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Fault of rolling bearing signal is a common problem encountered in the
production of life. Identifying the fault signal helps to locate the fault location
and type quickly, react to the fault in time, and reduce the losses caused by the
failure in production. In order to accurately identify the fault signal, this paper
presents a triple feature extraction and classificationmethod based onmulti-scale
dispersion entropy (MDE) andmulti-scale permutation entropy (MPE), extracts the
features of the signal of rolling bearing when it is working, and uses the
classification algorithm to determine whether there is a fault in the bearing and
the type of fault. Scale 2 of MDE is combined with scale 1 and scale 2 of MPE as the
three features required for the experiment. As a comparison of recognition results,
multi-scale entropy (MSE)is introduced. Ten scales of the three entropy are
calculated, and all combinations of three feature extraction are obtained. K
nearest neighbor algorithm is used for three feature recognition. The result
shows that the combination recognition rate proposed in this paper reaches
96.2%, which is the best among all combinations.
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1 Introduction

Today, mechanized equipment fault diagnosis is an unavoidable problem in all walks of
life. Rolling bearing fault accounts for a large part of mechanical equipment fault [1, 2].
Rolling bearing, as a basic part of mechanical equipment, is easily damaged under long-term
operation, resulting in many different types of faults, which affect the overall operation of
equipment. However, early fault identification of bearings has always been a difficult
problem to solve. In order to accurately identify and repair faults in time, various fault
diagnosis methods have been put forward to distinguish fault types [3–5].

Vibration signals will be generated during normal operation of rolling bearings. By
analyzing the characteristics of vibration signals, the fault categories of bearings can be
effectively diagnosed. However, due to the influence of bearing load and friction between
components, the vibration signals generated are always non-linear and non-stationary [6, 7].
For feature extraction and recognition of such signals, researchers have put forward many
time-frequency analysis methods to extract information from the signals. For example,
wavelet transform (WT), empirical mode decomposition (EMD) [8] and variational mode
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decomposition (VMD) [9], however, these methods also have their
own disadvantages, such as WT only decomposes low frequency
band of signal, mode overlap of EMD, etc. To solve these problems,
some improvedmethods have been put forward successively, such as
empirical WT (EWT) [10], complete ensemble EMD with adaptive
noise (CEEMDAN) and so on [11, 12].

In recent years, entropy, as a non-linear dynamic method, has
also been applied in the fields of fault diagnosis and underwater
acoustic signal recognition [13–15]. It is used to describe the
complexity of the signal. Sample entropy (SE) [16], approximate
entropy (AE) [17], permutation entropy (PE) [18], dispersion
entropy (DE) [19] and so on have been put into use successively,
and some achievements have been made [20]. However, single-scale
entropy cannot completely reflect the fault information, especially
the limitations of mutation information. As a result, multi-scale
signal analysis methods are gradually applied to signal recognition
[21, 22]. MSE was proposed by Costa et al. in 2002 [23], which
successfully quantifies the information of time series onmulti-scales.
Based on the proposal of multi-scale SE (MSE), in 2005, Aziz et al.
also made improvements on PE, proposed multi-scale PE (MPE)
[24], and made PE obtain higher noise resistance. The proposed
multi-scale DE (MDE) is faster to compute and better reflects the
characteristics of the real signal than MSE. Both MPE and MDE are
widely used in the field of signal recognition [25, 26].

Considering that the DE is faster andmore stable, this paper uses
the DE to extract fault features, but the DE contains less information.
In order to obtain more information about the signal, we introduce
the concept of multi-scale and propose a triple feature extraction
method based on MDE and MPE in fault diagnosis.

The remainder of this paper is as follows: Section 2 introduces
the principle and calculation method of multi-scale and DE; Section
3 describes the specific steps of the triple feature experiments
proposed in this paper. Section 4 shows the feature distribution
and recognition results of the triple feature extraction experiments,
which proves the feasibility of the experiment. Section 5 summarizes
the entire experiment.

2 Dispersion entropy

DE is a measure of time complexity. It has a faster calculation
speed, is less affected by sudden changes in the signal and can reflect
the magnitude relationship. The calculation steps of DE are as
follows.

