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An efficient method of moments (MoM) based on polynomial chaos expansion
(PCE) is applied to quickly calculate the electromagnetic scattering problems. The
triangle basic functions are used to discretize the surface integral equations. The
polynomial chaos expansion is utilized to accelerate the MoM by constructing a
surrogate model for univariate and bivariate analysis. The mathematical
expressions of the surrogate model for the radar cross-section (RCS) are
established by considering uncertain parameters such as bistatic angle,
incident frequency, and dielectric constant. By using the example of a
scattering cylinder with analytical solution, it is verified that the MoM
accelerated by PCE presents a considerable advantage in computational
expense and speed.
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1 Introduction

In recent decades, the research of electromagnetic scattering is playing a crucial role in
the stealth system of military structures [1, 2], exploration of underground resources and
stratum structures, target recognition, antenna radiation, electromagnetic compatibility, etc.
Higher target detection ability and lower detection risk are currently considered important
indicators for its design [3], manufacture, and inspection. Research on electromagnetic
scattering analysis [4], especially theoretical calculation, practical testing, and uncertainty
analysis of radar cross-section (RCS), is the focus of the current research [5, 6]. The RCS is a
scalar quantity representing the scattering ability of the target to the incident electromagnetic
wave, which can be regarded as the virtual area of the measured object. It plays a vital role in
the whole life cycle of equipment design, production, testing, inspection, and use. The
theoretical calculation has a lower research cost than the experimental test method.

In the field of electromagnetic scattering analysis, the differential equation methods
mainly include the finite element method [7] and finite difference time domain method [8].
These methods require meshing within the domain, which leads to mesh truncation error
and mesh dispersion error, which are large. Moreover, it is difficult to accurately fit the
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complex target surface. In addition, high-frequency methods such as
graphical electromagnetic computing (GRECO) [9, 10], method of
geometrical optics (GO), geometrical theory of diffraction (GTD),
physical optics (PO), physical theory of diffraction (PTD), uniform
theory of diffraction (UTD) [11], and the bouncing ray method
(SBR) [12] are widely used to analyze the electromagnetic scattering
characteristics of various complex targets due to their advantages of
fast calculation speed and low memory requirement. However, the
disadvantage of high-frequency methods is the lower accuracy of the
calculation results [13]. The method of moments (MoM) [14–19],
using integral equations, has the advantages of automatically
satisfying the boundary conditions, relatively few unknowns, and
high calculation accuracy. Therefore, it is widely adopted in
piezoelectric materials [20], dynamics [21], and acoustics
[22–24]. However, the traditional MoM needs to solve huge
matrix systems [25–28], which requires a large amount of
calculation and memory [29]. Considering the limitations of the
aforementioned methods in rapidly solving the RCS of arbitrary
targets, the polynomial chaos expansion method with model
universality is adopted. According to statistical correlation, a
high-precision surrogate model is established with a small
number of samples, which can be used to replace the accurate
analysis model with high consumption of computing resources to
approximate the output results, which can significantly improve the
research efficiency.

The polynomial chaos expansion with strong mathematical
support was originally proposed by Wiener to construct
turbulence computational models [30]. It offers a robust
framework for uncertainty quantification of complex engineering
problems with its mathematical elegance and global convergence
behavior. The method uses basis orthogonal polynomials to expand
the uncertain variable and transfers the random characteristics of
the variable to polynomial coefficients through the properties of
orthogonal polynomials [31]. The polynomial chaos expansion

method has the advantages of constructing surrogate models with
high accuracy, computing system responses efficiently, and handling
systems with cross-terms effectively. It has been widely used in
different engineering fields, such as heat conduction [32], structural
mechanics [33, 34], fluid mechanics [35], environmental and
acoustic fields [36, 37], electrical properties of nanomaterials
[38], flexoelectric materials [39], and stochastic difference
equations [40].

