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Recapitulation of the resonance condition for the fundamental and higher
electron cyclotron harmonics in the electron cyclotron maser instability (ECMI)
enables radiation below and confirms the possibility of radiation in a narrow band
above harmonics n > 1. Near n = 1 resonance on the confined lower X-mode
branch, amplification is supported by the decrease in phase and group speeds.
Confined slow large-amplitude quasi-electrostatic X-modes non-linearly
modulate the plasma to form cavitons until self-trapped inside them at a
further increasing wavenumber. They undergo wave–wave interaction,
enabling escape into free space in the second harmonic band below n = 2. At
a sufficiently large parallel wavenumber (oblique propagation), the fundamental
resonance n = 1 is hyperbolic, a possibility so far missed but vital for an effective
ECMI in the upward current region. Here, the resonance hyperbola favorably fits
the loss-cone boundary, the presumably important ECMI upward-current source-
electron distribution, to stimulate ECMI growth at available auroral electron
energies.
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1 Introduction

The electron cyclotron maser instability (ECMI) mechanism [1, 13, 20, 32] has, for
already close to half a century, been identified as the canonical mechanism of generating
AKR, the celebrated “auroral kilometric radiation” [first analyzed by [5], who identified its
auroral origin], which is a sporadic narrow-banded intense radio emission [discovered in [6]
in their hardly accessible work]. It is emitted preferentially during substorms, the major
disturbance [1, 2, 7] in Earth’s magnetosphere.

AKR [for a recent review of observations, cf., e.g., [10]] propagates in the X-mode
polarization and is radiated from the auroral zone close to Earth where the magnetic field is
strong, and the thermal plasma on various scales becomes locally diluted, frequently with a
very small plasma-to-cyclotron frequency ratio ωe/ωce ≪ 1. Under such circumstances, the
ECMI sets on if only its necessary and sufficient conditions are both met simultaneously.
These refer to the cyclotron resonance of weakly relativistic electrons occupying an excited
energy state [first suggested in a more general astrophysical context by [1]] and, for the
sufficient condition, to a suitable electronic energy source. In classical physics, an excited
non-thermal state is identified with some highly non-thermal electron phase-space
distribution function that deviates strongly from a thermal [even anisotropic relativistic,
see [11]] Boltzmann–Maxwell distribution. Experimentally, the relevant distribution that
would be effective in exciting the ECMI has not been ultimately identified yet. The
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distribution is conventionally assumed to be kind of a simple
(weakly relativistic) loss-cone distribution [cf., e.g., [12, 40]] in
phase space as it has frequently been measured [for a typical in
situmeasurement of the auroral magnetosphere, cf., e.g., [14]] in the
presumable AKR source region, an assumption which has, however,
been challenged [4, 15].

In a recent note [16], we inspected the paradigmatic mechanism
of auroral kilometric radiation, the most intense natural radio
emission in near-Earth space. We noted a number of problems
with this mechanism that have not been or were at most
approximately solved yet. Nevertheless, it seems to be certain
that the ECMI is the sole sufficiently strong, and thus reasonable
and probable, mechanism that could explain the emission of the
surprisingly intense radiation pattern of AKR. Simultaneously, it
may also serve as the non-thermal radio emission paradigm in
strongly magnetized objects for application in other places in space:
planetary magnetospheres in general, extrasolar planetary systems,
and probably in astrophysics as well to generate sporadic intense
emissions in the radio band, which cannot be understood as
synchrotron radiation but must have been caused by unknown
non-thermal electron distributions, even though the most
effective of these distributions still have to be identified
unambiguously.

In the present note, we do not go into the important question of
the sufficient condition: what kinds of distributions are responsible
for ECMI? We rather deal merely with the necessary condition that
has to be clarified first, prior to considering which most probable
and experimentally supported phase-space distribution must be
chosen to obtain sufficient radiation intensities. Here, we
investigate and attempt to answer the following question: given
any suitable distribution function, under which conditions can the
ECMI become excited and escape into free space, hopefully at the
observed large amplitudes? This question is related to the kinetic
theory and the condition of resonance between the ECMI-source
electrons and the relevant electromagnetic wave mode.

2 Resonance—The necessary condition

The ECMI is a kinetic instability emitted in the X-mode
polarization [cf., e.g., [3, 32]]. By reference to observations, it
propagates (predominantly) in the electromagnetic X-R mode [3,
17] almost perpendicular to the strong ambient magnetic field �B.
In the ECMI, the X-mode is excited when, as noted previously, the
electron component in the plasma exhibits a particular
momentum space distribution function, representing the
equivalent of an elevated energy state of the resonant electron
component.

Assume a relativistic electron velocity (momentum) distribution
fe( �p) of such an energetically elevated kind. In a certain range of
frequencies ω and wavenumbers �k, it obeys the required property
and allows for the excitation of the ECMI with the growth rate:

Γ ω, �k( ) � −ImD ω, �k( )/zωReD ω, �k( )∣∣∣∣∣ωX
� ∑

n

Γn ω, �k( )> 0. (1)

Here, ω( �k) � ωX( �k) is the X-mode frequency as a function of
wavenumber �k and D(ω, �k) is the kinetic dispersion relation,
explicitly given in [3, 17] and, for a loss-cone distribution,

explicated in [19], taken at the X-mode frequency and
wavenumber [for the full magneto-ionic theory1 of the X-mode
in a cold electron–proton plasma, cf., e.g., [20, 21]]. D(ω, �k) results
from phase-space integration over the source-electron distribution
function fe( �p) in a homogeneous magnetized plasma and its
gyrotropic derivatives with respect to the components p‖, p⊥ of �p,
a quite involved expression in a non-Maxwellian plasma even for
purely perpendicular wave propagation of the X-mode.

In instability, each resonance n provides a positive/negative
contribution to the total positive growth rate Γ(ω, �k)> 0 at the
particular frequency. This growth rate, being a function of the
X-mode frequency ωX, accordingly exhibits discrete maxima/
minima at or near each resonance n, depending on the
contribution of Γn(ω, �k) being positive or not at that particular
frequency. Plasmas like the upper-auroral substorm-magnetosphere
are capable of exciting the ECMI with the growth rate Γ > 0, are
dilute with ωce ≫ ωe, and, for the purposes of X-mode propagation,
can, sufficiently justified, be considered cold and non-relativistic, as
it is the only weakly relativistic non-thermal auroral electron
population, not necessarily being of ionospheric origin and
responsible for the unstable excitation of the ECMI. However,
this may be different in much hotter astrophysical plasmas,
where the relativistic modification in the X-R mode dispersion
may have to be taken into account, a problem that is ruled out
in the context of the magnetosphere. The assumed low-density state
relegates the source of AKR and excitation of ECMI to the spatially
extended auroral upward-current region and generally excludes the
narrow and dense downward-current region, which also implies that
the prevalent electron distribution is believed to be of the loss-cone
family. This notion has been challenged [16, 35] though not
disproved. In this study, no attempt is made to calculate the
growth rate for any specific distribution, which leaves this
question open.