(1) For a given set of time series, � x1, x2, . . . , xn{ } , the normal
cumulative distribution function is used to map the original
time series between 0 and 1.

yj � 1
σ

���
2π

√ ∫
xi

−∞
e

− t−μ( )2
2σ2 dt (1)

The standard deviation σ and mean μ of the time series x are
respectively used in the formula.

(2) Use round function to convert the time series mapped in the
first step into integers between 1 and c, where c is the number of
categories.

zcj � Round c · yj + 0.5( ) (2)

(3) Construct the embedding vector based on the embedding
dimension m and the time delay constant τ as follows:

zm,c
j � zcj, z

c
j+τ ,/zcj+ m−1( )τ{ } (3)

(4) Set zcj � v0, zcj+τ � v1,/zcj+(m−1)τ � vm−1 , based on each
embedded vector, a corresponding dispersion pattern can be
obtained.

πv0v1 ...vm−1 v � 1, 2,/c( ) (4)

(5) cm dispersion patterns can be obtained in Step 4) with the
following probabilities.

p πv0v1 ...vm−1( ) � Number t t≤ m − 1( )τ, πv0v1...vm−1
∣∣∣∣{ }
N − m − 1( )τ (5)

(6) Based on the above steps, the formula for calculating DE is as
follows.

DE x, c, m, τ( ) � −∑
cm

π�1
p πv0v1...vm−1( ) ln p πv0v1 ...vm−1( )( ) (6)

3 Steps of the experiment

The method proposed in this paper is a triple feature extraction
method based on MDE and MPE, which is shown in Figure 1. The

FIGURE 1
Detailed steps of the experiment.
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method combines scale 2 of MDE with scale 1 and 2 of MPE as three
features of the signal, and combines these three features to identify the
signal using a classifier. The specific experimental steps are as follows:

(1) Select bearing signals of different fault categories and sizes and
divide the samples.

(2) Extract MDE and MPE features at ten scales from samples of
these ten types of signals.

(3) Draw the triple feature distribution of the ten types of signals
according to the selection principle of the highest
recognition rate.

(4) Triple feature recognition by using KNN (k nearest neighbor)
algorithm.

(5) Draw the recognition result and calculate the recognition rate to
verify the validity of the method.

4 Rolling bearing signals

In order to identify the fault of bearing signal, this article has
selected ten bearing signals in different states from Case
Western Reserve University [27]. The first one is normal
working signal, named N-100, the other nine are working
signals in failure state. According to their three sizes (0.007,
0.014 and 0.021 feet) and three different fault locations (ball
fault, inner race fault and outer race fault), the nine working
signals are named IR-007, B-007, OR-007, IR-014, B-014, OR-
014, IR-021, B-021, OR-021. Ten types of bearing signals are
shown in Figure 2.

5 Feature extraction experiments

In this experiment, MDE at scale 2 and MPE at scale 1 and 2 are
selected as the three features, and the entropy values at ten scales of
these ten kinds of signals are calculated. When the scale is 1, the time
series is itself. When the scale is larger than 1, the data used to
calculate the entropy value is coarsened. The parameters used to
calculate the entropy at different scales are the same. It is worth
noting that after coarsening, the mean and variance of the data
needed for calculating the normal distribution function within the
dispersed entropy are still the original data. After calculating the
entropy value features, the distribution and recognition of these
features are observed and compared, and the feature extraction
method used in this paper is verified.

5.1 Single feature extraction

Firstly, the parameters and sampling ranges are determined. The
data used are from the ten types of bearing signals selected above. From
the 1000th data point of the ten types of signals, 1,024 data points are
taken as a sample, and 100 samples are taken for each type of signal. The
parameters of these entropy are set as embedding dimension, number of
classes, time delay, feature distribution of the ten scales of the two
entropy is calculated and plotted. The ten scales of MDE are named as
DE1, DE2,.DE10, andMPE is similarly named as PE1, PE2, . PE10. The
horizontal coordinates of the graph are the number of samples. The
vertical coordinate is the entropy value, and single feature distribution of
ten scales of MDE for ten signals are shown in Figure 3.

