modes in water with the dimensions of the
rigid channels defined in (A), (B), (H), and (I), where (H) and (I) show the Fully Viscous domains. The acoustic pressure and the streamlines of the
Eulerian streaming velocity are shown in (A) for the Fully Viscous model and in (B) for the Hybrid model and (C) and (D) show the respective zoomed-in
Eulerian streaming fields near the pair of sharp edges. The compared fields correspond to f = 738.85 kHz, where (E) shows the average acoustic energy
density Eac, (F) shows the maximal Eulerian streaming velocity magnitude |〈v2〉|, and (G) shows the x-component of the Eulerian streaming velocity in
point P, defined in (B). The excitation in a form of an oscillatory velocity in the y-direction with an amplitude va = 1 mm s−1 is imposed on the whole
uppermost boundary.
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quantitatively and qualitatively disagrees with the Fully Viscous
model. The latter is expected based on the underlying
assumptions of the LVM, and the FLVM model is, therefore,
omitted from further analysis. At the resonance peak, the Hybrid
model slightly underestimates the magnitude of the first-order
fields, reflected in ~16% lower Eac maximum compared to the
Fully Viscous model. Similarly, the maximal magnitude of the
Eulerian streaming velocity is underestimated by ~16% at the
resonance peak. However, the agreement between the Hybrid
model and the Fully Viscous model is very good away from the
center of the resonance peak. Specifically, the difference in Eac
and max(|〈v2〉|) is < 5% for frequencies > |± 2 kHz | from the
center frequency of the peak.

In order to understand how the newly developed Hybrid
model is compared to the Fully Viscous model in terms of the
computational demand relative to an increasing size of the
domain, we keep track of the DOF as the channel width a is
increased. The results shown in Figure 6 present Eac,
max(|〈v2〉|), and the DOF for the rectangular channel with a
sharp edge from Figure 2 at f = 10 kHz and across the channel
width range of 0.3 mm ≤ a ≤ 50 mm, making this a
subwavelength problem (λ ≈ 150 mm). The results indicate a
good agreement between the two models in terms of Eac and
max(|〈v2〉|) across the whole range of a. Interestingly, the
behavior below a ≈ 1 mm depends on a, while it remains
independent of a for larger domain sizes. The DOF in the
Fully Viscous model, however, significantly exceeds the DOF
in the Hybrid model, with the DOF reaching > 40-fold

reduction as the domain size is increased, indicating the
benefit of the Hybrid model.

To compare the scaling of the Hybrid model and the Fully
Viscous model at higher frequencies, we vary a from 0.3mm to
3.5 mm at f = 720 kHz. The results in Figure 7 reveal three
resonances in the channel across the investigated range of a, with
the first peak at a ≈ 1 mm corresponding to the resonance peak
previously analyzed in Figure 5. The two models match very well in
terms of Eac and max(|〈v2〉|). The DOF generally exceed those from
Figure 6 due to the higher frequency, and the DOF in the Hybrid
model again show a significant up to ~ 11-fold decrease relative to
the DOF in the Fully Viscous model.

3.3 Sharp-edge-based micropump in 2D

The main advantage of the developed Hybrid model is the
ability to model larger systems that feature sharp-edge structures.
We analyze the performance of the Hybrid model for a larger
system in Figure 8, in the case of a 2D acoustofluidic micropump
inspired by [9] that is capable of fluid pumping and mixing due to
the sharp-edge streaming, as well as microparticle/cell focusing
and trapping by the acoustic radiation force due to the fluidic
channel resonances.

Similar to the previous results, the behavior predicted by the
Fully Viscous model and the Hybrid model matches qualitatively
and quantitatively, except for the resonance peak, where the Hybrid
model underestimates the magnitude of acoustic fields.

FIGURE 9
The Hybridmodel of a rectangular channel containing a sharp-edge structure in 3D. An analysis is performed near the first resonancemode in water
along the channel width a = 1 mm, with h = 100 μm, b = 150 μm, d = 50 μm, and α = 10°. (A) The mesh, (B) the first-order pressure p1, (C) the Eulerian
streaming velocity pattern, and (D) the zoomed-in streaming field corresponding to (C). The analysis of the pressure and streaming velocity fields in
(B)–(D) is performed at themiddle xy-plane (at z= d/2), with some additional xz- and yz-planes for orientation. All the displayed fields correspond to
f = 720 kHz. The excitation is imposed in the same direction (in phase) at x =±a/2 with va = 1 mm s−1.
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3.4 Rectangular channel with a sharp-edge
structure in 3D

Finally, we demonstrate the capability of our efficient
modeling approach by solving a high-frequency acoustic
streaming problem in 3D using a Hybrid model with the
geometry from Figure 2 extruded to a depth of d. The
exemplary mesh and results are shown in Figure 9.

