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Thermodynamics of charged and slowly rotating black holes in 4D Gauss–Bonnet
gravity has attracted a great deal of attention due to its intrinsic complications and
rich phase structures. In this paper, we revisit the thermodynamics of charged and
slowly rotating black holes and provide the correct thermodynamic volume and
entropy. Thermodynamic geometries are a powerful tool to study the
microstructure of black holes. Based on the Hessian matrix of the black hole
mass, we introduce thermodynamic geometric methods and give its scalar
curvature (Ruppeiner and Weinhold). Furthermore, we investigate the
Joule–Thomson expansion of slowly rotating black hole in 4D Gauss–Bonnet
gravity in this research study. Interestingly, we explicitly state that the expression of
the Joule–Thomson coefficient is obtained from the basic formulas of enthalpy
and temperature. Then, we obtain the isenthalpic curve in the T − P graph and
demonstrate the cooling–heating region by the inversion curve. The inversion
temperature and inversion curves are obtained, and we investigate the similarities
and differences between van der Waals fluids and charged fluids.
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1 Introduction

According to the classical view, black holes (BHs) are compact objects and can absorb
matter and energy of all natures without skipping anything out. These bald objects [1, 2]
basically were defined on the basis of very few criteria such as mass, angular momentum, and
electromagnetic charges. In visitation of quantum field theory, specifically in the background
of the curved spacetime, the fundamental link between the BH area, its entropy [3], and the
occupied temperature related to the gravity on its surface [4] was discussed. Moreover, it was
depicted that the radiation emission is similar to the BH body’s spectrum. All these
hypotheses direct toward the evolution of BH thermodynamics, developing the pioneer
semiclassical interpretation of gravitational hypotheses and a deepest view in the
apprehension of a feasible quantum explanation of gravitational interactions [5–10].

The motivation behind the derivation of a well-defined D → 4 limit for 4D
Gauss–Bonnet gravity is based on the interest to test the alternative of Einstein’s general
theory of relativity. Slowly rotating black hole (SRBH) solutions have been constructed in 4D
Gauss–Bonnet gravity via asymptotically flat, de Sitter, and anti-de Sitter spacetime [11, 12].
Furthermore, a charged rotating BH has been developed in 4D Einstein–Gauss–Bonnet
(EGB) gravity using the complex co-ordinate transformations. Among the higher-curvature
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gravities, the so-called EGB gravity is a broadly studied theory,
whose Lagrangian includes Einstein’s terms with the the
Gauss–Bonnet concoction of quadratic curvature terms. On the
other hand, the Gauss–Bonnet term yields the non-trivial
gravitational dynamics in the D ≥ 5 dimension. A common class
of reconstructions of GR is directed at the higher-curvature theories,
in which it is assumed that a sum of powers of the curvature tensor is
proportional to stress energy and extended to obtain the linear
relationship between spacetime curvature (the Einstein tensor) and
stress energy in GR [13–16]. We study the null geodesics to examine
the shape of the shadow cast by a rotating charged BH in 4D EGB
gravity [17, 18] and also discuss their horizon properties and casted
shadows. The phenomenon of BH shadows along the emission
energy, and the horizon structure has been investigated to see the
influence of the Gauss–Bonnet term and BH charge on the event
horizon, effective potential, shadow, and energy emission rate, and
the results are compared to the non-rotating counterpart. In contrast
to Einstein’s theory, 4D EGB gravity is the causal structure, which
deviates from its parallel, and the region around the singularity
becomes time-like, whereas it is space-like for Einstein’s gravity [19,
20]. Finally, it is worth mentioning that taking α → 0, GR results in
4D are recovered. In addition, one can observe from the complete
graphic analysis that GR provides a more compact and stable model
in distinction with EGB. Nevertheless, the same can be reached in
the arena of EGB gravity taking smaller values of the coupling
constant α.

While studying the thermodynamic features of AdS BHs, it
became known that the cosmological constant could be treated as
thermodynamic pressure, whereas conjugate variables as the
thermodynamic volumes can further be utilized to harmonize the
charged AdS BHs with the van derWaals gas–liquid systems [21]. At
this time, the inclusion of the cosmological constant in the BH
thermodynamics takes place [22–25], which is used in the formation
of the first law of BH thermodynamics, having homogeneity with the
Smarr relation. In the first law of thermodynamics, if the
cosmological constant is treated as the thermodynamics pressure,
then the mass of the BH is elaborated as the enthalpy. These
hypotheses provide the basis for the detailed discussion of
thermodynamic features of BHs in the enhanced version of phase
space through its expanded designation of thermodynamic phase
space [26–29].