In summary, a series of research results and relatively formed
mature method have been developed in the field of electromagnetic
scattering analysis. However, the accuracy and efficiency of these
numerical methods are difficult to be balanced in the problems with
the complex model due to the large computational matrix. In this
paper, the PCE is applied to accelerate the electromagnetic scattering
calculation by constructing surrogate models using a small number
of samples. These samples are accurately obtained by the MoM. The
main novelties of this paper are as follows:

1. The surrogate model of the RCS is established using PCE based
on the MoM, which achieves high precision and high-efficiency
calculation.

2. Univariate and multivariate analysis of the RCS are carried out
considering several different parameters.

The rest of the paper is organized as follows. Section 2 provides
the computational expression of the RCS. TheMoM is introduced in
Section 3 to solve the unknown scattering field. Section 4 includes
the PCE method and the specific orthogonal polynomials. The
accuracy and efficiency of the proposed method are verified by
numerical examples in Section 5, followed by the conclusion in
Section 6.

2 Objective function description

In this paper, a perfect electric conductor (PEC) or dielectric
conductor (DIE) in the infinite domain is considered for
electromagnetic scattering analysis as shown in Figure 1.

The RCS is an important quantity in electromagnetism to
quantify how detectable an object is to a radar signal in a given
direction. It is a scalar quantity representing the scattering ability of
an object, which can be understood as the equivalent scattering area

FIGURE 1
Diagram of the electromagnetic scattering. (A) Two regions Rι: R0 is an unbounded domain in which the free space parameters are assigned (μ0, ε0); Γ
denotes the boundary of R1. On each of its interfaces, the normal vector �n

1
points into R1. (B) Near-field diagram.

FIGURE 2
Illustration of the bistatic scattering: (A) forward scattering and
(B) back scattering.
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of the target under the incident wave, and it is measured in square
meters. It can be expressed as

RCS m2( ) � 2πρ
|Esca|2
|Einc|2 , (1)

where ρ � |ρ − ρ
h| is the distance between the source point and the

field point shown in Figure 1B. Esca is the unknown intensity of the
scattering electric field and Einc is the known intensity of incident
electric waves. It is often expressed as Eq. 2, as given here.

RCS � RCS dBsm( ) � 10 × lgRCS m2( ). (2)
The bistatic RCS depends on the location of the source and field

points. The angle between the incident and the scattered wave is
called the bistatic angle θsca. In Figure 2, the bigger brown ball
denotes the source point and the smaller black point represents the
field point. It can be seen that forward scattering is denoted by θsca =
π and θsca = 0 denotes backscattering.

3 MOM for the electromagnetic
scattering problems

In this section, we first investigate scattering problems in the
context of two-dimensional structures. TheMoM is used to calculate
the electromagnetic field required for the RCS.

3.1 Surface integral equations

We consider a PEC cylinder with the section contour Γ of
arbitrary shape impinged by a TM- or TE-polarized plane wave
as illustrated in Figure 3.

We first assume a PEC domain R1 with connected boundary Γ
residing within an unbounded domain R0 with permittivity and
permeability given by the scalar quantities ε0 and μ0, respectively.
We further assume a polarized time-harmonic electromagnetic
plane wave Einc of angular frequency ω, which is imposed on the
PEC body with a wavenumber k � ω

��
εμ

√
. The entire setup is

depicted in Figure 1. The surface integral equations on Rι could
be expressed as

iωμι PJι( ) ρ
h( ) + HMι( ) ρ

h( )[ ]
tan

+ 1
2
�n
ι
× Mι ρ

h( ) � Eι
inc ρ

h( )[ ]
tan
.

(3)
iωει PMι( ) ρ

h( ) − HJι( ) ρ
h( )[ ]

tan
− 1
2
�n
ι
× Jι ρ

h( ) � Hι
inc ρ

h( )[ ]
tan
.