2.1 Harmonic resonances n > 1

The necessary condition for contributing to instability at the
harmonic number n > 1 and parallel or antiparallel propagation is

ω − nωce/γ − k‖cβ‖ � 0, (2)

where k‖ = k cos θ is the nth resonance in the phase-space integral,
with n = ±1, ±2, . . ., and the cyclotron harmonic number which, in
calculating the total growth rate Γ(ω, �k) as a function of the X-mode
frequency ω = ωX, is summed over. Because the relativistic factor γ >
1, their fundamental (relativistic) resonant frequency ω1X = ωce/γ at
n = 1 is always below the non-relativistic cyclotron frequency ωce =
eB/me and thus confined to the plasma, while in all higher harmonics
|n| > 1, the resonant frequencies ωnX exceed the X-mode stop band
ωuh ≤ωX ≤ωu

co between the upper hybrid ωuh � ωce

���������
1 + ω2

e /ω
2
ce

√
and

upper cut-off ωu
co � 1

2ωce(
����������
1 + 4ω2

e /ω
2
ce

√ + 1) frequencies. While the
fundamental cannot escape without help, the higher harmonics

1 It should be noted that the magneto-ionic theory is a fluid theory. It
assumes that those wave modes are present, while the hot kinetic plasma
component just serves its excitation or damping. In linear dispersion, this
permits neglecting all non-linear modifications.
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would naturally radiate away at about the speed of light if excited,
having had little time for amplification and thus should generally be
rather weak.

In the growth rate sum, each term Γn(ω, �k) gives the
contribution of the harmonic resonance n to Γ(ω, �k) or, in other
words, the growth rate of the harmonic frequency at number n. The
harmonic number −∞ < n < ∞ introduces an infinite chain of
possible resonances from which the given distribution function
fe( �p) and the available resonant electron energies ϵe � mec2γ( �p)
must be chosen. For emission, the AKR source must be relativistic
[13, 20, 21, 33], which is taken care of in γ( �p) � ����������

1 + p2/m2
ec

2
√

, and
the electron momentum �p � meγc �β, where �β ≡ �v/c is defined.

Working in momentum space �p is more convenient. It has the
advantage that no restriction is to be made on �p as the fully
relativistic momentum spreads the entire space 0 ≤ |p| < ∞,
thereby avoiding the inconvenient upper bound on β ≤ 1, the
circle of light speed radius in �β-space, which apparently excludes
any high-speed beams from becoming involved. This artefact
disappears in momentum space.

For any γ ≳ 1 and κ‖ = k‖c/ωce = kc cos θ/ωce, the fully relativistic
resonance condition reads

γ �p( )x − κ‖p‖/mec � n, (3)

where x = ω/ωce is the normalized frequency. Introducing the
parallel momentum shift p0 � nmecκ‖/(x2 − κ2‖ ) yields the
resonance line in gyrotropic momentum space (p‖, p⊥) which is
an ellipse, that is,

p‖ − p0( )2
a2‖p

+ p2
⊥

a2⊥p
� 1, with 0<p2 <∞, (4)

where the two radii are given by

a2‖p � m2
ec

2x2 n2 + κ2‖ − x2( )/ x2 − κ2‖( )2, (5)
a2⊥p � m2

ec
2 n2 + κ2‖ − x2( )/ x2 − κ2‖( ). (6)

For κ‖ = k‖ = 0, the ellipse degenerates into an unshifted circle, and all
perpendicular harmonic emissions are below x < n for any energy γ.
Usually, the resonance ellipse is expressed in �β in the literature.
There is a subtle difference between the two representations of �β and
�p resonances. The former is insensitive to the relation between
frequency x and parallel wavenumber κ‖, whereas in the latter, this
relation may affect the shape of the resonance curve, a problem we
will return to later.

In oblique propagation, the case x2 > n2 + κ2‖ is excluded, as both
radii would become imaginary. In order to maintain an ellipse, one
requires that a2⊥p > 0 is positive, which implies that x > κ‖ and
n2 > x2 − κ2‖ . Of course, emission is below

x<
������
n2 + κ2‖

√
. (7)

The higher the harmonic number, the more oblique the wave mode
which contributes. For small obliqueness θ ≲ π/2, the most
interesting case is the free space ECMI with ωXn = kc. This sets a
condition on the angle of emission for extension above harmonic n
in the frequency band

n< ωXn

ωce
< n

| sin θ|, (8)

which is only a narrow range. There is no restriction on any emission
below n, other than that the frequency must exceed the upper
frequency cut-off ωu

co. This gives, for the small ratio ωe/ωce < 1,
the auxiliary condition,

1 + ω2
e

ω2
ce

< ωXn

ωce
� n

γ
(9)

for excitation and propagation in the nth harmonic. An upper limit γ
≲ n is set on the electron energy ϵe =mec

2γ in resonance with the nth
harmonic to contribute to the radiation near the upper cut-off,
meaning that all resonances contribute to radiation in the lowest
band of the free-space X-mode which, therefore, will be the most
intense.

Below n, resonances and emissions are, in principle,
unrestricted. However, the last condition also allows just for a
narrow range |n|< x<

�
2

√ |n| of frequencies above |n|, depending
on the electron distribution function and resonant energy γ

whether or not it favors ECMI. At higher frequencies above
this limit, the resonance condition does not permit radiation, a
general necessary condition which is independent of any particle
distribution function. It weakly contradicts the claims in the
study by [19] while, at the same time, making them precise.
Generally, harmonic emissions will always be below the
harmonic n with just that the narrow range of oblique
emission being above n. Observation of high-frequency
bounded radiation can be taken as measurement of n.

However, though harmonic resonances (and in case of causing
instability realized as radiation) are possible, they will necessarily be
rather weak because the radiation is on the upper X-mode branch
where it readily escapes from the source region at light velocity c.
The most intense directly excited emission results from below the
second harmonic x = ω/ωce < 2, just above the upper frequency
cut-off,

ωu
co �

1
2
ωce 1 + 4ω2

e/ω2
ce( )1/2 + 1[ ]<ωnX, (10)

where all higher harmonics also contribute if present. In the
magnetosphere, only radiation below n = 2 is of interest, being
restricted to frequencies ωu

co <ω2X < 2ωce and yielding for the
resonant electron energy the upper limit,

1< γ< 2/ 1 + ω2
e/ω2

ce( ). (11)
This implies that in the auroral AKR source region, electrons of
energy ϵe = meγc

2 ≲ 0.9 MeV are eligible of directly exciting AKR
beneath the second X-mode harmonic in about perpendicular
propagation in free space if only their distribution function suites
the ECMI. This range of necessary electron energies indeed
includes auroral energies, suggesting that second harmonic
AKR radiation can naturally originate from the auroral
magnetosphere, as was proposed by Wu & Qiu [19] and
suggested from observation by [24]. Radiation should,
however, be weak for the aforementioned reason of
unrestricted escape and lack of spatial amplification.
Generally, auroral electron energies are far below this limit
[however, for a different observation cf., e.g., [25]]. They
barely are capable of exciting higher harmonics. For this
simple reason, harmonics n > 2 should be absent in AKR.
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2.2 Ultra-relativistic resonance

The absence of any restriction on the momentum �p suggests that
even very high resonant electron momenta/energies could, in
general, participate in the ECMI. Turning to the extreme, this
raises interest in the ultra-relativistic limit, which, here, is listed

for completeness, not for application in the magnetosphere, but will
probably be of vital importance in astrophysics.

