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The flux-weighted average cross sections and isomeric ratios of 92Mo(γ, n)91m,gMo
and 92Mo(γ, 3n)89Mo reactions weremeasured through activationmethods. Laser-
driven bremsstrahlung γ-ray were generated by the laser wakefield accelerated
quasi-monoenergetic electrons using the 200 TW laser in the Compact Laser
Plasma Accelerator laboratory, Peking University. The results showed good
agreements with previous works using traditional γ-ray sources, and were
compared with TALYS 1.9 calculations. We extended the experimental results
of 92Mo photonuclear reactions to higher energies, the experimental
discrepancies of 92Mo(γ, n)91m,gMo isomeric ratios at high energy region were
clarified, and the cross sections of 92Mo(γ, 3n)89Mo reaction were first obtained.
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1 Introduction

With the rapid developments of laser electron accelerations, especially laser wakefield
accelerations (LWFA) [1–7], laser-driven γ-ray can reach an extremely high intensities of
1022–24 s−1 [8–12], which are several orders of magnitude stronger than other γ-ray sources
such as laser Compton scattering (LCS) [13, 14] or electron linac bremsstrahlung [15].
Researchers have shown considerable interests in laser-induced nuclear reactions in nuclear
physics such as photonuclear studies [16, 17], photon fission [16, 18] and photon activation
analysis [19].

Photonuclear reaction cross sections and their isomeric ratios (IR) play a significant role
in nuclear structure, nuclear reaction mechanism, and nuclear astrophysics [20–22]. The IRs
of a nuclear reaction were a powerful tool for testing nuclear structure theories and nuclear
reaction models [20, 21, 23, 24]. In nuclear astrophysics, there are 30–35 proton-rich nuclei
(p-nuclei) that can only be produced by p-processes [25–28]. The production mechanisms of
p-nuclei contain a series of photonuclear reactions [29]. The experimental measurements of
those reactions are vital for nuclear synthesis and stellar models [29]. Recently, Wu et al.
successfully measured the flux-weighted average cross sections (FACS) and IRs of 197Au(γ,
xn; x = 1~7) reactions using a 200TW laser facility [30]. Their results demonstrated that the
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accuracy of laser-driven γ-rays is sufficient for photonuclear
reaction cross section and IR measurements.

92Mo, one of the light p-nucleus pair 92,94Mo [29], is a well known
even-even nuclei with a spin of 0 and a neutron number of 50. For
92Mo(γ, n)91Mo reaction, 91Mo can be formed with the isomeric state
with a spin of 1/2− or the ground state with a spin of 9/2+. A lot of
works had reported the cross sections [31–33] and IRs [31, 34–39] of
92Mo(γ, n)91m,gMo reaction, but the experimental IRs did not match
each other very well, especially at high energy region. In the giant
dipole resonance (GDR) region, Thiep et al. [39] and Davidov et al.
[37] had a maximum difference of 26%. In high energy region,
Bartsch et al. [38] reported an IR of 0.97 at end-point energy of
55 MeV while Haustein et al. [35] measured an IR of 0.52 at end-
point energy of 70 MeV, the huge difference is quite doubtful for
high-energy IRs. For 92Mo(γ, 3n)89Mo reaction, no experimental
cross section data are available for now.

In this study, we used laser-driven bremsstrahlung γ-rays to
measure the FACSs and IRs of 92Mo(γ, n)91m,gMo reaction. The
discrepancies of 92Mo(γ, n)91m,gMo IRs at high energy region were
clarified. Meanwhile, the 92Mo(γ, 3n)89Mo reaction cross sections
were first achieved.

2 Experiment

2.1 Accelerator

The experiments were performed at the 200 TW laser facility in
the Compact Laser Plasma Accelerator (CLAPA) Laboratory,
Peking University. The facility delivers 4 J, 30 fs, 5 Hz laser

pulses in the center wavelength of 800 nm. 60~250 MeV
monoenergetic electrons were generated in LWFA by focusing
the laser with a focal length of 100 cm on a supersonic nozzle. A
2 mm Ta (99.9%) disk was used as a bremsstrahlung converter.
More details can be found in our previous work [30]. In this
experiment, the averaged center energies of electrons were 135 ±
20, 103 ± 14, and 78 ± 10 MeV at gas pressures of 33, 36, and 39 bar,
respectively, with a charge of 300~600 pC per laser shoot. Typical
electron spectra are shown in Figure 1. The bremsstrahlung γ-ray
spectra were obtained by the average electron spectra of
100 continuous shots and GEANT4 simulations, which are also
shown in Figure 1. The γ-ray intensities (≥ 8 MeV) were
(1.60± 0.14) × 108, (1.76± 0.13) × 108, and (1.84± 0.11) × 108 per
shoot at gas pressures of 33, 36, and 39 bar, respectively, the duration
times were about 6.7 ps, which made the instantaneous intensities
higher than 1019 S−1.