Ökcü and Aydyner [30, 31] creatively extended the study on
the Joule–Thomson expansion for charged AdS BHs. In view of
the classical thermodynamics, the Joule–Thomson expansion
attributes to the gas expansion process from high temperature
to low temperature via penetrable plugs, which may be named as
an isenthalpic process [32–34]. Therefore, this inventive research
was enhanced for all types of BH geometries; for more details, one
can consult the research in [35–39]. Since the origination of work
by Gibbs and Caratheodory, the study of thermodynamic
geometries remained a topic of hot research up till now. The
outcomes are approached by two dissimilar ways [33]. The first
one consists of the inauguration of metric formations on the
space of thermodynamic equilibrium states, while the second one
is based on the use of contact formation of the thermodynamic
phase space. Weinhold, in his work, instigated a timely
equilibrium state on a metric elaborated as the Hessian of the
inner thermodynamic energy, while derivatives are calculated

relative to the important thermodynamic variables. Ruppeiner
[40] inaugurated a metric with conformal equivalence to
Weinhold’s metric, having the inversion temperature as a
conformal factor. The outcomes resulted in the application of
the Ruppeiner geometry and have been disclosed in [41, 42]. The
applications of this approach in the BH thermodynamics are
found in [43, 44]. Hermann [45] and Mrugala [46–48], while
developing the second approach, incorporated the natural
contact formation of the phase space. All the thermodynamic
variables (extensive and intensive) are selected with the
accumulation of thermodynamic potential to develop the
understandable co-ordinates in phase space. The space of
thermodynamic equilibrium state is a subspace of phase space
developed by the smooth embedding mapping, say ϕ (ϕ:
equilibrium state → phase space). This statement directly
shows that each system is equipped with its own space
(equilibrium state). Alternatively, in phase space, it is
applicable to introduce the basic Gibbs 1-form, which, when
forecasted upon the equilibrium state with the withdrawal of φ,
produces the first law of thermodynamics and the conditions for
thermodynamic equilibrium [49, 50].

This paper is organized as follows: In Section 2, we explain the
charged four-dimensional Gauss–Bonnet BH geometry, and further
discussion is divided in two sections. In Section 2.1, we discuss the
thermal stability of geometries, and in Section 2.2, we explore the
thermal geometries. In Section 3, we study slowly rotating BHs in 4D
Guass–Bonnect gravity. In Section 4, we study the Joule–Thomson
expansion for the SRBH in 4D Guass–Bonnet gravity. In Section 5,
we summarize our study.

2 Charged four-dimensional
Gauss–Bonnet black holes

The Einstein–Hilbert action for the GBT is formulated as [51]

I � 1
16πG

∫ d4x
���−g√

R + α RγδζξR
γδζξ − 4RγδR

γδ + R2( )[ ], (1)

where R is a curvature scalar. By re-scaling the GB coupling constant
α, i.e., α/D − 4, and taking the limit D → 4 in the GB term, one can
obtain the solution of four-dimensional GBBH [52–54], and the
metric element is given by

ds2 � −f r( )dt2 + dr2

f r( ) + r2dθ2 + r2sin2θdϕ2, (2)

with the metric function f(r) that can be written as

f r( ) � 1 +
r2 1 −

�����������������������
4α a

r2 −
8M

�
ϕ

√�
π

√
r4 + 2M

r3 − Q
r2( ) + 1

√( )
2α

. (3)

The BH solution in Eq. 3 contains the Gauss–Bonnet mass M,
charge Q, cloud of string parameter a, and coupling constant α,
which are considered to be positive. In the Lorentzian distribution,
the mass–density relation of a static and spherically symmetric
gravitational source is ρϕ �

�
ϕ

√
M

π3/2(πϕ+r2)2, in which ϕ represents the
strength of the non-commutative parameter in the Lorentzian
distribution. Analytical quantities in this case were also discussed,
and we noted that the SRBH metric in 4D Gauss–Bonnet gravity is
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regular everywhere except r = 0, where a > 0. In [53, 54], it was
shown that in de Sitter spacetimes, the examined BH horizon is
directly analogous to the charged Nariai models (derived from the
Reissner–Nordstrom–de Sitter metric). For large values of the 4D
Gauss–Bonnet coupling constant α, de Sitter consequences did not
overlap in the permitted mass with the GR results. Finally, it is worth
mentioning that taking α → 0, GR results in 4D are recovered. In
addition, one can observe the complete graphic analysis where GR
provides a more compact and stable model in contrast with EBG.
Nevertheless, the same can be reached in the arena of EGB gravity
taking smaller values of the coupling constant α. We will have a
discussion about the roots of f(r) in order to study the effects of
parameters α and ϕ on our solutions. We can analyze about some
other physical quantities such as mass, temperature, and heat
capacity. First of all, we discuss the conserved thermodynamic
features of the BH. Then, we calculate mass, temperature, and
some other thermodynamic amounts as a function of entropy.
From Eq. 3, we can obtain the mass M by taking f(r) = 0 as

M �
��
π

√ −arh2 + α + Qrh2 + rh2( )
2

��
π

√
rh − 4

��
ϕ

√( ) , (4)

where r0 notions are the event horizon of the BH. The thermal
property (temperature) of BHs can be determined as

T � 8
��
π

√
rh

��
ϕ

√
a − Q − 1( ) + πrh2 −a + Q + 1( ) − πα

4πrh
��
π

√
rh − 4

��
ϕ

√( )2 , (5)

where a and α are constants. The entropy of the BH is given by

s � πr2h. (6)
We could find the mass of the BH in terms of its entropy s and

the radius of curvature related to the cosmological constant,
obtained as

M s, α, Q( ) � s −a + Q + 1( ) + πα

2
��
π

√ �
s

√ − 4
��
ϕ

√( ) . (7)

Using the well-known expression T � zM
zs , one can deduce the

temperature of the slowly rotating BH as

T s, α, Q( ) � 8
�
s

√ ��
ϕ

√
a − Q − 1( ) + s −a + Q + 1( ) − πα

4
��
π

√ �
s

√ �
s

√ − 4
��
ϕ

√( )2 . (8)

Equation (8) will be next used to obtain better results regarding
the BH solution. From Figure 1, one can see that the temperature in
terms of horizon radius remains positive and provides a stable
solution for the fixed values a and α.

2.1 Thermal stability

The thermal stability of the BH can be analyzed by finding the
heat capacity and divergence that provide the positive and negative
roots. The positive sign shows the stability, and the negative sign
shows the instability of BHs disregarding the values of involved
parameters. We extract another useful feature of the heat capacity
relation in the scenario of phase transition interpretations through
its divergence [55–57]. The heat capacity expression can be
calculated as

C � T
z2M
z2S

� 2s 4
��
ϕ

√ − �
s

√( ) 8
�
s

√ ��
ϕ

√ −a + Q + 1( ) + s a − Q − 1( ) + πα( )
s3/2 a − Q − 1( ) − 12s

��
ϕ

√
a − Q − 1( ) − 4πα

��
ϕ

√ + 3πα
�
s

√ ,

(9)
where

z2M

zS2
� s3/2 a − Q − 1( ) − 12s

��
ϕ

√
a − Q − 1( ) − 4πα

��
ϕ

√ + 3πα
�
s

√

8
��
π

√
s3/2

�
s

√ − 4
��
ϕ

√( )3 .

(10)
Moreover, the physical and non-physical solutions of BHs can

be discussed by analyzing the roots of temperature. Concerning the
aforementioned discussion, one may wish to have an analysis of the
roots and divergence of heat capacity. From Figure 2, one can
observe that the heat capacity in terms of horizon radius is
positive within the range 0≤ rh ≤ 1.5 (give stable region) but
remains negative in the range 1.5≤ rh ≤ 3.30 (give unstable

FIGURE 1
Plot of temperature in terms of horizon radius with different
values of ϕ.