Ultra-relativistic conditions imply p2 ≫m2
ec

2 and
γ( �p) � p/mec. The resonance ellipse has radii,

a2‖p
m2

ec
2
� n2x2

x2 − κ2‖( )2,
a2⊥p
m2

ec
2
� n2

x2 − κ2‖
. (12)

It degenerates into a circle in perpendicular propagation κ‖ = 0 of
radius ap = nmec/x. Generally, one has

ω

ωce
� n

p/mec
+ κ‖ cos θp, (13)

where θp is the angle of the momenta of the resonant particles. The
bounds on either n or p are obtained when replacing the frequency
with the upper X-mode cut-off,

|n|
p/mec

> 1 + ω2
e

ω2
ce

− κ‖ cos θp

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, |n|> 1. (14)

Remember that n can be both positive and negative as it enters the
sum of harmonic growth rates Γn. The second condition on n just
points out that this limitation applies to all harmonic emissions
propagating in the free space X-R mode.

2.3 Resonance at the fundamental

In view of application to the terrestrial magnetosphere, it has
been correctly claimed [13] that the (weakly relativistic) ECMI
resonance dominates at harmonic number n = 1, the
fundamental. The reasons for this are already listed: any higher
harmonic barely has time for being amplified substantially before
leaving the source. Therefore, the apparent theoretical [19] and
suspected or real observationally claimed presence of any intense
second harmonic AKR emission in the magnetosphere can hardly be
understood as direct excitation.

Restricting to resonance on the lower X-mode branch eliminates
all harmonics n > 1. With 0≤ γ − 1 � ����������

1 + p2/m2c2
√ − 1≪ 1, this is

true in the auroral region, from where the ECMI wave cannot escape
into free space (Figure 1), as this requires traversing the X-mode stop
band ωuh ≤ω≤ωu

co between the upper hybrid and upper cut-off
frequencies.

Resonance is generally not restricted to proximity to ωce. The
lower X-mode branch for zero wavenumber k ≈ 0 starts at the lower
cut-off frequency ωX >ωl

co � 1
2 [(ω2

ce + 4ω2
e)1/2 − ωce] ≈ ω2

e /ωce for
small ratios of plasma-to-cyclotron frequency, the parameter
range where the ECMI becomes effective. Assuming strictly
perpendicular propagation k‖ = 0, all relativistic factors

1< γ<ω2
ce/ω2

e (15)
of electrons in the distribution function could, in principle,
participate in the resonance. The oblique relativistic resonance
condition for those electrons is given by Eq. 3 with n = 1. The
parallel shift (now conventionally expressed in �β) becomes
β0 � κ‖/(1 + κ2‖ )< 1, and the elliptic radii are

a2‖
m2

ec
2
� 1 + κ2‖ − x2

1 + κ2‖( )2 ,
a2⊥
m2

ec
2
� 1 − x2

1 + κ2‖
. (16)

FIGURE 1
(A) Plasma-confined X-mode dispersion relation in the auroral
upward-current AKR source region (lower solid curve) under the
prevalent low-density plasma condition ωe ≪ ωce. The upper curve is
the free-space X-mode. In the stop band between both X-mode
branches, the X-mode cannot propagate. Normalization of the
frequencies is set to x ≡ ω/ωce, with x = 1 being the non-relativistic
electron cyclotron frequency which is crossed by the linear lower-
branch dispersion curve slightly above the relativistically allowed ECMI
resonance. It propagates between the lower cut-off and upper hybrid
frequencies. The red line approaching x = 1 is the non-linear X-mode
dispersion branch at the maintained resonant frequency xres ≈ const ≲
1, stretching out to large wavenumbers k. Note that here on the dotted
line, the linear dispersion Eq. 17 is invalid. In this range, both the phase
and group velocities of the lower-branch X-mode at resonant
frequency, which is held constant remaining below ωce, are
substantially reduced, with the wave becoming quasi-electrostatic in
resonance with an appropriate distribution of electrons. The
wave–wave interaction becomes probable here and results in
escaping radiation at x ≲ 2 on the free-space upper X-mode branch.
For four-wave interaction, higher harmonics may become excited. No
deformation of the dispersion relation as a function of propagation
angle θ is shown here, which would slightly modify resonance,
dispersion, and interaction under large-wavenumber conditions, even
switching from elliptic to hyperbolic (for the hyperbolic case, see the
following part labels). (B) Different resonance topographies Eq. 5 in
dependence on the normalized frequency x = ω/ωce in the
fundamental band x < 1. Elliptic resonance curves of the sort shown in
the left part of the figure occur to the left of the line x = κ‖ and below
the curve x2 � 1 + κ2‖ in the range x < 1 required by the fully relativistic
resonance in the fundamental band n = 1. Hyperbolic resonance is
obtained in the yellow part on the right for x < κ‖ and x < 1. Resonant
hyperboles are the kind indicated on the left in red color. Apparently,
their range is substantially larger than that of the ellipses. However, its
extension depends on the restrictions on the large wavenumbers that
emerge from the non-linear evolution of the resonance. The range of
resonance is in fact not restricted to proximity to x = 1 as in the weakly
relativistic resonance theory. At higher relativistic energy with γ ≫ 1,
frequencies well below x = 1 become resonant.
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With large γ≲ω2
ce/ω

2
e , the resonance is placed far below ωce on

the lower X-mode branch by the factor ωe/ωce in frequency, if only
sufficiently high-energy electrons would be available, implying that
the resonant energy in this case would be high. In the
magnetosphere, we have ω2

ce/ω
2
e ≳ 10

2 or even larger which, well
away from the cyclotron frequency, yields ϵe =meγc

2 ~ 50 MeV. Such
(about ultra-relativistic) electrons are absent there which, in
retrospect, justifies the assumption of proximity of the resonance
to ωce [we note, however, that high energies have been referred to the
study by [25], for apparently observed AKR, whose source the
authors attribute to the radiation belts]. In remote astrophysical
systems, on the other hand, containing very-high, mostly even ultra-
relativistic electrons, proximity to the cyclotron frequency may
become spurious, and excitation of lower-branch-trapped long-
wavelength k⊥≳ 0 X-mode waves near the lower cut-off
ωl
co <ωl

X ≪ωce may become possible or should be the rule.
Therefore, the ECMI would include almost the entire lower
X-mode branch.

A broad energetic electron distribution may undergo
resonance over a large part of the lower X-mode branch
contributing to the ECMI and growth of lower-branch
X-mode waves in a wide range of frequencies ωl

X <ωX(k)<ωce.
The wavenumbers in resonance are obtained from the pure
lower-branch electron X-mode dispersion relation in
perpendicular propagation [3, 17].

k2c2

ω2
ce

� ωu2
co − ω2( ) ω2 − ωl2

co( )
ω2
ce ω2

uh − ω2( ) , (17)

where, for our purely electronic purposes, the ion contributions and
higher powers of small quantities have been neglected.

This dispersion curve crosses the cyclotron frequency at ω = ωce,
corresponding to km⊥ ≈

�
2

√
ωe/c, which is about the inverse electron

inertial length λe = c/ωe, setting an upper limit on the resonant
wavenumber k⊥, a large number, respectively, short wavelength
indeed. The unstable range Δk⊥ maps to the energy range Δγ(k⊥)
of resonant electrons

0< k⊥ ω, γ( ) ≲
�
2

√ /λe. (18)

Depending on the electron distribution function, instability becomes
possible almost everywhere along the lower X-mode branch if only
sufficiently large electron energies are available. k⊥ = 0 corresponds
to reflection at the lower X-mode cut-off ωl

co and is clearly outside
the unstable wavenumber range.

Near ω ≈ ωce, the phase velocity of the X-mode becomes
vX ≈ c/

�
2

√
, implying that at an observed frequency ω ≲ ωce ≈

300 kHz, the nominal magnetospheric AKR frequency [5], the
phase speed is low enough for the wave to experience several
amplifications before leaving the source.