It can be seen fromFigure 3 that at scale 1, entropy values of these ten
types of signals are arranged orderly, but there are still different degrees of

FIGURE 2
Ten types of bearing signals: (A)N-100, (B) IR-100, (C) B-100, (D)
OR-100, (E) IR-014, (F) B-014, (G) OR-014, (H) IR-021, (I) B-021, (J)
OR-021.
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confusion between two different signals with adjacent distributions.With
the increase of scale, the boundaries between various signals become
blurred gradually, the effect of feature extraction becomes worse and the
phenomenon of aliasing becomesmore serious. From the point of view of
distribution, the distribution of OR-021 is relatively scattered, while the
distribution of other signals mostly concentrates in a certain interval.
With the increase of scale, the entropy value gradually concentrates to
around 0.8. Single feature distribution of ten scales ofMPE for ten signals
are drawn in Figure 4.

It can be seen from the Figure 4 that when scale 1 is used, the
distribution of the entropy of all kinds of signals is relatively
centralized, in which N-100 and OR-014 have less overlap with
other signals. In other scales, the signal confusion is more serious.
When the scale is 2, the signal entropy concentrates at 1.72 and
1.78. When the scale is greater than 3, the distribution of the ten
types of signals is almost confounded. In order to obtain exact
results, single feature recognition was performed on these
features.

FIGURE 3
Single feature distribution of ten scales of MDE for ten signals: (A-
J) represent Scale 1 to Scale10.

FIGURE 4
Single feature distribution of ten scales of MPE for ten signals: (A-
J) represent Scale 1 to Scale10.
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5.2 Single feature recognition

After obtaining the characteristic distribution of these ten kinds
of signals, a classification algorithm is needed to distinguish them. In
this paper, KNN algorithm is selected, 50 of 100 samples are taken as
training samples to train the algorithm, and the remaining
50 samples are taken as test samples to observe the classification
effect. According to the results of single feature extraction, the single

feature recognition results for ten scales with MDE for ten types of
signals are shown in Table 1.

5.3 Triple feature extraction

To compare with the feature extraction method proposed in this
paper, MSE is introduced in this section, and three features of the ten

TABLE 1 Single feature recognition results for ten scales of MDE for ten types of signals.

Types Recognition rate (%)

DE1 DE2 DE3 DE4 DE5 DE6 DE7 DE8 DE9 DE10

N-100 80 42 74 70 72 74 50 52 54 34

IR-007 38 60 62 40 22 40 30 34 26 26

B-007 34 38 44 20 40 36 10 18 20 18

OR-007 72 74 50 46 36 32 40 38 44 34

IR-014 62 50 18 28 26 20 20 18 12 8

S-014 30 18 26 22 14 8 6 4 16 10

OR-014 90 24 26 30 38 28 24 8 18 22

IR-021 90 84 74 32 28 32 26 30 10 34

B-021 86 44 54 26 32 26 10 24 6 16

OR-021 90 60 92 82 72 58 80 78 82 68

Average 67.2 49.4 52.0 39.6 38.0 35.4 29.6 30.4 28.8 27.0

According to Table 1, the recognition rate of ten kinds of signals under ten scales of MDE is not high. Except for scale 2 and scale 6, OR-021 had the highest recognition rate. Overall, the

recognition rate shows a downward trend with the increase of the scale. When the scale increases to 6, the recognition rate for S-014 starts to be less than 10%. The recognition rate for the ten

scales of B-007 and S-014 is less than 50%. Single feature recognition results for ten scales of MPE for ten types of signals are shown in Table 2.

TABLE 2 Single feature recognition results for ten scales of MPE for ten types of signals.

Types Recognition rate (%)

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10

N-100 100 20 16 16 14 10 20 20 20 16

IR-007 24 24 24 18 10 16 6 14 8 58

B-007 38 38 18 14 16 12 18 18 2 28

OR-007 54 40 24 10 6 16 10 12 46 24

IR-014 36 44 34 26 26 12 18 16 22 8

S-014 48 18 18 26 10 14 26 6 10 8

OR-014 100 32 62 22 14 10 8 22 6 8

IR-021 68 40 10 18 8 12 10 12 10 12

B-021 20 32 22 22 16 16 6 16 16 16

OR-021 20 24 28 12 10 10 8 8 16 20

Average 50.8 31.2 25.6 18.4 13.0 12.8 13.0 14.4 15.6 19.8

As can be seen from the Table 2, the performance of these ten kinds of signals using multi-scale permutation entropy is very poor, with an average recognition rate of 50.8% at scale 1 and less

