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This article focuses on the investigation and computation of solutions to fuzzy
fractional-order Cahn–Hilliard and Gardner equations. The study hybridizes
the fuzzy Gardner and Cahn–Hilliard equation into two equations using hybrid
techniques and the concept of a parametric fuzzy number. To explore these
equations, a combination of a novel iterative approach and the Shehu
transformation is employed. The article presents detailed procedures for
computing a series of solutions to the fractional-order Cahn–Hilliard and
Gardner problem. The applied techniques not only offer precision,
simplicity, and efficacy but also outperform other existing technologies.
Additionally, several examples are solved to validate the proposed
theoretical solution.
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Introduction

In mathematics, fractional calculus is a useful tool for dealing with ambiguity,
recognizing emotional or confusing circumstances, and providing more general answers.
Physical models of real-world occurrences may contain significant uncertainty due to a
variety of variables. It appears that fuzzy sets can be used to replicate the uncertainty
caused by imprecision and ambiguity. If data involve uncertainty, we use it in the
medical, environmental, economic, physical, and social sciences. Zadeh investigated
these concerns when he contributed fuzziness to set theory in 1965. Fractional calculus
has risen in popularity over the last 20 years as a result of its numerous applications in
practical research [1–4]. In the behavior of the aforementioned system processes, there
are numerous examples of fuzzy uncertainty as opposed to stochastic uncertainty. Many
authors have focused on the theoretical foundations of fuzzy problems in recent years.
Fractional fuzzy differential equations can be used in civil engineering, population
models, electro-hydraulics models, and weapon systems, among others. Fractional fuzzy
differential equations are also studied in real-world contexts such as medicine [6],
practical systems [7], the golden mean [5], gravity, quantum optics [8], and engineering
phenomena. Zadeh [9] became familiar with fuzzy set theory for the first time. The idea
of a fuzzy number and its use in fuzzy controls [10] and approximation reasoning
problems [11] then became the subjects of research. It is challenging to effectively
represent a variety of circumstances using real numbers in data analysis. Later,
the fundamentals of fuzzy number arithmetic were specified by Mizumoto and
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Tanaka [12, 13], Dubois and Prade [14, 15], Nahmias [17], and
Ralescu [16]. They used a variety of intervals, such as ϱ-levels, 0 <
ϱ ≤ 1, [18], to compute the fuzzy number. It contains information
on fuzzy differential equations as well as the fundamental
concepts of non-crisp sets. Equations of differential
generalization are the recommended notions. Numerous
academics have shown interest in this novel idea. Applications
of fractional-order differential equations in real-world scenarios
are significant; they may be found in fields like engineering,
chemistry, and physics. The fractional differential equation is a
helpful tool for representing non-linear events in scientific and
engineering models. In applied mathematics and engineering,
partial differential equations (PDEs), particularly non-linear
PDEs, have been utilized to simulate a wide range of scientific
phenomena.

Fractional differential equations have received an immense
attention in the last two decades because of their ability to mimic
a wide range of occurrences in a variety of academic domains and
practical applications. Many physical applications in engineering
and science can be described using fractional differential equations,
which are particularly useful for a wide range of physical challenges.
Because these equations are represented by fractional linear and
non-linear PDEs, fractional differential equations must be solved
[19–21]. The most significant processes occurring in the world are
described by non-linear equations. Non-linear partial differential
equations remain a challenging topic in both applied mathematics
and physics, requiring the employment of a variety of methods to
arrive at creative approximations or precise solutions [22–25].
Fractional differential equations have been solved using a variety
of numerical and approximation methods. There have been several

FIGURE 1
The first graph demonstrates the two-dimensional fuzzy lower and upper branch graphs for the analytical series solution, while the second graph
illustrates the fractional-order differences between the two different series.

FIGURE 2
The first graph demonstrates the two-dimensional fuzzy lower and upper branch graphs for the analytical series solution, while the second graph
illustrates the fractional-order differences between the two different series.
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innovative ways for solving fractional differential equations recently,
some of which include the following: the iterative Laplace transform
method (ILTM) [27], differential transform method (FDTM) [26],
Adomain decomposition technique [29], variational iteration
transform technique [30], fractional Adomian decomposition
method (FADM) [28], natural decomposition technique [32], and
fractional homotopy perturbation technique [31]. The primary goal
of this article is to use the natural decomposition technique, one of
the most efficient approaches, to solve non-linear fractional
Cahn–Hilliard and Gardner equations. Natural decomposition
methods do not need discretization, linearization, perturbation,
or prescriptive assumptions to prevent round-off errors. The
KdV and modified KdV equations were combined to create the
Gardner equation [33], which is used to explain internal solitary
waves in shallow water. In physics, Gardner’s equation is often
applied in fields including quantum field theory, fluid physics, and
plasma physics [34, 35]. It also covers a variety of wave events in
solid and plasma states [36]. We quickly review the fractional
Gardner (FG) equation of the form