FIGURE 2
Plot of heat capacity in terms of horizon radius with different
values of ϕ.
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region). Furthermore, the value of rh = 3.30 provides the stable
solution for the fixed parameters a and α. We calculate the roots of
heat capacity termed as bound points, as follows:

rh,BP +( ) � (πα −a + Q + 1( ) − 8
����������������������������������
ϕ − a − Q − 1( )3( ) 16ϕ −a + Q + 1( ) + πα( )√(

−4ϕ −a + Q + 1( )2))1
2/ ��

π
√ −a + Q + 1( ),

rh,BP −( )� −(πα −a + Q + 1( ) − 8
����������������������������������
ϕ − a − Q − 1( )3( ) 16ϕ −a + Q + 1( ) + πα( )√(

−4ϕ −a + Q + 1( )2))1
2/ ��

π
√ −a + Q + 1( ). (11)

Here, the subscript B.P shows the bound point. As specified
bounds, depending on the metric parameters, we introduce an
admissible domain for the event horizon radius. After the
investigation of geometric quantities of the extracted solutions,
we examine the thermal stability of the SRBH, which is thermally
stable in the mentioned range. We obtain the two real possible roots
of heat capacity. For real roots, they must satisfy the condition α > 0
and a > 0. Interestingly, in Figures 3, 4), bound points are increasing
and decreasing functions of the fixed parameters, i.e., α > 0 and a > 0.

These points provide the information of the stable solution in the
given range 0≤ rh ≤ 10 and 0≤ rh ≤ 4, respectively. Furthermore, one
can find the divergent points calculated as

rh,DP +( ) � 1��
π

√ 1

−a + Q + 1( )2( ) − 2 a − Q − 1( ) 24ϕ −a + Q + 1( ) + πα( )[
+ −a + Q + 1( )2 π2α2 − 160παϕ a − Q − 1( ) + 2304ϕ2 −a + Q + 1( )2( )( )/(π3α3 a − Q − 1( )3 + 272π2α2ϕ −a + Q + 1( )4 − 11520παϕ2 a − Q − 1( )5

+110592ϕ3 −a + Q + 1( )6 + 32π3/2
����������������������������������
α3ϕ a − Q − 1( )7 16ϕ −a + Q + 1( ) + πα( )2√ )1

3

+(π3α3 a − Q − 1( )3 + 272π2α2ϕ −a + Q + 1( )4 − 11520παϕ2 a − Q − 1( )5

+110592ϕ3 −a + Q + 1( )6 + 32π3/2
����������������������������������
α3ϕ a − Q − 1( )7 16ϕ −a + Q + 1( ) + πα( )2√ )1

3]1
2

,

rh,DP −( ) � − 1��
π

√ 1

−a + Q + 1( )2( ) − 2 a − Q − 1( ) 24ϕ −a + Q + 1( ) + πα( )[
+ −a + Q + 1( )2 π2α2 − 160παϕ a − Q − 1( ) + 2304ϕ2 −a + Q + 1( )2( )( )/(π3α3 a − Q − 1( )3 + 272π2α2ϕ −a + Q + 1( )4 − 11520παϕ2 a − Q − 1( )5

+110592ϕ3 −a + Q + 1( )6 + 32π3/2
����������������������������������
α3ϕ a − Q − 1( )7 16ϕ −a + Q + 1( ) + πα( )2√ )1

3

+(π3α3 a − Q − 1( )3 + 272π2α2ϕ −a + Q + 1( )4 − 11520παϕ2 a − Q − 1( )5

+110592ϕ3 −a + Q + 1( )6 + 32π3/2
����������������������������������
α3ϕ a − Q − 1( )7 16ϕ −a + Q + 1( ) + πα( )2√ )1

3]1
2

.

(12)

We discuss the divergent points in Figures 5, 6), and there are
also increasing and decreasing functions for different ranges of the
fixed parameters a and α. Divergence points provide the information
about the stable solution in left and right panels within range 0≤
rh ≤ 10.

FIGURE 3
Plot of bound points in terms of a with different values of α.

FIGURE 4
Plot of bound points in terms of a with different values of α.

FIGURE 5
Plot of divergent points in terms of a with different values of α.