than 40% at the remaining nine scales. When the scale is larger than 3, the recognition rate is lower than 20%. When the scale is 1, the recognition effect is best. The recognition rates of N-100

and OR-014 are 100%, but the recognition rates of the remaining eight signals are not high. The recognition rate decreases significantly with the increase of scale, which is consistent with the

feature distribution. The recognition rate of B-007 at scale 9 is only 2%.
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scales of the three entropies are combined. Sample selection and
parameter setting of the entropy still follow the rules of single
feature. Since there are 4,060 methods to select three of the
30 features, the selection of scale combination is based on the
highest recognition rate in the experimental results and only four
of the best results are obtained in this section: 1) Scale 2 of MDE and
scale 1 and 2 of MPE; 2) Scale 1 of MDE and scale 1 and 2 of MPE; 3)
Scale 1 of MDE, scale 2 of MPE and scale 10 of MSE; 4) Scale 1 of
MDE, Scale 2 of MPE and Scale 9 of MSE. The distribution of
features for the four best combinations of recognition results are
shown in Figure 5.

From Figure 5, it can be seen that the distribution of all types
of signals has been significantly different under the three
features, among which N-100, B-007, OR-007, IR-021, OR-
021 signals have little mixing with other signals. The
remaining five signals have less mixing; All four of the best
recognition results have the feature of MPE scale 2. To get a more
specific and clear signal distinction, triple feature recognition is
used for these features.

5.4 Triple feature recognition

In this section, KNN algorithm is still used to identify the three
feature of the feature extraction results. 50 training samples and
50 test samples are still selected. The parameter settings are still the
same as those of single feature recognition. Four recognition results
maps with the highest recognition rate are drawn. The result figure
and recognition rate table of triple feature recognition for ten types
of signals are shown in Figure 6 and Table 3.

From Figure 6 and Table 3, it can be seen that the four
combinations with the highest recognition rate have a
considerable improvement over the recognition rate of single
feature recognition, where the combination of scales are chosen
based on the highest recognition rate in the experimental results.
The average recognition rate of the four combinations has reached
more than 90%, and only a few of the 100 samples of each type of
signal have been misidentified. In the first combination with the
highest recognition rate, the recognition rate of six types of signals is
100%, and the unreachable signals have considerable recognition

FIGURE 5
The distribution of features for the four best combinations of recognition results: (A) DE2, PE1, PE2 ; (B) DE1, PE1, PE2; (C) DE1, PE2, SE10; (D)
DE1,PE2,SE9.

TABLE 3 Triple feature recognition rate for ten types of signals.

Combination of scales DE2, PE1, PE2 DE1, PE1, PE2 DE1, PE2, SE10 DE1, PE2, SE9

Average recognition rate (%) 96.2 95.0 94.0 93.4
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results. The combination of DE2, PE1 and PE2 presented in this
paper has the highest recognition rate.

6 Conclusion

Fault signal recognition is the classification of time series, first
extracts the features of the fault signal, and then uses the classification
algorithm to classify the signal according to the features. In this paper,
the multi-scale method is used to obtain the signal features at different
scales, where the selection of scale combination is based on the highest
recognition rate in the experimental results and only four of the best
results are obtained in this section. Combining scale 2 of MDE with
scale 1 and 2 of MPE, a triple feature extraction method is proposed to
extract and identify the signal features. To verify the superiority of this
method, ten types of rolling bearing fault signals are identified. The
following are the main research conclusions:

(1) In the field of fault diagnosis, this paper introduces a triple
feature extraction method based on scale 2 of MDE, scale 1 and
2 ofMPE, and achieves good recognition results with the highest
recognition rate of 96.2%.

(2) Combining the three types of entropy which have poor
recognition effect in single feature experiment, the
recognition ability has been improved significantly, and the
recognition rate has been improved by 29%.

(3) The triple feature extractionmethods proposed in this paper have a
recognition rate of at least 1.2% higher than the other combinations
of the three entropies, which can better diagnose the fault.
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FIGURE 6
Triple feature recognition results for ten types of signals: (A) DE2, PE1, PE2 ; (B) DE1, PE1, PE2; (C) DE1, PE2, SE10; (D) DE1, PE2, SE9.
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