We apply the 3D model to study the influence of the depth d
on the Eulerian streaming pattern on the xy-plane at z = d/2 in
Figure 10. The results show that the pattern is visibly affected by
the presence of the front (z = d) and back (z = 0) covers when d =
10 µm in Figure 10A, but the pattern gradually converges to the
streaming pattern in the 2D model from Figure 5 as d is
increased to 100 µm in Figure 10D. However, as shown in
Figure 10E, the maximal Eulerian streaming
velocity magnitude remains impaired by the 3D effects even
at d = 100 μm, when compared to the magnitudes from
a comparable 2D configuration at f = 720 kHz from Figure 5C.

4 Discussion

We have demonstrated that the novel Hybrid model, combining the
Fully Viscousmodeling of the acoustic phenomena [15] near sharp edges
with the efficient modeling of the viscous boundary layers according to
[22] in the rest of the device, provides up to > 40-fold reduction in the
required DOF in 2D validation studies while capturing the relevant
physics. Furthermore, this approach enables the modeling of 3D sharp-
edge phenomena at high frequencies, where the viscous boundary layer
thickness δ reduces to the rounding radius of sharp edges or below.

While the novel Hybrid model introduces a quantitative
error on the estimated magnitude of fields at the resonance
peaks, it correctly predicts the qualitative behavior throughout
the modeled device. This is of no concern for problems that do
not involve resonances in the fluidic channels, e.g., the
configurations from [2, 5, 14]. Sharp-edge-based devices
operating at higher frequencies, such as the multifunctional
chip reported by [9], can still be effectively modeled, as
demonstrated in Figure 8. Shortcomings in terms of
erroneous magnitudes at resonances are not too important,
since the underlying total damping defining the quality of a
given resonance is generally difficult to model anyway and can
vary due to a plethora of experimental conditions [19], such as
the temperature, material damping, damping in the connecting
glue layers, and many more.

The relative error of the Hybrid model is for a given resonance
similar for both analyzed quantities, Eac and max(|〈v2〉|). This implies
that the error originates from the computation of the first-order fields,
since both quantities rely on the square of a first-order quantity—Eac
directly, whilemax(|〈v2〉|) depends the square of the first-order velocity
as a source term in Eq. 7 and as a boundary condition through Eq. 9.

Our Hybrid model allows the study of 3D sharp-edge effects, as
demonstrated in Figure 10, where we showed that the 3D effects in the
quasi-2D geometry are limited to a certain depth, as previously
hypothesized in [5]. This provides the justification for the use of 2D
models when modeling quasi-2D channels of lab-on-a-chip devices that
typically exceed the depth of 100 µm.

The herein introduced Hybrid modeling approach can be
used to aid the emerging field of sharp-edge acoustofluidics. In
the latter, sharp-edge structures such as needles or wedges in
microfluidic devices are excited with ultrasound for a wide range
of applications, ranging from propulsion of microrobots [48–50]
and enhanced drug delivery [27] to advanced lab-on-a-chip
technology involving sharp-edge-based micropumps and
micromixers [3, 8, 9, 12–14, 51].
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FIGURE 10
Influence of the channel depth d on the sharp-edge streaming
pattern at the middle xy-plane (at z = d/2), studied with the Hybrid 3D
model. The channel depth is varied from d = 10 µm in (A) to d =
100 µm in (D) at a fixed frequency of f = 720 kHz. The
corresponding maximal Eulerian streaming velocity |〈v2〉| is shown in
(E). The channel contains a single sharp edge, as indicated in Figure 2,
with h = 100 μm, b = 150 μm, α = 10°, and the sharp-edge rounding
radius of δ/2. (A)–(D) Eulerian streaming velocitymagnitude |〈v2〉|. The
excitation is imposed in the same direction (in phase) at x =±a/2, with
an amplitude of va = 1 mm s−1.
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