FIGURE 6
Plot of divergent points in terms of α with different values of a.
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2.2 Thermal geometries

In this section, we study the thermodynamic geometries
developed by Ruppeiner and Weinhold for BHs [40–42]. We
calculate the thermodynamic geometries such as Ruppeiner and
Weinhold [58] for charged BHs in 4D Gauss–Bonnet gravity. In
spite of all the numerous works in BH thermodynamics, a
detailed microstructure of BHs was still missing. Here, we
explore and study the general quantities of thermodynamic
geometry for the considered BH. Weinhold’s and Ruppeiner’s
formalisms are used in order to justify the phase transition for the
charged BH in 4D Gauss–Bonnet gravity [59–63]. Furthermore,
based on the Hessian matrix of the BH mass, we introduce
thermodynamic geometric methods and give its scalar
curvatures (Ruppeiner and Weinhold). Furthermore, the
graphical behaviors of these scalar curvatures with the horizon
radius are investigated. The illustration of the Weinhold
geometry can be written as

gij
W � zizjM S, α,ϕ( ). (13)

Metric in terms of mass function can be expressed as

ds2W � MSSdS
2 +Mααdα

2 +Mϕϕdϕ
2 + 2MSαdSdα

+2MSϕdSdϕ + 2Mαϕdαdϕ, (14)
whose matrix form is given by

MSS MSα MSϕ

MαS Mαα 0
MϕS 0 Mϕϕ

⎛⎜⎜⎝ ⎞⎟⎟⎠.

We calculate the Weinhold scalar curvature (RW) using the
aforementioned equations. The mathematical expression can be
written as

RW � 4
��
π

√
4

��
ϕ

√ − ��
π

√ ���
rh2

√( ) 4
��
π

√ ����
rh2ϕ

√ + πrh2 − 96ϕ( )
12

��
ϕ

√ − ��
π

√ ���
rh2

√( )2 −πarh2 + πα + πQrh2 + πrh2( )
. (15)

One can observe in Figure 7 that the curvature scalar of the
Weinhold geometry for the charged BH provides the stable region in
the given range 0.22≤ rh ≤ 0.44. Furthermore, we consider the

Ruppeiner geometry that is conformal to the Weinhold geometry.
The Ruppeiner curvature scalar is determined as

ds2R � ds2W
T

. (16)

The mathematical expression for the Ruppeiner geometry is as
follows:

R RUP( ) � 16π3/2rh
��
π

√
rh − 4

��
ϕ

√( )2 4
��
ϕ

√ − ��
π

√ ���
rh

2
√( )

4
��
π

√ ����
rh

2ϕ
√

+ πrh
2 − 96ϕ( )/ 12

��
ϕ

√ − ��
π

√ ���
rh2

√( )2
−πarh2 + πα + πQrh

2 + πrh
2( ) πrh

2 −a + Q + 1( )(
+8 ��

π
√

rh
��
ϕ

√
a − Q − 1( ) − πα). (17)

Obtaining the analytical solution of Eq. 14 with respect to rh is
not easy. In order to investigate the horizons, we plot the graph for
the Ruppeiner geometry in Figure 8. Furthermore, for studying the
effects of the metric function versus radial co-ordinates, it is
observed that (Figure 8) for the small values of the geometrical
mass, the metric function has only one root. Furthermore, the effects
of the mass on the horizon could be divided into three regions such
as 0≤ rh ≤ 0.30, 0.30≤ rh ≤ 0.44, and 0.44≤ rh ≤ 0.50. After that, point
r0 = 0.44 will have an increasing function, and it will provide the
stable solution of the geometrical mass.

3 Slowly rotating BHs in 4D
Gauss–Bonnet gravity

The 4D GBT has an interesting and phenomenological match
with the GR [62]. The conformal metric with gμ] → e−2ϕgμ], yielding
the 4D Gauss–Bonnet action, reads to be [63]

SG4 � α∫d4x
���−g√ 1

2
ϕG − Gμ]∇μϕ∇]ϕ − 1

8
∇ϕ( )2( )2 − 1

2
∇ϕ( )2□ϕ[ ].

(18)
No further conjectures regarding specific solutions to higher-

dimensional background spacetimes are necessary. We develop the
slowly rotating BH models in the 4D GBT as

FIGURE 7
Plot of the Weinhold geometry in terms of horizon radius with
fixed values α and a.

