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We present a novel approach that combines the power of pix2pix, an image-to-
image translation framework, with the advanced capabilities of isogeometric
multi-patch analysis for topology optimization. The proposed method adds the
Nitsche’smethods into the advantages of Isogeometric analysis (IGA), thus gaining
the ability to handle complex geometries by generating locally smooth and well-
converged results. Additionally, the usage of generative adversarial network based
pix2pix allows for amore efficient representation of the design space, reducing the
computational cost of the optimization process. This approach has shown
promising results in various numerical examples. This technique aims to
improve the efficiency of conceptual design in complex engineering applications.
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1 Introduction

Nowadays, topology optimization is becoming a powerful computational technique for
designing structures with optimal properties by iteratively redistributing material within a
given design space. It has many practical applications in the design of structures for
aerospace, automotive, civil engineering and many other projects [1]. However,
accurately representing complex geometries can be challenging, especially when utilizing
traditional finite element methods (FEM) that require a high number of elements.
Isogeometric analysis (IGA), which uses the same basis functions for both the geometry
field and displacement field, has emerged as a promising alternative to traditional FEM [2].
Isogeometric based topology optimization offers several advantages over traditional topology
optimization methods. Firstly, the usage of Non-Uniform Rational B-Splines (NURBS) basis
functions offers improved accuracy, as NURBS provide a smooth and flexible representation
of geometry that can accurately capture complex features. Additionally, isogeometric
topology optimization reduces meshing efforts and achieves faster convergence rates
than traditional topology optimization methods, thanks to the higher accuracy of the
NURBS-based representation. Finally, isogeometric topology optimization can be seamlessly
integrated with CAD systems, making it a potential tool for designers and engineers to create
more accurate and efficient designs for a wide range of engineering applications [3].
However, one significant issue with isogeometric topology optimization is its
computational cost. The NURBS basis functions bring a high number of control points,
leading to an increased number of degrees of freedom and computational complexity,
especially for large-scale problems. Additionally, the optimization iteration itself is time
consuming, especially when convergence issues occur, the computational costs could be
badly increased.
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To address these challenges, the deep learning technique is
introduced into the IGA and topology optimization. Liao et.al.
[4]. Proposed a deep-learning-based inverse design approach for
auxetic materials, using a surrogate model based on deep neural
networks. The deep learning framework called IGA-Reuse-Net was
presented by Wang [5], which combined IGA and UNet3+
architecture, and achieved a good trade-off between accuracy and
efficiency in solving Poisson equations on different topologies.
Gasick and Qian [6] introduced a physics-based machine
learning approach that combines isogeometric representation
with deep learning to solve parameterized PDEs over changing
domains. As for topology optimization, Sosnovik and Oseledets
[7] proposed a deep learning-based approach to accelerate topology
optimization by treating it as an image segmentation problem,
which demonstrates significant acceleration. In the study of
Sasaki and Igarashi [8], a novel approach of topology
optimization was proposed, which combined the power of deep
learning with traditional optimization techniques to accelerate the
design process and achieved optimal solutions for complex
electromagnetic systems. Nie et al. [9] proposed a new method
for topology optimization using generative adversarial networks,
leveraging physical fields over the initial design domain to generate
high-quality optimized structures. In the recent contribution of Yan
et al. [10], a new method for real-time topology optimization driven
by deep learning is introduced, by utilizing initial stress learning to
achieve efficient and accurate optimization, marking a significant
step forward in the development of intelligent design systems.

The pix2pix framework is a type of conditional generative
adversarial network (cGAN) that maps an input image to an
output image with high resolution, in our case, an optimized
topology of a structure [11]. It has been specifically designed for
image-to-image translation, such as converting a black-white image
to a color image or converting a low-resolution image to a high-
resolution image. The generator network produces a high-resolution
image of the optimized structure, while the discriminator network
evaluates the generated image and provides feedback to the
generator network to iteratively improve its performance. Pix2pix
has been successfully used in a variety of applications, including the
translation of sketches to photorealistic images, the generation of
realistic images of 3D objects from 2D images, and the restoration of
degraded or low-resolution images [12]. By considering the
mechanical structures in the form of images as input, the pix2pix
proves its effectiveness in topology optimization applications.
Hertlein et al. [13] presented an approach for topology
optimization, which enables designers to explore design flexibility
in the early stages of the additive manufacturing process. Ye et al.
[14] accelerated the topology optimization process by utilizing a
pix2pix network to generate high-quality optimized designs. Li et al.
[15] developed a cross-resolution Pix2pix neural network, enabling
efficient and accurate optimization of geometrically nonlinear
systems.