In order to check this, we obtain for the group velocity

vgX � dω

dk⊥
≈ − 23/2

ωe

ωce
( )2

c≪ − c, (19)

which is much smaller than the velocity of light. For an ECMI
growth rate Γ(ωX), the spatial amplification rate K ≈ −Γ/vgX becomes

K ω( ) ≈ Γ ω( )
2

�
2

√
c

ωce

ωe
( )2

, (20)

a comparably large value. Assuming ωe/ωce ≲ 0.1, as approximately
applicable to the auroral source region, the group velocity is just the
order of vgX ≲ 103 km/s. In the auroral magnetosphere, this
compares to the Alfvén velocity vA, giving roughly K ≳ 2 ×
10−4Γ(ωX) km

−1. So, for a growth rate Γ ~ 10−4ω, we have at the
nominal emission frequency of ω ~ 300 kHz that

K≳ 4 × 10−1 km−1. (21)
This corresponds to several e-folding lengths over one wavelength,
sufficient for excitation of moderate (or even large) amplitude
X-mode waves. Of course, growth rates Γ(ω) of this order may
be extreme. Reducing Γ(ω) by two orders of magnitude still gives one
e-folding over one wavelength of λX ~ 1 km within the oscillation
and growth times. Such amplification rates are still large.

This estimate suggests that the ECMI on the lower X-mode branch
is capable of generating rather large amplitude-confined X-mode
waves close to the local non-relativistic cyclotron frequency ωce

predominantly because the group velocity is strongly reduced there,
and the wave has sufficient time to grow before leaving the source.

Growth becomes substantial here if the source is sufficiently
extended over a number of wavelengths in the direction of
propagation about perpendicular to the magnetic field �B0. This
very fact makes the ECMI on the lower X-mode branch (see
Figure 1) very interesting not just by itself but also for its
possible non-linear interaction with the dilute plasma component
whose pressure is necessarily low and thus susceptible to large-
amplitude electromagnetic radiation and the implications of its
ponderomotive force. Modulation instability of the unstable
ECMI may become possible, causing chains of solitons and
structure in the plasma, effects which have not been considered
yet in connection with ECMI but may play an important role if
investigating its fine structure [compare Figure 2 in [16]] and the
reaction/response of the auroral environment to its presence.

Away from the local cyclotron frequency ωce, however, growth is
reduced on the X-mode branch where higher-energy electrons γ ≫
0.1 are required to be present in an excited state, a case barely
existing in the auroral region. Here, the group speed increases
slightly before dropping to low values when approaching the
lower X-mode cut-off. In the auroral magnetosphere, large
numbers of relativistic electrons are absent [cf., however, [25], for
a counter example]. The relation between k⊥ and γ is

k2⊥λ
2
e + 1 ≈

1
γ2

ω2
ce

ω2
e

. (22)

In the longer-wavelength regime λ⊥ > λe, one has

1< γ≲
ωce

ωe
1 − 1

2
k2⊥λ

2
e( ) (23)

between k⊥ and γ away from the plasma resonance with the resonant
frequency reduced due to the increase in the required resonant
energy. These wavenumbers define the location of the resonance on
the lower X-mode branch according to Eq. 17.

The elliptical nature of the resonance condition is, however, not
easily matched by any of the reasonable and measured electron
distribution functions in the magnetosphere. Such a distribution
should be some kind of a (phase-space-shifted) hollow beam or
horseshoe distribution with parallel shift β0 (in terms of the
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momentum p0), where highly diluted regions lacking higher-energy
electrons in the hole. Their boundaries are formed by accelerated/
scattered cold electron beams [11, 26]. This should provide the
required positive β⊥-space gradient mimicking an excited state of
the resonant electrons. The beam nature of the distribution is
imposed by the finite displacement ± p0 along the external field,
which is seen in the observer’s frame. This poses the question of the
formation of such hollow beam distributions. Reasons for them can
be found in the generation of electron holes by strong field-aligned
currents and have been attributed to the downward-current region
in the auroral magnetosphere [21], where such partial hollows have
been assumed, either being electron holes or, if of larger scale, so-
called horseshoes.

However, guided by auroral zone observations, it seemed that
the prevalent electron distribution of downward shifting electrons,
part of which is reflected while another part absorbed by the dense
ionosphere below, would become a loss-cone distribution, which is
also supported by theory. Numerical calculations based on the
resonance ellipse and using observed loss-cones [28] found just
very small amplification rates there. Moreover, from VLF
observation and theory, it became pretty clear that any loss-cones
are readily depleted or strongly reduced by intense interaction and
amplification of VLF noise [15]. The latter leaves little rudimentary
resonance for the excitation of the ECMI and agrees well with the
calculations based on the observed loss-cone.

Other relevant electron source-distributions are caused in the
generation of electron holes. These result in strong field-aligned
currents which decay into localized electrostatic structures of few
Debye length ℓ‖ ~ few λD extension along the magnetic field but
large perpendicular scale ℓ⊥≫ ℓ‖ of the order of the perpendicular
X-mode wavelength ℓ⊥ ~ k−1⊥ . Inside those holes, the conditions
of excited electron states are satisfied. Here, we do not go into a
detailed investigation of this most interesting fact [26] that we
had referred to in the earlier work [21]. In the next section, we
deal with the question what interests us here the most: the
condition of excitation of the ECMI on the lower X-mode
branch and its possible escape into free space without
requiring any usually evoked propagation effects in
inhomogeneous plasmas [18, 19, 29].

Depending on the available electron energy and the excited
phase-space distribution function fe (p⊥, p‖), the ECMI will become
effective over a large section of the lower X-mode branch to drive the
X-mode unstable. The range where this could happen is prescribed
by the condition of a dilute plasma with ω2

e ≪ω2
ce and the additional

necessary condition on the distribution function that zfe/zp⊥ > 0 in
an appropriate range on the resonance curve in the (p‖, p⊥)-plane.
This resonance line for purely perpendicular propagation is given by��������������������

1 + p2
⊥/m2c2 + p2

‖/m2c2
√

� ωce/ωl
X k⊥( ), (24)

with ωl
X(k⊥) being the lower X-mode branch frequency and a

function of k⊥ on the right-hand side. Any of those unstable
X-mode waves have of course frequency ωl

X <ωce below the non-
relativistic cyclotron frequency. They are confined to the plasma and
detectable only in situ, unless a mechanism is found which allows
them to either escape into free space by tunneling the ECMI-X-
mode stop band ωce <ω<ωu

co between the cyclotron and upper
X-mode cut-off frequencies.

The other possibility is to undergo a three-wave interaction
process as we proposed [16] and will be investigated in the following
section. However, staying with strictly perpendicular propagation,
one may also envisage direct excitation of higher harmonics n > 1 of
the cyclotron frequency ωu

X � nωce/γ. Before returning to the three-
wave process, we briefly discuss such an interaction process.

2.4 Wave–wave interaction at the
fundamental

From observations, it is not entirely clear whether AKR is
observed in the second harmonic or not. Fundamental radiation
is trapped below the X-mode stop band (see Figure 1) and escapes
only under strongly inhomogeneous conditions which have not been
clarified convincingly yet. On the other hand, harmonic radiation
when identified appears to be surprisingly intense. For the
aforementioned reasons, one may doubt the importance of any
direct radiation mechanism. The large growth rates Γn ~ nωce and
large amplification factors κn they require are hard to reproduce in
theory. Free-space modes escape quickly before picking up any
amplification unless the source extends over very large distances
while maintaining all the conditions in favor of excitation. In
addition to the obvious confinement of the fundamental ωX ≲
ωce, observation of apparently intense harmonic radiation [cf.,
e.g., [32]] in the spectrograms poses a problem.