2.2 Target

A laminated target made of 0.1mm natMo (99.99%), 0.1 mm
natCu (99.99%), and 1 mm 27Al (99.99%) was used for activation
analysis in this experiment, all targets had a size of 2 × 2 cm. Some
relative nuclear spectroscopic data of the radioactive nuclei from the
Mo photonuclear reaction are shown in Table 1 [40]. The 65Cu(γ, n)
64Cu reaction (threshold energy at 9.91 MeV) and the 27Al(γ, 2pn)
24Na reaction (threshold energy at 31.45 MeV) were used as γ-ray
fluxmonitors [15, 41]. The measurements of the FACSs of 65Cu(γ, n)
64Cu reaction and 27Al(γ, 2pn)24Na reaction directly reflected the
accuracy of γ-ray spectrum. The repetition frequency was set at

FIGURE 1
(A–C) are the typical LWFA electron spectra obtained by the magnetic spectrometer at gas pressure of 33, 36, 39 bar, respectively. (D) is the
bremsstrahlung γ-ray energy spectra obtained from GEANT4 simulations using the averaged electron spectra of 100 continuous shots.
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0.2 Hz to keep the vacuum at acceptable levels. The irradiation time
of each laminated target was 20 min for each electron energy.

2.3 Detector

Two HPGe detectors with a relative efficiency of 40% and a 3 ×
3 inch LaBr3 detector were used to measure activation signals after
irradiation, all detectors were shielded in Pb brick. The detector
efficiencies were calibrated using a standard 152Eu source and a
standard 60Co source with an energy range of 121.8–1,408.0 keV,

and were finally determined by GEANT4 simulations [42, 43]. The
measuring of the Mo target started 1.5 min after the irradiation
using a HPGe detector, the spectrum was saved every minute to
analyze the decay characteristics and the total measuring time of
each Mo target was 20 min. A typical activation spectrum of the Mo
target with a measuring time of the first 3 min is shown in Figure 2.

3 Data analysis

As shown in Table 1 and Figure 2, the 652.9 and 1,508.0 keV γ-
ray from 91mMo decay were clearly distinguished, but the 511 keV
annihilation γ-ray of β + decay can be produced in a variety of ways.
The 90Mo and 90Nb have relatively long half-life times compared
with 91m,gMo and 89gMo. Their contributions are relatively small due
to the short irradiation time and can be regarded as a constant value
during the short measuring time. The 511 keV signal of the
background spectrum, as shown in Figure 2, is the combination
of the β+ decay and the 510 keV γ-ray decay of 222Rn in the
environment, it was taken out as a constant value in our
calculations. For the 568.6 keV γ-ray from 89gMo decay, it could
not be distinguished from the 657.9 keV γ-ray from 97Nb decay
because of the similar energy. Meanwhile, the 89mMo could not be
measured in this experiment due to its short half-life time of 190 ms.
Therefore, the yields of 91mMo were determined by the 652.9 keV γ-
ray and the yields of 91gMo and 89Mo were determined by the
511 keV γ-ray.

The FACS σFA(E) is defined as

σFA E( ) �
∫
Emax

Ethr
σ E( )φ E( )dE

∫Emax

Ethr
φ E( )dE

(1)

where Ethr is the reaction threshold, Emax is the maximum energy of
the γ-ray, σ(E) is the energy-dependent reaction cross section, φ(E)
is the bremsstrahlung γ-ray flux. The reaction thresholds for the

TABLE 1 Relative nuclear spectroscopic data of the radioactive nuclei from the Mo photonuclear reactions.

Nucleus Abundance (%) Reaction Half-life Decay mode Daughter nucleus γ-ray energy γ-ray branch

92Mo 14.53 (γ, n)91mMo 64.6 s IT 50.0% 91gMo 652.9 48.2%

ϵ 50.0% 91Nb 511 88%

1,208.1 18.6%

1,508.0 24.2%

(γ, n)91gMo 15.49 m ϵ 100% 91Nb 511 187.48%

(γ, 2n)90Mo 5.56 h ϵ 100% 90Nb 511 50%

(γ, 3n)89mMo 190 ms IT 100% 89gMo - -

(γ, 3n)89gMo 2.11 m ϵ 100% 89Nb 511 195%

658.6 5.8%

844.0 3.8%

(γ, np)90Nb 14.60 h ϵ 100% 90Zr 511 106%

98Mo 24.39 (γ, p)97Nb 72.1 m β− 100% 97Mo 657.9 98.23%

FIGURE 2
A typical spectrum of Mo target at gas pressure of 33 bar. The
background spectrum measured for 5 h with a blank Mo target was
also shown in the figure, the spectrum counts were normalized due to
the living times.