Dß
ε ] ℘, ε( ) + 6 ] − ϒ2]2( ) ∂]

∂℘ + ∂]3

∂℘3
� 0, 0< ß ≤ 1, (1)

where ϒ is a real constant. The wave function ](℘, ε) has the scaling
variables space (℘) and time (ε), the terms ] ∂]

∂℘ and ]2 ∂]∂℘ represent
non-linear wave steepen, and ∂]3

∂℘3 represents the wave dispersive
effect.

In 1958, Cahn and Hilliard [37] developed the Cahn–Hilliard
equation to represent the phase separation of a binary alloy at the
critical temperature. This equation is essential to several
outstanding scientific phenomena, such as phase separation,
phase-ordering dynamics, and spinodal decomposition. In this
context, the fractional Cahn–Hilliard (FCH) equation is
expressed as follows:

Dß
ε ] ψ, ε( ) − ∂]

∂ψ
− 6]

∂]2

∂ψ
− 3]2 − 1( ) ∂2]

∂ψ2
+ ∂4]
∂ψ4

� 0, 0< ß ≤ 1.

(2)
Several techniques are applied to analyze the Cahn–Hilliard and

Gardner equations, such as the Adomian decomposition method
[38], modified Kudryashov method [39], reduced differential
transform technique [40], residual power series technique [41],
and homotopy perturbation method [42].

The article is organized as follows: theBasic definitionsection
provides the basic definition of a fractional fuzzy set.
Methodology of the iterative transform method is described in
the Roadmap of the suggested techniquesection. The
Implementation section describes the application of numerical
fuzzy problems, which is followed by the conclusion.

Basic definitions

Definition 2.1. If ϖ: R ↦ [0, 1] denotes a fuzzy set, it is
understood to be a fuzzy set if the following main requirements
hold true [43–46]:

1. ϖ is normal (for some η0 ∈ R;ϖ(ϑ0) � 1);
2. ϖ is upper semi-continuous;
3. ϖ(ϑ1ω + (1 − ω)ϑ2)≥ (ϖ(ϑ1) ∧ ϖ(ϑ2))∀ω ∈ [0, 1], ϑ1, ϑ2 ∈ R,,

i.e., ϖ is convex;
4. cl{ϑ ∈ R,ϖ(ϑ)> 0} is compact.

Definition 2.2. The fuzzy number ϖ is a r-level set expressed as
[43–46]

ϖ[ ]r � ] ∈ R: ϖ ]( )≥ 1{ },
where r ∈ [0, 1] and ] ∈ R.

Definition 2.3. A fuzzy number’s parameterized variant is
represented as [ϖ (r), �ϖ(r)] such that r ∈ [0, 1] fulfills the
following assumptions [43–46]:

1. ϖ(r) is left continuous, left continuous at zero, non-decreasing,
and over bounded (0,1];

2. ϖ(r) is right continuous, right continuous at zero, non-increasing,
and over bounded (0,1];

3. ϖ(r)≤ �ϖ(r).

Definition 2.4. Suppose that there are fuzzy set numbers r ∈ [0, 1]
and Y [43–46] ρ̃1 � (ρ

1
, ρ1), ρ̃2 � (ρ2 , ρ2), then the additions,

subtractions, and multiplications, consequently, are defined as
follows:

1. ρ̃1 ⊕ ρ̃2 � (ρ1 (r) + ρ2 (r), ρ1(r) + ρ2(r));
2. ρ̃1 ⊖ ρ̃2 � (ρ1(r) − ρ2 (r), ρ1(r) − ρ2(r));
3. Y ⊙ ρ̃1 � (Y ρ1 ,Yρ1)Y≥ 0, (Yρ1,Y ρ1 )Y< 0{ .

Definition 2.5. the fuzzy mappings Θ: ~E × ~E ↦ R have fuzzy two
sets [43–46] ρ̃1 � (ρ1 , ρ1), ρ̃2 � (ρ2 , ρ2), then Θ-distances between
ρ̃1 and ρ̃2 is defined as

Θ ρ̃1, ρ̃2( ) � sup
r∈ 0,1[ ]

max | ρ1 r( ) − ρ2 r( )|, |ρ1 r( ) − ρ2 r( ) |{ }[ ].