In engineering common practice, complex design spaces are
usually represented by a set of NURBS patches, and each patch has
its own parameterization, such as different degrees of continuity or
geometric shape. Isogeometric multi-patch methods have been
proposed to address the challenges of complex geometries. Ruess
et al. [16] utilized weak coupling to enable accurate analysis of
complex multi-patch geometries with non-matching and trimmed

boundaries. Brivadis et al. [17] used the mortar method for the
coupling between different subdomains, paving the way for
advanced numerical simulation in a variety of fields. In the study
of Kargaran et al. [18], a new approach to isogeometric analysis
using overlapping multi-patch structures is proposed, which enables
efficient and accurate simulation of complex geometries.

The Nitsche’s method is usually adopted in FEM for weakly
imposing boundary conditions and handling non-matching meshes
between different subdomains. The method involves adding energy
terms to the weak form of the partial differential equation being
solved, which helps to enforce the boundary conditions and reduce
the effect of the non-matching meshes. The Nitsche’s method has
been shown to be robust, accurate, and flexible, and has become a
popular method in the FEM community. Chouly and Hild [19]
solved unilateral contact problems using a Nitsche-based approach,
enabling accurate and efficient numerical analysis of complex
systems. Nguyen et al. [20] presented a new approach to patch
coupling using the Nitsche’s method, allowing for efficient and
accurate analysis of complex two and three-dimensional systems.
Guo and Ruess [21] tried to couple isogeometric thin shells and
blended shell structures using the Nitsche’s method, facilitating
efficient and accurate simulation of complex structures. Du et al.
[22] presented a new approach to isogeometric analysis of Reissner-
Mindlin plates with non-conforming multi-patches by the Nitsche’s
method. Back to our study in 2018 [23], we proposed a skew-
symmetric Nitsche’s formulation for isogeometric analysis, which
allows for the incorporation of Dirichlet and symmetry conditions,
patch coupling, and frictionless contact in IGA simulations.

In this research, the pix2pix framework is adopted for fast
topology optimization in the context of multi-patch IGA. Our
goal is to expedite the conceptual design process and enhance
efficiency. The analysis process begins with multiple NURBS
patches, each with its own local isogeometric basis functions.
These patches are then merged by the Nitsche’s method under a
continuity condition to ensure a smooth and seamless design across
patch interfaces. Subsequently, a well-trained pix2pix network is
used to generate an image of the desired design from an initial image
of element-wise strain energy distribution. Finally, the generated
image is projected back onto the multi-patch domain together with
some post-processing treatment. This approach offers multiple
benefits. Firstly, the isogeometric basis functions and multi-patch
technique provide a more accurate representation of the geometry,
resulting in clear designs. Secondly, the adoption of the pix2pix
significantly reduces the computational efforts of the calculation
process while maintaining relatively high-quality outcomes. Lastly,
combining these techniques leads to an efficient and accurate
topology optimization process, enabling faster and more cost-
effective design iterations. This method has yielded promising
results in various problems.

2 Isogeometric multi-patch analysis

2.1 Basic theory of IGA

FEM is widely utilized in structural mechanics, but it requires
careful consideration of mesh quality in order to keep good analysis
accuracy. IGA, on the other hand, overcomes this drawback using
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the inherent meshes naturally from the CAD model. Moreover, by
utilizing NURBS as shape functions, IGA gains the ability to
construct high-order continuous approximations. This paper
focuses specifically on two-dimensional structures. For three-
dimensional problems, the extension can be naturally achieved by
incorporating an additional dimension.

The IGA process starts with a parametric representation for its
geometric model, which is constructed by the NURBS
interpolation as

S ξ, η( ) � ∑n
i�1
Ri ξ, η( )Pi x, y( ), (1)

where Ri are NURBS basis functions, (ξ, η) represent the
coordinates frame in the parameter space, and n denotes the
number of base functions. Pi(x, y) are called control points. In
IGA, the mesh division is done naturally in the parametric domain,
which eliminates the need for special mesh division procedures
utilized in classical FEM, resulting in faster analysis cycles.