(4)
where Jι and Mι denote the electric and magnetic current in Rι,
respectively, and Eι

inc(ρ) and Hι
inc(ρ) are the fields, respectively,

generated by the incident wave and zero everywhere, except in R0.
The operators P and H are

PJι( ) ρ
h( ) � 1 + 1

k2
∇∇·[ ]∫G ρ

h
, ρ( )Jι ρ( )dΓι ρ( )

HMι( ) ρ
h( ) � ∇ ×∫G ρ

h
, ρ( )Mι ρ( )dΓι ρ( ), (5)

where G(ρh, ρ) denotes Green’s function. For 2-D problems, it is
expressed as

G ρ
h
, ρ( ) � − i

4
H 2( )

0 kρ( ), with ρ � |ρh − ρ|. (6)

Equations 3, 4 are called the electric field integral equation
(EFIE) and the magnetic field integral equation (MFIE), respectively,
yielding a result free of spurious solutions for DIEs. However, on
closed conductors, the EFIE and MFIE cannot produce a unique
solution for all frequencies, which is called the interior resonance
problem. The most popular method for handling the problem is a
linear combination of the EFIE and MFIE, which yields the
combined field integral equation (CFIE) given by Eq. 7.

αEFIE + 1 − α( )ηιMFIE, (7)
where ηι � ����

μι/ει
√

and 0#α#1, with α = 0.5, are commonly used.

3.2 Discretization of MoM

The MoM is used to convert Eqs 3, 4 into a matrix system using
Galerkin-type testing in each region. Expanding the electric and
magnetic currents in Rι using a sum of weighted basis functions yields

Jι ρ( ) �∑N
n�1

αJ ι( )
n fn ρ( ), Mι ρ( ) �∑N

n�1
αM ι( )
n gn ρ( ), (8)

whereN is the number of electric andmagnetic basis functions inRl, and
the basic functions fn and gn are triangle functions.We next test the EFIE
and nMFIE with the electric testing functions fm, and theMFIE with the
magnetic testing functions gm. This yields the matrix system in Rι as
follows:

AJ ι( ) AM ι( )[ ] αJ ι( ) αM ι( )[ ]T � S ι( ), (9)
where

AJ ι( ) � AJ ι( )
EFIE AM ι( )

EFIE[ ]T. (10)
AM ι( ) � AJ ι( )

MFIE AM ι( )
MFIE[ ]T. (11)

S ι( )
EFIE m( ) � ∫ fm ρ

h( ) · E ι( )
inc ρ

h( )dΓι ρ
h( ). (12)

S ι( )
MFIE m( ) � ∫ gm ρ

h( ) ·H ι( )
inc ρ

h( )dΓι ρ
h( ). (13)

FIGURE 3
Diagram of TE- and TM-polarized field: TE-polarized electric
field only has a z component and TM-polarized electric field has x and
y components.
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and

AJ ι( )
EFIE m, n( ) � iωμι 1 + 1

k2
∇∇·[ ]∫ fm ρ

h( )
× ∫G ρ

h
, ρ( )fn ρ( )dΓι ρ( )dΓι ρ

h( ). (14)

AM ι( )
EFIE m, n( ) � ∫ fm ρ

h( )∫∇G ρ
h
, ρ( ) × gn ρ( )dΓι ρ( )dΓι ρ

h( ).
+1
2
∫ fm ρ

h( ) · �n ρ
h( ) × gn ρ

h( )[ ]dΓι ρ
h( ). (15)

AJ ι( )
MFIE m, n( ) � −∫ gm ρ

h( )∫∇G ρ
h
, ρ( ) × fn ρ( )dΓι ρ( )dΓι ρ

h( ).
−1
2
∫ gm ρ

h( ) · �n ρ
h( ) × fn ρ

h( )[ ]dΓι ρ
h( ). (16)

AM ι( )
MFIE m, n( ) � iωει 1 + 1

k2
∇∇·[ ]∫ gm ρ

h( )
× ∫G ρ

h
, ρ( )gn ρ( )dΓι ρ( )dΓι ρ

h( ). (17)

It should be noted that all blocks of the matrix in Eq. 9 are
square with rank of N. If we now combine the previously
mentioned matrix for the two regions, a block-diagonal system
is obtained as

A 0( ) 0
0 A 1( )( ) α 0( )

α 1( )( ) � S 0( )

S 1( )( ). (18)

The coefficient α can be found by solving the previously
mentioned system. Then, the expressions of electric and
magnetic current can be obtained by substituting the obtained
α in Eq. 8.