Of course, these conditions refer, in addition, to the required
sufficient condition on the electron distribution function in phase
space and are, probably, not very easy to satisfy in general. They
require rather special electron distribution functions which, in order
to contribute efficiently to growth, must adapt to the particular
geometry of the resonance curve in phase space. Such distribution
functions must possess a positive perpendicular momentum
gradient along the phase-space resonance or at least large parts
of it in order to pick up the contributions of many electrons along
the resonance that are elevated to the higher momentum/energy
excitation level.

Here, we are interested in conditions which allow
transformation of the ECMI at the lower X-mode branch into
the free-space mode. As argued previously, at the lower X-mode
branch, the ECMI can indeed attain large amplification because of
the comparably slow group velocity under the conditions below ωl <
ωce. Since waves can be excited here in any direction perpendicular
to the external magnetic field, a three-wave process [9, 33], as
suggested by [16], becomes possible where two lower branch
modes interact to compensate for their large perpendicular
wavenumbers and result in a long wavelength mode at roughly
the sum of the two frequencies according to the three-wave
interaction conditions of conservation of total energy and
momentum

ωu
X � ωl

1X + ωl
2X, ku⊥ � kl1⊥ − kl2⊥ ≪ kl1,2⊥. (25)

It generates a long-wavelength ku⊥ ≈ ωu
X/c upper X-mode branch of

frequency ωu
X ≲ 2ωce below though near the second harmonic n = 2.

This wave has large amplitude, propagates in the free-space mode,
can escape without any difficulty from the source region, and does
not need any further amplification. The condition under which it
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may meet the free-space branch is that its frequency must be above
the upper X-mode branch cut-off. Since each of the resonant waves
on the lower branch satisfies the resonance condition ωl

X � ωce/γ,
the condition for escape of the ECMI-wave at the upper branch
becomes

γ1 + γ2
γ1γ2

> 1 + ω2
e /ω

2
ce, (26)

where the indices refer to the two lower branch waves that
participate in the interaction, and we neglect powers of small
quantities. If the resonant energies do not differ much, this yields

1< γ< 2
1 + ω2

e/ω2
ce

, (27)

which of course is the same condition as for direct excitation below
the second harmonic n = 2 on the upper X-mode branch given
previously. Its meaning in the present case is, however, quite
different. The two interacting waves are slow and have grown to
large amplitudes. In head-on collisional interaction, they result in
large-amplitude escaping radiation just below the second harmonic
n < 2. For the small frequency ratio ωe/ωce in the denominator, the
marginal relativistic factor is close to γ ≲ 2, or, as already noted, the
upper limit on the electron energy is ϵe ≲ 0.9 MeV.

Low energies excite the ECMI on the lower X-mode branch close to
ωce, but higher energies near the upper energy limit also contribute.
They shift the resonance down on the lower branch according to
ωl
X � ωce/γ. Thus, the ECMI can, in principle, become excited almost

along the entire lower X-mode branch. Nevertheless, escaping radiation
generated via the three-wave collision process is allowed only for those
waves excited by electrons of the aforementioned limited energies. Their
energy determines the location of the resonance on the lower X-mode
branch dispersion relation Eq. 17.

We have ω2 ≪ωu2
co and neglect higher powers of ωe/ωce, which is

justified in all cases where the ECMI is expected to become effective.
In that case, the lower X-mode branch dispersion relation Eq. 17
simplifies yielding

k2⊥c
2

ω2
ce

≈
ω2 − ωl2

co

ω2
ce

� 1
γ2

− ω2
e

ω2
ce

(28)

for the relation between k⊥ and γ, which reproduces condition Eq. 15
while holding all along the lower X-mode branch.

1< γ< ωce/ωe�������
k2⊥λ

2
e + 1

√ . (29)

All wavenumbers,

k⊥λe ≲
ωce

ωe
1 − 1

2
ωe

ωce
( ) (30)

are eligible for the three-wave ECMI emission process above the
upper cut-off frequency, including almost the entire lower-branch
wavenumbers. Combination of the last three conditions on γ and k⊥
yields that the three-wave interaction will become effective for
frequency ratios,

ωce >
�
3

√
ωe, (31)

a condition that is easily met in the auroral magnetosphere, where,
under the conditions when emission of AKR occurs, the electron
cyclotron frequency by far exceeds the plasma frequency.

To conclude this section, it is of substantial interest to note that
exactly the same non-linear wave–wave interaction mechanism of
generation of radiation in the free-space X-mode has been explicated
in detail for the Z-mode [35] in the approximate second n = 2 and
fourth n = 4 harmonics of the cyclotron frequency. This mechanism
would, in principle, compete with the ECMI wave–wave generation
mechanism on the lower X-mode branch proposed here; otherwise,
the two mechanisms would unfortunately exclude each other. The
ECMI works solely under the condition that the ratio ωe/ωce ≪ 1 is
small. In this case, the Z-mode becomes confined to a rather narrow
region around x ≈ ωe/ωce [3]. On the other hand, in the opposite
situation, when this ratio is large, as presumably, for instance, in the
downward-current region, the ECMI becomes unimportant, and
excitation of the Z-mode dominates (see the discussion below in
Section 3.2 on downward currents). This is a very interesting case,
indeed, as it predicts that, in that case, AKR could be radiated from
non-linear coalescence of Z-modes near the upper hybrid frequency
ω ~ ωuh. Generation of Z-modes in that case is much less restricted
than the ECMI on the X-mode. It is well known that the Z-mode is
generated rather frequently by the continuous presence of VLF [15]
in the auroral magnetosphere, where it is not necessarily found just
in the auroral zone and at extrememagnetic activity but spreads over
a wider latitudinal and longitudinal region in space and in time. One
expects that by the mechanism of wave–wave interaction in both
Z-modes (possibly in the downward-current region outside the
upward-current region) and X-modes (preferentially in the
upward-current region), intense-escaping AKR is produced at
nearly same harmonic frequencies in the free-space X-mode.

2.5 Non-linear evolution

The ECMI-unstable lower X-mode branch beneath ωX/ωce ≡ x =
1 is a slow wave with comparably low phase velocity vph = ω/k < c
and, in particular, low group speed vg = zω/zk < c, both substantially
less than the velocity of light. As argued in the previous section, these
properties allow the wave to grow and achieve amplitudes which are
large enough to violate the linear assumption. In this moderately or
large-amplitude state and being unable to leave the plasma below the
X-mode stop band, the wave exerts a slowly variable ponderomotive
force on the dilute low-pressure plasma background (note that the
plasma is generally assumed to be at most temperate in this entire
theory; what concerns the wave dispersion, so the background is
even assumed to be cold.) The ponderomotive force results from an
average over the entire ensemble of unstable waves, thus being the
effect of collective action. The variation in the ponderomotive force
is slow; it occurs on the ion time scale. The plasma reacts to this force
as described by the Sagdeev–Zakharov (slowly variable non-linear
Schrödinger) equation [cf., e.g., [33, 34]] by exciting ion acoustic
waves which under stationary conditions lead to envelope solitons,
density depletions that trap the high-frequency lower-branch
X-mode waves. The relative quasi-neutral density modulation
δN/N0 (amplitude of the ion acoustic wave) of these structures,
which from pressure balance are density depletions (cavitons), is
related to the X-mode amplitude as

δN

N0
≈ − ϵ0

4miN0c2ia
|δEX|2, (32)
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with cia ≪ c being the ion acoustic speed. Trapping of the X-mode
inside the density depletions causes a spatial modulation of the wave
spectrum (one may note that only the electric field amplitude
appears here. The magnetic amplitude of the electromagnetic
wave is relativistically small.) At the same time, it leads to two
other important effects.