IGA can be considered as a special isoparametric version of
FEM, meaning that the interpolation basis functions used in
geometry discretization, i.e., NURBS, are consistent with the
shape functions used in displacement discretization. Then the
following formula expresses the physical field

u ξ, η( ) � ∑n
i�1
Ri ξ, η( )ui x, y( ), (2)

where ui(x, y) are the displacement values at the control points.
Isogeometric analysis offers superior accuracy in representing

the geometric features of a given model. Unlike traditional FEM, it
provides a wider range of mesh refinement strategies, including the
commonly used h-refinement and p-refinement, as well as the
unique k-refinement strategy. This innovative approach allows
for higher accuracy and faster refinement speeds. From an
optimization perspective, isogeometric analysis offers an

integrated approach to design and simulation. In this way, the
geometry of the structure being designed gains the potential to
be directly modified based on the results of the simulation, resulting
in greater efficiency in structural design optimization.

2.2 Multi-patch analysis based on the
Nitsche’s method

In practice, most complex geometric models are represented by
multiple patches of distinct material properties. Furthermore,
patches with different meshes reveal the potential of parallel
computation, although not considered in this study. Consider an
interface problem, as indicated in Figure 1, the domain Ω is
decomposed into two sub-domains Ωm, where the superscript m �
1, 2 is used to mark the divided domain and corresponding variables.
The governing equations are listed as follows

−∇σm � bm onΩm,
um � �um onΓmu ,

σm · nm � �tm on Γmt ,
u1 � u2 on Γ*,

σ1 · n1 � −σ2 · n2 on Γ*,

(3)

Where the σm are stress fields, b stands for the body force, um denote
the displacement fields, the n1 and n2 are unit normal vectors along
Γ*, the interface of Ωm.

In order to glue the two patches, according to the Nitsche’s
method [23], we define the trial function on the domainΩ asV , then
the weak form of the problem reads:

Find u ∈ V :

a u, v( ) � L v( ), ∀v ∈ V . (4)
By defining the displacement jump and stress average

operators as

EuF≔ u1 − u2 (5)
and

< σ u( )>≔
1
2

σ1 u( )n1 − σ2 u( )n2( ), (6)

we obtain the Nitsche’s formulation as
Find u ∈ V :

a u, v( ) − ∫ < σ u( )> EvFds − θ∫ EuF< σ v( )> ds + ∫ γEuFEvFds

� L v( ),∀v ∈ V ,

(7)
where the θ is the Nitsche parameter, and the γ is called the
stabilization parameter.

For the Nitsche parameter θ, taking different values results in
different Nitsche formulations. In this paper, we set θ � 1 in order
to use the standard Nitsche’s method which can keep the stiffness
matrix symmetric. For the stabilization parameter γ, we adopt the
experienced formula in [24]. For more details about the
derivation and theory of the Nitsche’s method, please refer
to [23].

From the matrix point of view, original discrete IGA formula in
matrix form is given by

FIGURE 1
The multi-patch model.
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KU � F, (8)
where K is the global stiffness matrix, U is the vector of nodal
displacement degrees of freedom, and F is the nodal force vector.
Since we are considering two NURBS patches, the above formula can
be decomposed as follows

K1

K2[ ] � U1

U2[ ] F1

F2[ ], (9)

where the superscripts are used to show the patch indexes as before.
After marking the interface elements by subscripts s andm along the
two patches respectively, we can rewrite discretized Eq. 10 as follows

~K
1

K1
s

K2
m

~K
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

~U
1

U1
s

U2
m

~U
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

~F
1

F1
s

F2
m

~F
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

here the tilde indicates the remaining elements which are not
involved into the interface coupling, for illustration ~K

1 � K1 − K1
s .

3 Topology optimization based on
pix2pix

3.1 Pix2pix driven topology optimization

Structural topology optimization is a more advanced
optimization technique than size and shape optimization, which
operates at the conceptual design stage of a structure, and its output
serves as the foundation for future designs. This study focuses on the
topology optimization of elastic structures, aiming to identify the
optimal structural type generated within the design domain under
given conditions. This paper uses the minimum structural
compliance as the objective function to optimize the topology,
i.e., the density distribution. The optimization formula is written by

min : Φ ρ,U( ) � F ρ,U( )TU � UTKU � ∑N
e�1
uT
e keue,

s.t.: ∑N
e�1
ρeve − V*&0,

0< ρ min&ρe&1, e � 1, . . . , N,

K ρ( )U � F, (11)
where subscript e represents the corresponding physical quantity of
element e, and N is the total number of finite elements. The ρ is a
vector of density variables, which represents the relative density of
materials of each element in the structure. ρe is the density of
element e, and ρmin is the minimum relative density of a single
element. ve stands for the volume of element e. ke is the element
stiffness matrix. V* denotes the upper limit of the allowable material
volume.