3.3 Scattering field

In the previous section, the expressions of electric and magnetic
current are obtained, and we will further obtain numerical solutions
for scattered fields in this section by using the 2-D near-field
radiation equation as Eqs 19, 20.

Hx
sca ρ( ) � i

k

4
∫ σyJ

z[ ]H 2( )
1 kρ( )
ρ

( )dΓι ρ
h( )

Hx
sca ρ( ) � i

k

4
∫ −σxJz[ ]H

2( )
1 kρ( )
ρ

( )dΓι ρ
h( )

Hx
sca ρ( ) � i

k

4
∫ σxJ

y − σyJ
x[ ]H 2( )

1 kρ( )
ρ

( )dΓι ρ
h( ).

(19)

Ex
sca ρ( ) � k2

8ωε
∫ σ2y − σ2

x[ ]Jx − 2σxσyJ
y( )H 2( )

2 kρ( )
ρ2

− JxH 2( )
0 kρ( )( )dΓι ρ

h( )
Ey
sca ρ( ) � k2

8ωε
∫ σ2x − σ2

y[ ]Jy − 2σxσyJ
x( )H 2( )

2 kρ( )
ρ2

− JyH 2( )
0 kρ( )( )dΓι ρ

h( )
Ez
sca ρ( ) � − k2

4ωε
∫ JzH 2( )

0 kρ( )( )dΓι ρ
h( ),

(20)
where

σx � x − x
h
, σy � y − y

h
. (21)

The Ex
sca(ρ), Ey

sca(ρ), and Ez
sca(ρ) aforementioned represent the

2-D scattering electric field in x, y, and z directions, respectively.
Substituting the obtained scattered field into Eq. 1, the objective
function-RCS is solved successfully.

4 Polynomial chaos expansion

PCE is a method to describe the uncertainty of random variables by
constructing random spaces with polynomial bases. The original non-
linear problem is transformed into aweighted summation of polynomials,
which is actually a process of coefficient fitting. Orthogonal polynomials
are often used as the orthogonal basis of the space to express themapping
between independent variables and dependent variables.

In general, different distributions of random variables lead to
different orthogonal polynomials. Table 1 lists the classical families
of distributions and the corresponding univariate orthogonal
polynomials.

In this section, the Legendre orthogonal polynomial is adopted
to construct the surrogate model of the scattered field. The uniform
input variable of the system is x � (x1, x2, . . . , xN), and RCS is the
corresponding response. There is an expression constructed by
polynomial chaos as

RCS � f x( ) �∑∞
i�0

αiΦi x( ), x � x1, x2, . . . , xN( ). (22)

where Φi(x) is the multi-dimensional Legendre orthogonal
polynomial with vector x � (x1, x2, . . . , xN), and each variable
xi belongs to the interval [−1, 1]; αi is the coefficient of the
polynomial chaos expansion and RCS is square integral. The
previously mentioned expansion can be truncated to Kth order
as Eq. 23.

R̂CS � α0Φ0 x( ) + α1Φ1 x( ) +/ + αK−1ΦK−1 x( )
� Φα,

(23)

where

Φ �
Φ0 x1( ) Φ1 x1( ) / ΦK−1 x1( )
Φ0 x2( ) Φ1 x2( ) / ΦK−1 x2( )

..

. ..
.

1 ..
.

Φ0 xN( ) Φ1 xN( ) / ΦK−1 xN( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N×K

(24)

and

α � α0 α1 / αK−1( )′K×1, (25)
where K is the number of orthogonal polynomials, which can be
calculated as K � Ck

m+k and m is the dimension of x. There are two

TABLE 1 Orthogonal polynomials with respect to the different distributions.

Orthogonal polynomial Distribution Range

Hermite Normal (−∞, + ∞)

Jacobi Beta [−1, 1]

Legendre Uniform [−1, 1]

Laguerre Gamma (0, + ∞)

Weibull (0, + ∞)

Charlier Poisson {0, 1, 2, / }

Krawtchouk Binomial {0, 1, 2, . . ., n}

Meixner–Chaos Negative binomial {0, 1, 2, / }

Hahn–Chaos Hypergeometric {0, 1, 2, . . ., n}
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key steps of the PCE method according to Eq. 23: constructing the
multi-dimensional Legendre orthogonal polynomial S Φi(x) and
solving the coefficient αi of the expansion.