Frontiers in Physics frontiersin.org03

Wu et al. 10.3389/fphy.2023.1178257

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1178257


productions of 91gMo, 91mMo, and 89Mo are 12.67, 13.32, and
36.01 MeV, respectively. Then the FACS can be given by

σFA E( ) � Y E( )
N0∫

Emax

Ethr
φ E( )dE

(2)

where Y(E) is the total yield, N0 is the target nuclear number. The IR
can be determined by

IR � σmFA E( )
σgFA E( ) (3)

wherem and g stand for the parameters of isomeric state and ground
state, respectively.

4 Results and discussion

The present FACSs and IRs are listed in Table 2 and shown in
Figures 3, 4, 5 with comparisons of the previous works [31–39]. The
statistical errors in this experiment range from 4.4% to 11.3% for
different decay γ-ray, and the systematic errors include the
instabilities of each electron pulse, the γ-ray spectrum
calculation, the calibration of detection efficiency, and the
correction of the activation target.

Theoretical values of the FACSs and IRs were calculated by
GEANT4 simulation using the data from TENDL-2019 library

TABLE 2 Experimental flux-weighted average cross sections of92Mo(γ, n) and (γ, 3n) reactions determined by present work and theoretical values of TALYS
1.9 calculated using a monoenergetic electron beam with the energies of 78, 103 and 135 MeV.

Reaction Center energy of electrons Experimental cross section TALYS 1.9

MeV mb mb

92Mo(γ, n)91m+gMo 78 ± 10 33.7 ± 3.4 31.9

103 ± 14 29.6 ± 3.3 28.2

135 ± 20 26.5 ± 3.2 25.2

92Mo(γ, n)91mMo 78 ± 10 17.4 ± 2.2 21.9

103 ± 14 15.5 ± 2.1 19.2

135 ± 20 13.6 ± 1.9 17.2

92Mo(γ, n)91gMo 78 ± 10 16.3 ± 1.2 10.1

103 ± 14 14.1 ± 1.2 8.9

135 ± 20 12.9 ± 1.3 8.0

92Mo(γ, 3n)89m+gMo 78 ± 10 0.291 ± 0.045 0.270

103 ± 14 0.263 ± 0.042 0.221

135 ± 20 0.231 ± 0.038 0.218

FIGURE 3
Experimental results of 92Mo(γ, n)91m,gMo reaction FACSs,
comparing with previous works [31–33] and TALYS 1.9 calculations.

FIGURE 4
Experimental results of 92Mo(γ, n)91m,gMo reaction IRs, comparing
with previous works [31, 34–39] and TALYS 1.9 calculations.
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[44] based on TALYS 1.9 code [45, 46], which were also shown in
Tab. 2, Figure 3, Figure 4, and Figure 5.

For 92Mo(γ, n)91m,gMo reaction, the total FACSs matched
well with previous works. As shown in Figures 3, 4, the TALYS
1.9 calculation could not describe the reaction to the isomeric
state or the ground state well, even though it gave a well-matched
value of total cross sections. The TALYS 1.9 calculation
underestimated the 92Mo(γ, n)91gMo reaction cross sections by
38% at maximum while overestimated the 92Mo(γ, n)91mMo
reaction cross sections by 27% at maximum. The deviations
between theory calculations and experiments might be caused by
the inappropriate parameters of nuclear reaction model, nuclear
level density, or optical potential, more theory calculations are
stilled needed for this reaction. The IRs measured in this work
matched well with the value of Bartsch et al. [38] within the
uncertainties, the experimental discrepancies of 92Mo(γ, n)
91m,gMo IRs were clarified. For 92Mo(γ, 3n)89Mo reaction,
which is first achieved in this experiment, the TALYS
1.9 calculation described the FACSs very well.

5 Conclusion

The FACSs and IRs of 92Mo(γ, n)91m,gMo reaction and 92Mo(γ,
3n)89Mo reaction were determined using laser-driven γ-ray by
activation measurements. The experimental discrepancies of
92Mo(γ, n)91m,gMo IRs at high energy region were clarified.
However, we found thar the TALYS 1.9 code was not suitable
for the production calculations of 92Mo(γ, n) reaction,
highlighting the need for more theoretical calculations.
Additionally, the 92Mo(γ, 3n)89Mo reaction FACSs were
achieved for the first time, filling in the gap of relevant
experimental data.
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Experimental results of 92Mo(γ, 3n)89Mo reaction FACSs,
comparing with TALYS 1.9 calculations.
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