Pix2pix algorithm, proposed by Phillip Isola of the AI
Laboratory in Berkeley, is a typical image migration algorithm
based on GAN [11]. The pix2pix algorithm consists of two
components: a generator network and a discriminator network.
The generator network takes an input image and attempts to
generate a corresponding output image, while the discriminator
network evaluates the output image to determine whether it is a

qualitied image or not, according to the training data. During the
training process, the generator network is trained to generate output
images that the discriminator network is unable to distinguish from
qualified images, while the discriminator network is trained to
accurately differentiate between qualitied and unqualified images.
Figure 2 shows the network structure of pix2pix, which includes
8 convolution layers and 7 deconvolution layers. In order to better
retain the information of the input image, a jump connection
structure is added between the convolution layers and the
deconvolution layers.

In this paper, we are using pix2pix to accelerate the topology
optimization process. This approach is divided into the following
three steps:

i. We calculate the strain energy for each element by

ce � ue
Tkeue (12)

from the first iteration of topology optimization through (multi-
patch) IGA, since the strain energy is a part of the structural
compliance, and it reveals the sensitivities of the objective
function to a certain extent. The strain energy matrix is
normalized and then scaled as an input image for pix2pix.

ii. The pix2pix model is trained together with the well-calculated
topology optimization results served as reference for the
discriminator. In the model, the strain energy data is used as
the training image, and the topology optimization results
obtained by the sequential integer programming and
canonical relaxation algorithm proposed by Liang and Cheng
[25], are used as the reference results, since it provides clear
black-white results.

iii. Based on the well-trained pix2pix model obtained in step ii, for
the topology optimization problem that needs to be predicted,
we carry out isogeometric analysis, and input the strain energy
heat map into the trained pix2pix model. According to the input,
the model will quickly output the probable distribution of the
element densities of the structure. Finally, we convert this
distribution into topology optimization results.

3.2 Data training and testing

As illustrated in Figure 3, the pix2pix network is trained by a
single-patch cantilever beam example. In order to provide training
and testing samples for the pix2pix model, and to get as many data as
possible, we fix the left side of the cantilever beam and apply a
variable concentrated force at the midpoint of the right side of the
beam, with a force magnitude of F � 1. Furthermore, different loads,
load types, boundary conditions and constrains are also considered
to perform topology optimization. Together with the strain energy
in the first isogeometric analysis, the final topology optimization
results are labeled, then be used to train the pix2pix model.

In this study, we trained the input data using a batch size of 1 and
a maximum epoch of 200, and the final prediction result comprises
images measuring 256 × 256 × 1. To verify the effectiveness of the
training process, we take a glance during the early stage of the
training process, as shown in Figure 4. Here we randomly choose
3 cases, each case is lined by a column. The top row is the element-
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wise strain energy heat map, the middle row describes the predicted
results by pix2pix, and the bottom row shows the reference results
obtained by traditional IGA topology optimization. Note that this is
just the early stage of the training process, as training goes on, the
predicted results are quite distinguishable.

3.3 Special treatment for multi-patch cases
and post-processing

Formulti-patch topology optimization in IGA, the Nitsche’s method
is firstly adopted to couple patches. Since themesh resolutions of different
patches are usually different, the magnitudes of the sensitivity values
corresponding to meshes of different densities are also different. If these
sensitivities are directly substituted into the topology optimization
algorithm, it could lead to inappropriate optimization results,
especially along the coupling interfaces. To overcome this problem, a
simple method to filter the interface sensitivities is used [26].

The deep learning toolbox is commonly used as a black box, it
just learns from big data and predicts a result according to a

given input, thus it is difficult to impose direct constrains, such
as volume constrains in our topology optimization applications.
In our practice, the pix2pix accepts a heat map of the element-
wise strain energy matrix, then feeds back an element-wise
density distribution matrix. To address this matter, we firstly
sort the densities by their numbers, then keep and drop out the
elements according to the desired volume constrain.

4 Numerical examples

4.1 Cantilever beam

In this study, we present the results of testing our proposed
method on a cantilever beammodel, the left side of the beam is fixed,
and the bottom right is subjected to a downward concentrated force.
The model is fixed at the left end and subject to a concentrated force
at the lower right corner. The mesh is shown in Figure 5. The
topology optimization result obtained by the pix2pix method is
shown in Figure 6. By comparing the result obtained through
normal calculation (Figure 7) and our proposed method, we
observed that the material topology of both results is similar,
with the pix2pix result exhibiting some jagged boundaries and
finer details.