The common recurrence relation of the Legendre polynomial
system Lk(x){ }∞k�0 in the interval [−1, 1] is expressed as

L0 x( ) � 1, L1 x( ) � x,

Lk+1 x( ) � 2k + 1
k + 1

xLk x( ) − k

k + 1
Lk−1 x( ) k≥ 1. (26)

For the 1-D surrogate model, Li =Φi. The truncated polynomial
chaos expansion shown in Eq. 23 is actually a predicted value rather
than a true solution, and the error between them is

ε � RCS − R̂CS � f x( ) − ∑K−1
i�1

αiΦi x( ), x � x1, x2, . . . , xN( ).

(27)
The residual ε is assumed to be a zero-mean variable and α is the

unknown coefficient vector. The smaller absolute value of the
residual indicates the more accurate estimation of the surrogate
model. The coefficient α should minimize the expectation of the sum
of squares of the residual ε.

α̂ � arg minE ε2( ). (28)

FIGURE 4
Scattering electric and magnetic field distribution under TE polarization with θsca =0. (A) Electric field, f =100MHz; (B) electric field, f =500MHz; (C)
electric field, f =1000MHz; (D) magnetic field, f =100MHz; (E) magnetic field, f =500MHz; (F) magnetic field, f =1000 MHz.

FIGURE 5
Convergence results of the average error in terms of the MOM
calculation DoFs.

TABLE 2 One dimensional Legendre polynomials of the first eight orders (k
goes from 0 to 8).

k Legendre polynomials Lk(x)

0 1

1 x

2 (3x2 − 1)/2

3 (5x3 − 3x)/2

4 (35x4 − 30x2 + 3)/8

5 (63x5 − 70x3 + 15x)/8

6 (231x6 − 315x4 + 105x2 − 5)/16

7 (429x7 − 693x5 + 325x3 − 35x)/16

8 (6435x8 − 1201x6 + 7080x4 − 1260x2 − 35/128)
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Thus, the polynomial chaos expansion coefficient α can be
determined by the following equation.

α̂ � ΦTΦ( )−1ΦTRCS. (29)
The response from the surrogate model can be obtained with the
solved coefficient α and Eq. 23. The measure used to describe the
accuracy of the final model named CV (RSMD) is expressed in Eq. 30.

CV RSMD( ) �

����������∑N
i�1

yi − ŷi( )2
N

√√
/∑Ni�1yi

N
, (30)

where yi is the output of the MoM, which is the input of PCE, and ŷi

is the output of the obtained surrogate model using PCE. A lower
value of CV means a better effect of the surrogate model. If the CV
value is lower than 5%, it is considered that the expansion converges
under the current order and has great fitting accuracy.

5 Numerical examples

In this section, the output of the MoM with the cylinder model in
the infinite domain is used to construct the PCE surrogate model. The
univariate and bivariate analyses are adopted to verify the high accuracy
and efficiency of the surrogate model. The uniform incident frequency,
bistatic angle, and dielectric constant are considered the input variables.
The coordinate system is established with the source point (object) as
the origin, and its distance to the field point is taken as 1 × 105.

The Fortran 90 language is used forMoM programming, and the
non-embedded PCE programming in MATLAB is utilized to obtain

the polynomial expression, and all the programs are implemented
on a desktop computer with Intel (R) Core (TM) i7-8700 CPU and
16 GB RAM.

5.1 Univariate analysis

The electric and magnetic field distribution scattered by the
infinite PEC cylinder with a radius of 1 is depicted in Figure 4.
The results under several incident frequencies (f = 100, 500,
1000 MHz) are first considered. Figures 4A–C represent the
electric field in the z-direction around the cylinder with the
same level, and the magnetic field in the x-direction is shown
in Figures 4D–F. It can be seen that the distribution strongly
depends on the frequency and becomes more complex with
increase in the incident frequency. The distribution is
symmetric with respect to the x-axis, which verifies the
proposed method.