First, trapping of the spectrum of participating X-modes splits
the waves into two populations of oppositely directed wavenumbers
± ktr which bounce back and forth inside the density depletions.
Several of these waves will thus participate in the aforementioned
three-wave process to cause second harmonic radiation ωX ≲ 2ωce.
This leads to losses of wave energy and may ultimately terminate the
deepening of the density depletions, i.e., stabilizing the non-linear
ion acoustic wave amplitude, even though radiative losses generally
remain only weak.

The second interesting effect concerns the trapped wave-mode
wavelength λ (or wavenumber kX). Conservation of caviton shape
over the time of caviton formation and evolution implies that the
number of waves (wavelengths) inside the cavity is conserved and
remains constant. Shrinking the cavity size thus necessarily shortens
the wavelengths and increases the wavenumber kX according to

k2 ∝ ϵ0|δEX|2, (33)
with the wave energy density on the right-hand side which evolves
during non-linear formation of the caviton, i.e., the sum of the
individual wave energies Zω per volume of the caviton with
frequency, being conserved. This affects the dispersion of the
trapped waves. This is very interesting by itself.

Though the trapped X-mode waves inside the cavitons initially
propagate in the linear X-mode on the linear dispersion branch,
shrinkage and shortening of wavelength modifies the linear X-mode
branch near resonance until it becomes non-linear, a rather complicated
process which strongly modifies the linear dispersion. In fact, due to the
deviation of the dispersion curve from its linear topology that is caused by
the resonant interaction with the energetic source-electron component,
the X-mode here becomes quasi-electrostatic, which makes it active in
affecting the plasma through its ponderomotive force and particle
trapping inside the self-consistently generated cavitons [cf., e.g., [30],
for the complete non-linear theory of purely electrostatic waves]. The
resonance still occurs beneath though close to ωce here (unless a non-
linear frequency shift is taken into account, which is assumed of higher
order, here, and thus negligible). Constancy of wave frequency implies
that the non-linear (about electrostatic) interaction stretches the
dispersion curve out to large wavenumbers knl which substantially
exceed the linear wavenumber k while frequency remaining below the
electron cyclotron frequency, thereby avoiding crossing it upward to
approach the upper hybrid resonance ωuh which is not allowed by the
resonance condition (as long as it remains linear by itself).

This increase in k → knl causes a severe additional reduction of
the phase velocity vph,nl � ω/knl ∝ω/

�����
|EX|2

√
. In addition, the sudden

self-consistent trapping of the waves inside the cavitons (resulting
from the ponderomotive force) implies a violent retardation of the
group speed to vg ~ cia which adjusts it to the ion acoustic velocity.
The slowdown in phase velocity substantially increases the spatial
amplification rate, as has been argued previously. As a consequence,
the waves locally experience many e-foldings and, consequently, also
large wave amplification due to an increase in their e-folding length.
As a result of these two effects, the amplitude of the trapped X-mode

waves will readily grow to become large, which, on the one hand,
causes additional deepening of the cavitons while also strongly
supporting the wave–wave interaction and second harmonic
radiation ωX ≲ 2ωce. Higher harmonic resonance, as explained
previously, has little chance to cause comparably intense
radiation. In contrast, resonance x = ω/ωce ≲ 1 at the lower
X-mode branch amplifies the confined X-modes with short
wavelengths [picked up, for instance, from thermal
electromagnetic background noise, cf., e.g., [36]] which propagate
at strongly reduced phase velocity and experience many e-foldings.

3 Hyperbolic resonance

The non-linear deformation of the linear dispersion has another
profound effect on the topology of resonance that so far (at least to
our knowledge) has been missed in the literature on the ECMI. This
is uncovered when considering the resonance condition (4). The
linear-state relativistic resonance is the famous ellipse in �β- or
�p-space. In the non-linear state, however, there arises the
possibility for the ellipse to turn into a hyperbola

p‖ − p0( )2
a2‖p

− p2
⊥

a2⊥p
� 1. (34)

This happens when in Eq. 5, during non-linear evolution and
increasing wavenumber κ = kc/ωce, the conserved normalized
frequency x = ω/ωce < κ‖ for some oblique propagation angle θ

drops below the parallel normalized non-linear wavenumber κ‖ (one
may note that this leaves the numerators in Eq. 5 invariant such that
only the transverse radius a⊥p is affected to become imaginary). The
condition includes only the parallel wavenumber and is thus simply
a condition on the angle θ of propagation, which means that

cos θ >ω/cknl � vph,nl
c

(35)

exceeds the ratio of the strongly decreased non-linear phase velocity
vph,nl to light speed. It states that for the topological switch to take place,
the angle of resonance should turn more parallel. This condition is
readily satisfied close to the gyrofrequency ωce already in the linear
regime, as indicated in Figure 1, where the dispersion begins to flatten
out shortly before crossing the line x = 1. It essentially excludes
perpendicular propagation from hyperbolic resonance, which,
however, is clear anyway. The restriction of the resonance to x < 1
in onsetting non-linear evolution and the following smooth increase in
wavenumber k → knl warrant that this condition is always met at
oblique propagation, thus satisfying the aforementioned condition
which relaxes in further non-linear evolution. One may note that
this important change in the resonance topology occurs when
working in the fully relativistic resonance regime, which applications
have so far avoided. It is of particular importance in the interesting
astrophysical ultra-relativistic regime.

Hence, the transition from linear elliptic to non-linear hyperbolic
resonance is quite natural. In its course, the resonating wave becomes
increasingly oblique during non-linear interaction.On the other hand, it
is clear that this case cannot be realized for any of the resonances n > 1
which are not confined and thus do not interact non-linearly.

Manipulation of the relativistic resonance condition xγ( �p) �
1 + κ‖p‖/mec with constant x ≈ 1 yields an upper limit on
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cos θ < γ − 1
γβ‖

ωce

knlc
� ϵkin
mec2β‖

ωce

ωe
knlλe( )−1, (36)

where knl is the increased non-linear wavenumber. This is, in fact, no
serious restriction as long as the right-hand side exceeds unity.
Otherwise, it just excludes a range of nearly parallel propagation
angles, hence permitting hyperbolic resonance over a wide oblique
angular interval Δθ.

3.1 Upward current region

As it turns out, the upward-current region becomes the ideal
place for application of the hyperbolic resonance. We shall
demonstrate that it is best suited to fit the celebrated loss-cone
distribution as the primary source for generation of AKR here.

Observations in the presumable upward-current AKR source region
of the auroral magnetosphere [e.g., [24]] suggest that the kinetic energy
of source electrons is about ϵkin ~ 10 keV, while the frequency ratio

amounts to about ωce/ωe ~ 10. Parallel speeds of the auroral electrons
have been measured to be approximately β‖ ~ 10−1. Moreover, the
electron inertial length in the diluted upward-current region is of order λe
~ 0.5 km. This yields within the uncertainty of these numbers

ω/cknl < cos θ < 1/knlλe. (37)
As the left-hand side readily holds close to x = 1, there are no
restrictions on the propagation angle here for any non-linear
wavelengths λnl ≳ λe longer than the electron inertial length, a
rather weak condition only. If knl would further increase beyond this
limit, the hyperbolic resonance becomes more oblique though still
covering a large angular interval.