FIGURE 8
Plot of the Ruppeiner geometry in terms of horizon radius with
fixed values α and a.
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ds2 � −f r( )dt2 + dr2

h r( ) + 2ar2p r( )sin2 θdtdϕ

+ r2 dθ2 + sin2 θdϕ2[ ]. (19)

In this development, we are interested in developing
Schwarzschild-like solutions, where h(r) = f(r). By setting x =
cos(θ), our line element can be written as [61]

ds2 � −f r( )dt2 + dr2

f r( ) + 2ar2p r( ) 1 − x2( )dtdϕ
+ r2

dx2

1 − x2
+ 1 − x2( )dϕ2[ ]. (20)

Utilizing the aforementioned metric, we can solve the metric
function for f(r) through the geometric expression [61]:

f r( ) � 1 +
r2 1 +

�����������
1 + 4αΛ

3 + 8αM
r3

√( )
2α

. (21)

4 Joule–Thomson expansion for the
SRBH in 4D Gauss–Bonnet gravity

A classical physical quantity Joule–Thomson expansion is
one of the well-known processes to discuss the temperature
change of gas from the high-pressure region to the low-
pressure region through a porous plug [64, 65]. It mainly
explores the process of gas expansion that expresses the
temperature decrease (cold effect) and temperature increase
(heat effect); during the whole expansion, enthalpy is kept
constant. This change depends on the Joule–Thomson
coefficient, which is given by [32–34]

μJT � zT

zP
( )

H

� 1
Cp

T
zV

zT
( )

p

− V⎡⎢⎣ ⎤⎥⎦, (22)

where the heat capacity at constant pressure can be written as

cP � zS

zT
( )

P

. (23)

The entropy is obtained at event horizon by the area law as
follows [34–37]:

S � πr20, (24)
and

P � − Λ
8π

� 3
8πL2

. (25)

At this stage, it is straightforward to see that the aforementioned
BH properties satisfy the following Smarr relation:

dM � TdS + VdP + φdα.

From the aforementioned relation, thermodynamic parameters
can be defined as

T � zM

zS
( )

P,α

, V � zM

zP
( )

S,α

and φ � zM

zα
( )

S,P

. (26)

Using f(r) = 0, the mass of the BH can be written as

M � 3α + 8πPr40 + 3r20
6r0

. (27)

Here, r0 denotes the event horizon, which we will discuss in
further calculations. From Eq. 21, one can obtain the Hawking
temperature in terms of horizon radius as

T �
r0 1 +

������������
1 + 8αM

r30
− 32παP

3

√( )
4πα

− 3M

2πr20
������������
1 + 8αM

r30
− 32παP

3

√ . (28)

One can analyze the behavior of isenthalpic curves
(thermodynamic property) from Figures 9, 10 for fixed values
α = 0.4 and α = 0.6 in the case of the SRBH in 4D
Gauss–Bonnet gravity. The isenthalpic curves shift to the
cooling region as we increase the value of α. We observed that
the converging values of M along r0 isenthalpic curves shrink to
zero in the SRBH in 4D Gauss–Bonnet gravity. Furthermore, the
inversion curves separate and distinguish the plane of

FIGURE 9
Plot of isenthalpic curves with fixed value α =0.4.

FIGURE 10
Plot of isenthalpic curves with fixed value α =0.6.
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isenthalpic curves into two regions, namely, cooling and heating
regions. Analogy between the cosmological constant Λ and the
thermodynamics pressure is associated with the conjugate
property recognized as volume. This relation can be expressed as

V � 4πr30
3

. (29)

The potential of BHs is shown as

φ � 1
2r0

. (30)

The pressure reads are shown as

P � 3 −α + 2Mr0 − r20( )
8πr40

. (31)

From the temperature relation, one can calculate the horizon
radius as

r0 � 1
2

�
3
2

3

√
−3

�������������
M2 32παP+1( )√

π 32παP2 −3P( ) + 32αMP

32παP2 −3P+
3M

π 32παP2 −3P( )[ ]1
3

.

(32)

The inversion curves related to the horizon radius shown in
Figure 11 show the positive behavior and satisfy the μJT condition
for fixed α = 0.02, 0.04, 0.06, & 0.08. We observe that the
inversion curves via the horizon radius are both positive.
From Eqs 22, 23, the Joule–Thomson expansion coefficient is
determined as

μJT � 4α3 + r60 2 − 8παP( ) + 6αr40 + 9α2r20
3πα 2α + r20( )2 . (33)

The cooling–heating regions are deduced by the sign of Eq. 33 in
Figures 12, 13. Because pressure always falls during expansion,
temperature changes the sign of coefficient μJT, which means that
a positive temperature change results in a cooling region and a
negative temperature change results in a heating region. As shown
previously, both the numerator and the denominator are always
positive if p > 0. So, there will be no singular or divergent point for
μJT. We have confirmed in our discussion that the expansion is
always positive and provides the regime of the cooling process. From
the definition of the Joule–Thomson expansion, we can extract the
inversion temperature as

FIGURE 11
Plot of horizon radius in terms of pressure.