No analytical solution is proposed for most of the
electromagnetic problems, especially with complex problems. It is
necessary to find a rapid calculation method with high accuracy. The
MoM is one of the effective numerical approaches with small errors,
shown in Figure 5. The convergence result of the relative error in
terms of the MoM calculation degrees of freedom (DoFs) is given in
Figure 5 to verify the accuracy of the MoM. The considered DoFs
range from 10 to 110. The relative error for the MoM decreases with
DoF increase, and the logarithmic values present a significant linear
correlation. The data computed with the MoM are considered the
true value when the analytical solution does not exist. However, the
CPU time consumption is huge because of the calculation of the

FIGURE 6
RCS value at the field point (1 × 105, 0) in terms of four uniform random variables: (A) f =10MHz, ε1=∞; (B) f =10MHz, θsca =0; (C) θsca = π, ε1=∞; and
(D) ε1=2.56, θsca =0.
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large matrix system. On the contrary, the PCE method only needs
the input data irrespective of the complexity of the problem is, which
makes it more efficient.

We should select a set of suitable orthogonal polynomials according
to Section 4. Table 2 lists the first eight orders of Legendre polynomials
of 1-D random variables for univariate analysis.

Figure 6 presents the comparison RCS results of analytical and
MoM–PCE for an infinite cylinder with three random variables. We
first compute the bistatic RCS for 0 ≤ θsca ≤ 2π and θinc = 0 at
10 MHz. The ε1 =∞ denotes that the cylinder is a perfect conductor.
It can be seen in Figure 6A that the RCS is symmetric with respect to
θsca. The 2nd PCE performs badly, and the accuracy increases from
the 4th order. The expression of the 4th PCE shown in Figure 6A is

RCS 4[ ]
A ≈ 1.51 × 10−9x4 − 1.09 × 10−6x3 + 2.09 × 10−4x2

− 4.59 × 10−3x + 8.95,
(31)

where x denotes the bistastic angle θsca and RCS
[4]
A represents the 4th

PCE results with respect to x in Figure 6A.
It can be seen in Figure 6B that the back-scattering RCS value

decreases as the dielectric constant increases. The 1st order of the
PCEmodel shows some errors and the 2nd PCE performs fairly well,
which can be expressed as Eq. 32.

RCS 2[ ]
B ≈ 1.12 × 10−3x2 − 0.14x + 15.17. (32)

Figure 6C shows the back-scattering RCS in terms of frequency.
The 2nd PCE shows errors again, but they are not quite as apparent
as they were in case (A). The 4th order model fits well, at least within
the range of frequencies considered. The 6th PCE is free of errors as
expected and expressed as Eq. 33. The higher frequencies
correspond to higher results, which is approximately 19.8 dBsm
at 1000 MHz.

RCS 6[ ]
C ≈ − 3.46 × 10−17x6 + 1.34 × 10−13x5 − 2.16 × 10−10x4

+1.88 × 10−7x3 − 9.98 × 10−5x2 + 3.88 × 10−2x + 9.13.

(33)
Contrary to Figure 6C, the RCS does not follow a straight direction

in terms of frequency, which is shown in Figure 6D.With the increase of
frequency, the RCS value increases first and then decreases in the
interval [130,150] MHz. The 1st PCE shows more errors with CV =
9.3% illustrated in Figure 7D. It can be seen that the 4th PCE performs
fairly well, which can be expressed as Eq. 34.

RCS 4[ ]
D ≈ 4.04 × 10−5x4 − 2 × 10−4x3 + 4.562x2 − 414.5x + 14070.

(34)

FIGURE 7
CV (RSMD) with respect to different variables. (A) PEC model, θsca ∈[0,2π], f =10MHz; (B) DIE model, ε1∈[30,50], f =10MHz, θsca =0; (C) PEC model,
f ∈[1,1000] MHz, θsca = π; (D) DIE model, f ∈[130,150]MHz, ε1=2.56, θsca =0.