However, the pix2pix result accurately reflects the material
distribution. Our method demonstrates significant potential for
accelerating the optimization process, while simultaneously
maintaining high accuracy and generalizability.

4.2 One-quarter ring

As our next example, the proposed method is used to test the
one-quarter ring model. The bottom of the ring is fixed to the
ground, and its upper left corner is applied by a concentrated
force. This model serves to evaluate the efficacy of isogeometric
analysis for models with curved edges. The mesh partitioning is
presented in Figure 8, and the topology optimization result

FIGURE 2
Pix2pix network structure.

FIGURE 3
Cantilever beam example for data training.
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obtained through the application of pix2pix can be found in
Figure 9.

Despite the inherent limitations of the method, such as the
occurrence of unsmoothness at certain boundaries and occasional
holes at individual locations, the pix2pix results are still
commendable, especially when compared to the reference result
obtained through conventional calculations in Figure 10. However,
it is worth noting that the use of the element-wise strain energy as
the sole predictor in pix2pix does make it challenging to obtain
entirely smooth boundaries even with post-processing.

4.3 Double-beam structure

To further assess the performance of our proposed method in
multi-path scenarios, we conducted experiments on a divided
cantilever beam model, as depicted in Figure 11. The upper
patch of the beam is subjected to a sparser mesh division, while
the lower patch is subjected to a denser mesh division. The result
obtained from pix2pix prediction are presented in Figure 12.

Notably, the two patches exhibit a seamless connection, indicating
that the pix2pix prediction is able to maintain the smoothness of the

FIGURE 4
A glance during the early stage of the train process. (A) element-wise strain energy heat map. (B) predicted results by pix2pix. (C) reference results.

FIGURE 5
Cantilever beam mesh.

FIGURE 6
Cantilever beam topology optimization result by pix2pix.
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overall structure despite the differing mesh divisions in the separate
patches. These results highlight the potential of our method to provide
accurate predictions for complex,multi-patchmodels. The approachwe
propose not only resolves the topology optimization problem for the
training model but also accomplishes a range of topology optimization
problems within a shorter computational time compared to
conventional optimization procedures.

4.4 Double-ring structure

The double one-quarter ring problem, as depicted in the
accompanying Figure 13, has been partitioned into two distinct

FIGURE 7
Cantilever beam topology optimization result for reference.

FIGURE 8
One-quarter ring mesh.

FIGURE 9
One-quarter ring topology optimization result by pix2pix.

FIGURE 10
One-quarter ring topology optimization result for reference.

FIGURE 11
Double-beam model made by two patches.
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segments, with corresponding mesh divisions, in order to address its
computational complexity. However, despite its utility, the performance
of the pix2pix model in predicting the outcome of this problem is
suboptimal, as evidenced by the accompanying predicted outcome of
Figure 14. The model’s limited efficacy is characterized by a heavily
jagged boundary and localized discontinuities arising from a lack of edge
connectivity, which compromises the accuracy of its predictive capacity.

Despite these shortcomings, the material distribution resultant from
this exercise provides a clear conceptual framework for further analyses
and serves as a dependable guide for subsequent investigations. By
generating a clear and coherent spatial representation of the material
distribution, it enables researchers to identify relevant features of the
problem and evaluate its overall complexity. Thus, while the pix2pix
model may not be fully optimized for this task, the insights gleaned from
this exercise demonstrate its potential for application in a range of related
problems, and serve as a stepping stone for further research in this area.

5 Conclusion

In this article, we provide a comprehensive evaluation of the
isogeometric multi-patch topology optimization based on the
pix2pix method and discuss its potential applications in the
design of complex structures.

The Nitsche’s method is adopted for multi-patch coupling,
enabling isogeometric analysis (IGA) to analyze complex
geometries. Within the IGA framework, element density is
treated as the design variable, resulting in topology optimization
geometries with smooth, curved boundaries that are used as training
data for the generative adversarial network (GAN). Finally, the
pix2pix algorithm is used to quickly evaluate a complex model
by inputting a heat map of element-wise energy. However, due to the
limitations of GANs, controlling the volume constraint directly is
not straightforward. Therefore, a post-processing step is applied by
sorting and filtering the element densities. Our results demonstrate
the efficiency and the effectiveness of the proposed approach.

Overall, the combination of IGA, Nitsche-based multi-patch
technique, and pix2pix image-to-image translation provides a
powerful tool for engineers and designers to efficiently and
effectively optimize complex engineering designs, and we believe
that it represents an exciting area of research for topology
optimization with a wide range of potential applications.
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