FIGURE 12
Plot of the Joule–Thomson coefficient in terms of horizon
radius.

FIGURE 13
Plot of the Joule–Thomson coefficient in terms of horizon radius.

FIGURE 14
Plot of inversion temperature in terms of r0 with the fixed value of
pressure P.
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Ti � −2α3 + r60 2 − 8παP( ) + 3αr40 3 − 16παP( ) + 3α2r20
12παr0 2α + r20( )2 . (34)

Figure 14 shows the behavior of inversion temperature with
increasing values of α and setting p = 0.4 and p = 0.8 for the SRBH
in 4D Gauss–Bonnet gravity. The temperature increases under
the region 0 ≤ r0 ≤ 5, which provides the thermodynamically
stable region. Figure 15 represents the Ti − Pi plane; in this figure,
we investigated that the curves are not closed along the minimum
inversion curves and are comparable to the van der Waals fluids.
The inversion temperature is inversely proportional to the value
of α in the SRBH, and it is habituated to separate the cooling and
heating regions. In three trajectories, the position of the inversion
point (Ti − Pi) shifts to the higher values with the increase in
parameter α.

5 Conclusion

In this work, we study the fact that the modified charged and
slowly rotating BHs contain some required thermodynamic
characteristics, such as entropy and temperature. Factually,
BH is a thermodynamic system containing Hawking
temperature proportional to its surface gravity on the
horizon area. Thermal stability of the BH system is a major
characteristic, which may directly be related to the heat capacity
[64, 65]. In this paper, we considered two cases for BHs, the first
one is thermal geometry and the second is the Joule–Thomson
expansion. In Figures 1, 2, we graphed the temperature and heat
capacity, and these results behaviorally depict the local stability
of the BH systems.

We compare how physical quantities of the solutions modified by
varying coupling strengths of the 4DGauss–Bonnet theory (GBT) relate
to standard Einstein’s gravity results. We considered a negative
cosmological constant in the 4D Gauss–bonnet theory, which
necessarily leads to the minimum mass of the BH solution. The
leading order in the rotation parameter is used to develop the BH
solutions; here, we analyzed the thermodynamic properties of this BH
solution. We also observed that, for a large value of the 4D

Gauss–Bonnet coupling constant, the de Sitter solution did not
overlap the recognized mass of the GR case. However, the new 4D
EGB theory as an alternative to Einstein’s theory is attracting strong
attention. In this structure, there are extensive works to support the
dedication and perspicacity of the nature of the new 4D EGB theory.

We studied the bound and divergent points in Figures 3–6,
which are increasing and decreasing functions. With the increasing
values of α, a, the BH system turns more stable, whereas the
divergence takes place at smaller values of α. So, the instability of
BHs increases for smaller values of α. Thermodynamic geometries
named as Weinhold and Ruppeiner for the compact system are
graphed in Figures 7, 8. Curvature scalars of Weinhold and
Ruppeiner geometries for charged BHs exhibit singularity and a
stable region with different values of α and a; in this view, we
investigated and depicted the thermodynamic phase transition.
Recently, we carried out a similar work by discussing the thermal
stability of BTZ-like BHs [66]. By comparing these works, we
concluded that charged BHs in 4D Gauss–Bonnet are thermally
stable and fulfill the thermodynamic geometrical quantities.
Moreover, this work may be beneficial for future research studies.

In the second part of our work, we have investigated the
Joule–Thomson expansion for the SRBH in 4D Gauss–Bonnet
gravity, where cosmological constant Λ is considered as pressure
and the BH mass as enthalpy. Furthermore, we have explored the
thermodynamic quantities of the SRBH in 4D Gauss–Bonnet gravity in
the extended phase space and obtained the equation of state [64]. We
have plotted the isenthalpic and inversion curves in the T − P plane and
deduced the cooling and heating regions for different values of α and
massM. It shows that, in contrast to van derWaals fluids, the inversion
curves are closed, and there is only one inversion curve.
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