FIGURE 8
CPU time used to calculate the RCS value.
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Figure 7 shows the CV values corresponding to Figure 6. The green
line represents CV = 5%, which is much higher than most of the
constructed models. Only one result in Figure 7D created by the 1st
PCE introduced higher CV, but the accuracy improved rapidly with the
increase in the order. While ensuring accuracy, the PCE combined with
the MoM could also increase the speed, which can be seen in Figure 8.

The aforementioned comparison is between the analytical and the
PCE method solution with 1-D independent variables. The PCE
method can also fit well and even the independent variable is 2-D data.

5.2 Bivariate analysis

In this section, the MOM-PCE method is used to construct a
surrogate model of the dielectric cylinder for electromagnetic scattering
analysis. The frequency is 11MHz, ε0 and μ0 values of the outer region
are 1, and the radius of the cylindermodel is 1.We assume the dielectric
constant ε1 as x1 ∈ [30, 50] and bistatic angle θsca as x2 ∈ [0, 360]. The
random sample points put into the PCE module are obtained from the
MoM results. Table 3 lists the 2-D Legendre expressions.

TABLE 3 Four Legendre polynomials Φj with two variables (k goes from 0 to 4).

k = 0 k = 1 k = 2 k = 3 k = 4

Φ0 = 1 Φ1 = x1 Φ3 � (3x12 − 1)/2 Φ6 � (5x13 − 3x1)/2 Φ10 � (9x1
2x22 − 3x12 − 3x22 + 1)/4

Φ2 = x2 Φ4 � (3x22 − 1)/2 Φ7 � (5x23 − 3x2)/2 Φ11 � (35x2
4 − 30x22 + 3)/8

Φ5 = x1x2 Φ8 � x1(3x2
2 − 1)/2 Φ12 � (35x1

4 − 30x12 + 3)/8

Φ9 � x2(3x1
2 − 1)/2 Φ13 � x1(5x23 − 3x2)/2

Φ14 � x2(5x13 − 3x1)/2

FIGURE 9
Surface results of the bivariate analysis with dielectric constant and bistatic angle: (A) analytical solution, (B) 3rd PCE result, (C) 4th PCE result, (D)
relative error of the 3rd PCE model, and (E) relative error of the 4th PCE model.
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The final expressions of the surrogate model with the 3rd and
4th order can be written as

RCS 3[ ] ≈ − 8.1 × 10−7x1
3 − 7.6 × 10−14x2

3 − 7.5 × 10−7x1x2
2

− 7.1 × 10−12x2x1
2 − 2.7 × 10−4x1x2+ 1.1 × 10−3x1

2

− 1.9 × 10−5x2
2 + 6.8 × 10−3x1 − 0.13x2 + 14.85. (35)

RCS 4[ ] ≈ − 8.9 × 10−7x1
4 − 3.8 × 10−10x2

4 + 7.8 × 10−15x1x2
3

− 1.6 × 10−13x2x1
3 + 1.1 × 10−8x1

2x2
2 + 1.4 × 10−4x1

3

+ 2.7 × 10−7x2
3 − 1.17 × 10−7x1x2

2 − 3.9 × 10−6x2x1
2

− 6.4 × 10−5x2
2 − 7.2 × 10−3x1

2 + 4.3 × 10−5x1x2

+ 5.5 × 10−3x2 + 7.8 × 10−2x1 + 12.97. (36)
The bivariate results with surrogate models of the 3rd and 4th order

are shown in Figure 9A–C, which show the surface and contour solution
with the same chromatic level of [10.5,12]. The red region represents a
higher value of the correspondingmodel, and the blue region represents a
lower value. It can be seen that the 4th PCE fits better as its trend and
color distribution aremore similar to those of the analytical solution. The
relative errors are shown in Figures 9D, E using the same chromatic level
of [0, 1%]. It can be clearly seen that the 4th PCE results have much
higher accuracy. In addition, the CV (RMSD) of the 3rd PCE is 0.32%,
and that of the 4th PCE is 0.12%, which are bothmuch lower than 5%. In
addition, it shows good agreement near the specular angles but fair to
poor elsewhere, as shown in Figure 9E. It is also clear from the red region
in Figure 9D that themargin of error in the interval is higher, whichmay
be due to the Runge phenomenon.