It thus seems natural that the resonance in the upward-current
region on the lower X-mode branch, the presumably most important
domain of its validity, readily switches from elliptic to hyperbolic,
which naturally fits the loss-cone distribution and the interior of the
loss-cone well if not much better than the resonant ellipse.

This is shown in Figure 2 as an example of available highest-
resolution FAST observations of downward electron fluxes in the
upward-current region, performed 2 decades ago [14]. The figure
suggests that, in contrast to the usually used resonance ellipse, the
hyperbolic resonance conveniently covers the entire inner
perpendicular electron flux (velocity space distribution) gradient zfe/
zβ⊥ > 0 offered by the interior of the loss-cone for excitation of the
ECMI lower-branch X-mode. This has some clarifying implications on
the choice of the source-electron distribution function. Hyperbolic
resonance is clearly in favor of the celebrated loss-cone distribution
as the main electronic phase-space source-distribution here where it is
continuously observed and theoretically supported.

The reasonable conclusion is that in the upward-current region,
loss-cone distributions, like those in Figure 2 [14], can under all
circumstances drive the lower-branch ECMI just beneath ω ≲ ωce

(see Figure 1) increasingly unstable and entering its state of non-
linear evolution toward large wavenumbers kλe < 1. This is expected
to happen already for rather moderate amplitudes readily deforming
the linear dispersion relation into its non-linear cousin to participate
in hyperbolic rather than elliptic resonance.

In the dilute upward-current low-pressure plasma background,
it should be stressed that even rather moderately confined ECMI-X-
mode amplitudes suffice to enter the non-linear state by choosing a
suitable initial wavenumber and frequency interval that the thermal
electromagnetic background noise offers for amplification [for the
presence of such noise, which for oblique propagation, exists
particularly below and close to ωce; see [36]].

Such a switch in resonance suites the upward loss-cone distribution
quite well for a spectrum Δkres of wavenumbers k and excitation of a
narrow spectral band Δω below ωce. These intervals are determined by
the angular width of the loss-cone and the steepness of the resonant
perpendicular momentum-space gradient.

As described in the caption of Figure 2, the circles separate the
loss-cone from the unaffected main plasma distribution at low
electron speeds. The observations do not allow for unambiguous
identification of a parallel shift p0 of the distribution. The two black
hyperbolic lines drawn map the boundaries of the loss-cone in their
upward-directed parts while being artefacts on the downhill side.
Tentatively, one resonant hyperbola (red) has been drawn along the
boundary of the loss-cone. The entire positive perpendicular
momentum/velocity gradient region in the loss-cone could be

FIGURE 2
Measured loss-cone distribution in the presumable AKR upward-
current auroral source region [after 10, which should be consulted for
a detailed description of the observations]. The intensity of downward
electron fluxes is color-coded (from black to red, covering five
orders of fluxmagnitude), with red having the highest intensities, here,
indicating the denser warm auroral-magnetospheric electron
background. The comparably wide upward (negative normalized
parallel velocities β‖ = v‖/c < 0) electron loss-cone is well exhibited.
Circles show the theoretical (solid) and observed (dashed) low-speed
bounds. At positive parallel speeds, the red banana indicates the high-
energy downward auroral electron beam. The two black hyperbolas
are theoretical angular limits of inner and outer phase-space regions.
The dotted red hyperbola at negative (upward) β‖ is the resonant
hyperbola about along the loss-cone boundary with k‖c > ω. Positive
perpendicular gradients along and inside this hyperbola contribute to
resonant ECMI growth. The loss-cone is wide enough to host a
continuity of such hyperboles inside its bounds, thus providing the
ECMI with a bandwidth Δω at constant frequency ω. Uncertainty of the
observations is too large for calculating quantitative numbers
(Modified and adapted from Ref. [14]. Courtesy AGU.).
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filled with a continuum of such resonant hyperboles. At any fixed
resonant parallel momentum p‖ with its respective velocity β‖, the
growth rate Γn=1 (p‖, ω) is determined as the function of resonant
frequency and provides an estimate of the bandwidth of excitation
where observations in situ suggest the AKR source to be of the order
of just few kHz in so-called elementary events [cf. the discussion in
[16]]. Unfortunately, this is inhibited by the large scatter of data in
the iso-flux lines.

Radiation in the fundamental X-mode is confined and cannot
escape, at least not locally, unless it becomes scattered and propagates
up along though oblique to the magnetic field until becoming gradually
transformed to find itself on the free-space X-R mode branch in the
magnetospheric tail. Otherwise, the large-amplitude X-mode remains
trapped, as described previously, and it undergoes the non-linear
wave–wave interaction to generate escaping second harmonic
radiation. Presumably, this is the reason for observation of locally
intense though (because of their proximity to x = 1) very narrow-
band plasma-confined ECMI emissions near the fundamental x ~ 1 [4,
24] in the upward-current region. The wave–wave interaction of those
confined large-amplitude amplified waves transforms the confined
X-mode into the free-space escaping X-mode radiation at frequency
ω ≲ 2ωce below the second harmonic.

3.2 Downward current region

The same hyperbolic resonance condition [36] holds of course also in
the downward-current region, but the mostly confirmed and reasonable
absence of any loss-cone distribution here demands a different
mechanism to cause positive perpendicular phase-space gradients on
the source-electron distribution function along the resonance hyperbole.
Otherwise, if no appropriate electron distribution becomes available in
the downward-current region favorable for hyperbolic resonance, one
requires vph ~ kc, in which the resonance returns to elliptic. It seems that
this applies indeed to the downward-current region even though this
condition is difficult to satisfy. It implies that the lower-branch X-mode
waves maintain comparably large phase velocities and that the resonance
is replaced away from the electron cyclotron frequency, a condition
difficult to achieve.

Unfortunately, no comparably high-resolution measurements of the
angular electron fluxes and distribution functions are available yet (at
least to our knowledge) here. The precise form of the electron
distributions is thus not known and would indeed be worth to be
focused on in (hopefully planned and available) future auroral
magnetospheric space missions in the spatially rather narrowly
extended auroral downward-current regions of which during
substorms there are many in a row. Electron fluxes are upward, low
energy, spatially highly structured, and highly variable in time. The
corresponding upward currents are not smoothly distributed over a wide
latitudinal interval as in the upward-current regionwhere the comparable
smoothness of the upward sheet current is reflected in the smooth spatial
course of the current-transverse magnetic field component that is typical
for a broad but unstructured main-field-aligned sheet current.

In contrast to the upward-current region, the downwardmain-field-
aligned currents flow in latitudinally narrow parallel current sheets or
current braids which are kept apart by the comparably very strong
external geomagnetic field. Accordingly, the current-transversemagnetic
field component fluctuates considerably spatially, typical for the presence

of many narrow current filaments. The main geomagnetic field is strong
enough to compensate for the Lorentz force of these quasi-stationary
narrow field-aligned sheet currents which attract each other but cannot
merge. Located at the boundary of the auroral cavity, average densities in
the downward-current region are comparably high, though still in the
range ωe/ωce < 1 [37]. Energies of the upgoing current-carrying current-
closing electrons of ionospheric origin are just around ϵkin ~ few keV at
most, roughly one order of magnitude less than those in the upward-
current region. Related upward velocities β‖ decrease by a factor of
roughly 10, compensating for the decrease in kinetic energy.

The downward currents are intense enough for causing current
instability, including reconnection in strong current-parallel guide
fields and, in particular, non-linear evolution [38], which structures
and deforms the electron distribution function and generates large
numbers of (so-called) Debye-scale electrostatic structures [11, 39],
ion and electron holes, that propagate along the magnetic field.
Debye lengths are in the order of λD ≲ 10 m here, depending on the
exact spatially variable density and temperature. Whether this is in
favor or not of the ECMI remains unclarified. The absence of loss-
cones makes the hyperbolic resonance less attractive, requiring
rather particular source-electron phase-space distributions. These
may be provided by those non-linear Debye-scale structures,
current-driven electron holes. It has been suggested [[26] and
others] that holes cause violent deformations of the electron
distribution function digging phase-space holes into it which
contain a highly diluted temperate low-pressure electron
population and are bound by denser cold walls in phase space of
much higher hole-field-accelerated speed. At these boundaries, the
phase-space distribution develops steep gradients which may serve
the needs for exciting the ECMI. This model has been used to
propose the action of the ECMI here as well, based on elliptic, not
hyperbolic resonance [35, 40], in those incomplete hollow-electron
phase-space distributions, sometimes called horseshoes.

Observed electron holes extend several λD along the magnetic field
but are much less restricted in perpendicular extension, which is limited
by the width of the unstable field-aligned current filaments and electron
gyroradii, the latter being the order of rce = β⊥c/ωce ≲ 1 km for the
dominant source electrons. Trapping of linearly excited X-modes in
these (for the purpose of the ECMI pre-existing) plasma depletions
[which result in the non-linear evolution of current instability, for the
most recent complete theory cf. [41]] is preferably at k⊥ > k‖, i.e., short
perpendicular wavelengths and slightly oblique propagation θ ≲ 90°.
This is supported close to x = ωX/ωce ~ 1 on the lower X-mode branch
where wavenumbers increase and wave group speeds become low,
holding, however, only for the perpendicular wavenumber. This means
that κ‖ < x is a reasonable option inside those holes, whose Debye-
structured property applies only to the parallel direction. Consequently,
the electron-hole-trapping hypothesis identifies the resonance with an
ellipse instead of the hyperbole in the adjacent upward-current region.

The range of X-mode frequencies fits these perpendicular
wavelengths, which become trapped in parallel Debye-scale holes.
The elliptic resonance condition, applied to the interior of such
oblate holes, supports excitation of the ECMI. In contrast to the
upward-current region, ECMI is caused at the perpendicular
boundary of the phase-space holes, not the general form of the
meso-scale electron distribution as this, here, is not of the loss-cone
family. Rather, it is self-consistently provided by the self-consistent non-
linear evolution of the electron holes. Generation of electron holes and
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related phase-space distributions of the hollow/horseshoe type is
primarily independent on the excitation of the X-mode, being
provided by the non-linear evolution of sufficiently strong field-
aligned electron currents [as for electrostatic waves has extensively
been reviewed by [41]]. It is the particular electron phase-space
distribution resulting from this non-linear evolution which, in the
downstream-current region, may encourage the excitation of the
lower X-mode branch in elliptical or hyperbolic resonance and
support their increase to reach large local amplitudes while also
experiencing the wave–wave interaction to escape into free space.

The lower-branch hole-trapped X mode has large parallel
wavelengths λ‖ ≫ λD along the magnetic field, which by far exceeds
the Debye-scale. It overlaps a large number of Debye-scale low-density
holes which are densely chained along the magnetic field effectively
experiencing an amplification from all those holes along the field over
its parallel wavelength. Simultaneously, the wave bounces back and
forth synchronously inside all of them in perpendicular direction. Even
though each hole contributes differently to the growth of the wave, the
concerted action of all holes in the average should lead to a substantial
amplification of the X-mode. If this is the case, one expects that
observations in situ will detect highly temporarily structured
narrow-band and intense confined short perpendicular wavelength
X-mode radiation which propagates at group velocity substantially
below light speed. Its frequency will be very close to the local electron
cyclotron frequency ω ~ ωce. Growing to large amplitude, this slow
radiation will again undergo wave–wave interaction to generate second
harmonic radiation which escapes from the source and can be observed
from remote. The trapped large-amplitude fundamental narrow-band
X-mode radiation can, however, be observed only in situ [as for instance
in Figure 2 of [4]] where it moves together with the entire chain of holes
along the magnetic field. If the remaining radiation trapped for all the
life-time of the holes, it will [as has surprisingly been observed, see [42],
and references therein] also be transported away from the source by the
holes either down to the ionosphere [43] or upward into the
magnetosphere. Similar observations in the upper ionosphere [25,
44] have also been reported from DEMETER spacecraft observations.

4 Conclusion

Examination of the fully relativistic resonance condition in ECMI in
application to the auroral magnetosphere revealed a so far missed
domain where the elliptic resonance can turn into a hyperbolic
resonance, thereby becoming topologically completely different and
matching the observation of loss-cones in the auroral upward-current
region, thus suggesting a number of interesting facts. First, loss-cone
distributions with hollow and partially filled loss-cones can, in fully
relativistic theory, become efficient sources of rather narrow-band
excitation of lower X-mode branch modes which cannot escape from
the source region. The bandwidth of frequency of those modes would be
determined by the narrow loss-cone boundary at a given wavenumber
which, by observation, is of the order of at most few kHz. The ECMI
source can only be observed in situ. Second, these locally excited waves
have low phase and group velocities, which are trapped in the source
region, experience several exponentiations, and evolve to large
amplitudes. This generates non-linearities and causes the
wavenumbers to shrink further until the non-linear wave becomes
trapped in cavities where it undergoes wave–wave interaction to

generate second harmonic radiation above the upper X-mode cut-off
on the free-space mode from where the radiation escapes. This picture
rounds up the theory of AKR excitation by the ECMI in the very low-
density upward-current region.

Whether the ECMI can also work in the downward-current region
remains uncertain. Primarily, the condition of very low density is not
necessarily given there. In that case, ECMI should not evolve. However,
the downward-current region is the location of so-called Debye-scale
structures, very low-density electron holes which, along the field, are of
10 times the Debye lengths but in perpendicular direction, extend over
many electron gyroradii which correspond to the transverse wavelength
of the X-mode such that the X-mode fits the hole and in the low-density
region can also become amplified and evolve non-linearly, as we have
explained in Section 3.2. ECMI-generated AKR could thus also result
from here, though in different ways.

In addition, however, in the downward-current region, Z-mode
radiation may compete in all those regions which do not experience
dilution by Debye structures. Here, the Z-mode propagates and can
be excited by VLF, undergo the wave–wave interaction, and radiate
at the second and possibly even higher harmonics. This mechanism
is not based on the ECMI but deserves to be taken into account when
dealing with the downward-current region.

A most interesting observation of AKR is that it seems to weakly
leak down into the ionosphere at spacecraft altitudes and even down to
the ground under favorable though still unknown condition. These
observations raise an interesting question: how can AKR generated at
altitudes of at least 1,000 km above ground pass into and even across the
ionospheric density screen? Such a passage seems forbidden. However,
if generated in density cavities, either self-generated cavities in the
upward or within Debye-scale cavities in the downward-current region,
then X-modes could possibly be trapped inside those cavities and
together with them may become transported down to the ionosphere,
where few of them could survive the transport and leak out. This most
interesting observation still awaits its theoretical explanation [46].
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