6 Conclusion

In this paper, the method of moments is accelerated by
polynomial chaos expansion to construct a surrogate model
for electromagnetic scattering analysis. The triangle basic
functions are used to discretize the surface integral equations
(EFIE, MFIE, and CFIE) with MoM, and the input variables are
sampled uniformly combined with Legendre orthogonal
polynomials to construct the surrogate model of
electromagnetic RCS. Bistatic angle, incident frequency, and
dielectric constant are considered the source of systematic
uncertainty. First, three different parameters are considered
for univariate analysis to construct the corresponding
surrogate model. The RCS and CV results of the MoM–PCE
method are compared with the analytical solutions to verify the
correctness of the algorithm proposed in this work, which
performs fairly well. Then, the CPU time consumption of the
MoM–PCE method is compared with that of MoM. It is found

that the PCE method has a significant advantage in the
calculation speed, especially when the number of sample
points is huge. Finally, the bivariate analysis is carried out
with the bistatic angle and dielectric constant with a dielectric
conductor. The result shows that the PCE method is still efficient,
and high order of PCE often leads to high accuracy. In general, it
is verified that the MoM based on PCE presents great accuracy
and efficiency.

Future work is required to extend the proposed algorithm into
3D electromagnetic sensitivity analysis and optimization analysis for
practical engineering problems.
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Appendix A. Analytical solution

In this section, we consider the PEC and DIE infinite cylinder
impinged by electromagnetic plane waves with different polarization
directions. The analytical solution of the scattering electric field is
described in detail. The scattered electric field under TE-polarized
incident waves can be expressed as

Ez
sca ρ, θsca( ) �∑∞

n�0
incnAnH

2( )
n k0ρ( )cos nθsca( ), (37)

where|Ez
sca| � 1 for convenience, θsca is the bistatic scattering angle,

and cn = 1 for n = 0 and cn = 2, otherwise. For the conducting
cylinder, the coefficient APEC

n is

APEC
n � − Jn k0r( )

H 2( )
n k0r( ). (38)

For a dielectric cylinder, the series coefficients ADIE
n are

ADIE
n � − k1/μ1( )Jn k0r( )Jn′ k1r( ) − k0/μ0( )Jn′ k0r( )Jn′ k1r( )

k1/μ1( )H 2( )
n k0r( )Jn′ k1r( ) − k0/μ0( )H′ 2( )

n k0r( )Jn′ k1r( ),
(39)

where r is the radius of the cylinder. The scattered far electric field is

Ez
sca ρ, θsca( ) � ��

2
π

√
e−i k0ρ−π/4( )���

k0ρ
√ ∑∞

n�0
−1( )ncnAn cos nθsca. (40)

The aforementioned expression is the analytical solution of the
scattered electric field under TE polarization, and the expressions
of the scattered magnetic field under TM polarization are as
follows.

Hz
sca ρ, θsca( ) � 1

η0
∑∞
n�0

incnBnH
2( )
n k0ρ( )cos nθsca( ), (41)

where Hz
sca means the scattered magnetic field with a z-directed

incident magnetic field. |Einc| � 1 for convenience. For the
conducting cylinder, the coefficients BPEC

n are

BPEC
n � − Jn′ k0r( )

H′ 2( )
n k0r( ). (42)

For the dielectric cylinder, the coefficients BDIE
n for TM

polarization are

BDIE
n � − k1/ϵ1( )Jn k0r( )Jn′ k1r( ) − k0/ϵ0( )Jn′ k0r( )Jn′ k1r( )

k1/ϵ1( )H 2( )
n k0r( )Jn′ k1r( ) − k0/ϵ0( )H′ 2( )

n k0r( )Jn′ k1r( ).
(43)

The scattered far magnetic field is

Hz
sca ρ, θsca( ) � 1

η0

��
2
π

√
e−i k0ρ−π/4( )���

k0ρ
√ ∑∞

n�0
−1( )ncnAn cos nθinc. (44)
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