Theorem 2.1. Consider a fuzzy valued function E: R ↦ ~E such that
E(γ0; r) � [E (γ0; r), �E(γ0; r)] and r ∈ [0, 1]. Then [43–46],

1. (γ0; r) and E(γ0; r) are differentiable functions, if E is a (1)-
differentiable function and

E′ γ0( )[ ]r � E ′ γ0; r( ), �E′ γ0; r( )[ ].
11. E (γ0; r) and �E(γ0; r) are differentiable functions, if E is a (2)-

differentiable function and

E′ γ0( )[ ]r � �E′ γ0; r( ),E ′ γ0; r( )[ ].
Definition 2.6. Assume that a fuzzy mapping
](r)gH � ](r) ∈ CF[0, s] ∩ LF[0, s]. The fuzzy gH-fractional
differentiability Caputo of the fuzzy value mappings nu is thus
written as [43–46]
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gHDß]( ) ε( ) � J r−ß
a1

⊙ ] r( )( ) γ( )
� 1
Γ r − ß( ) ⊙ ∫

ε

a1

ε1 − ϑ( )r−ß−1 ⊙ ] r( ) ϑ( )dϑ,
ß ∈ r − 1, r( ], r ∈ N, ε> a1.

The parametric values of ] � [] r(ε), �]r(ε)], r ∈ [0, 1] and ε10 ∈
(0, s), and Caputo fractional differential in the presence of fuzzy are
expressed as

Dß
i( )−gH] ε10( )[ ]

r
� Dß

i( )−gH ] ε10( ),Dθ
i( )−gH�] ε10( )[ ], r ∈ 0, 1[ ],

where r = [r]

Dß
i( )−gH ] ε10( )[ ] � 1

Γ r − ß( ) ∫
ε

0
ε − x( )r−ß−1 d

r

dxr
] i( )−gH x( )dx[ ]

ε�ε10
,

Dθ
i( )−gH�] ε10( )[ ] � 1

Γ r − ß( ) ∫
t1

0
ε − x( )r−ß−1 d

r

dxr
�] i( )−gH x( )dx[ ]

ε�ε10
.

Definition 2.7. Suppose that fuzzy mappings ~](ε) ∈ ~H
1(0, T) and

ß ∈ [0, 1], then the fuzzy gH-fractional differentiability
Atangana–Baleanu of fuzzy value mappings is expressed as

gHDß]( ) ε( ) � B ß( )
1 − ß

⊙ ∫t1

0
] ′ x( ) ⊙ Eß

−ß ε − x( )ß
1 − ß

[ ]dx[ ].
Thus, the parameterized formulation of ] �

[] r(ε), �]r(ε)], r ∈ [0, 1] and ε0 ∈ (0, s), and the fuzzy
Atangana–Baleanu operator is defined by

ABCDß
i( )−gH~] ε0; r( )[ ] � ABCDß

i( )−gH ] ε0; r( ), ABCDθ
i( )−gH] ε0; r( )[ ],

r ∈ 0, 1[ ],
where

ABCDθ
i( )−gH ] ε0; r( ) � B ß( )

1 − ß
∫t1

0
] i( )−gH′ x( )Eθ

−ß ε − x( )θ
1 − ß

[ ]dx[ ]
ε�ε0

,

ABCDθ
i( )−gH�] ε0; r( ) � B ß( )

1 − ß
∫t1

0
�] i( )−gH′ x( )Eθ

−ß ε − x( )θ
1 − ß

[ ]dx[ ]
ε�ε0

,

where B(ß) represents the function of normalization which is equal
to 1 when ß is supposed to be 0 and 1. Moreover, we assume that
form (i) −gH exists. Now, there is no requirement to consider the
differentiability of (ii) −gH.

Definition 2.8. Suggest a continuous real-value mapping Ψ, and
there is an inappropriate Riemann fuzzy integrable mappings
exp(−ωσ ) ⊙ ~](ε) on [0, + ∞). Then, the integral∫ 0+∞ exp(−ω

σ) ⊙ ~](ε)dε is recognized to be the Shehu fuzzy
transformation, and it is noted over the set of mapping [43–46]as
follows:

S � ~] g( ): ∃A, p1, p2 > 0, ~] ε( )| |<A exp
ε| |
ψj

⎛⎝ ⎞⎠, if ε ∈ −1( )J × 0,+∞[ )⎧⎨⎩ ⎫⎬⎭,

as

S ~] ε( )[ ] � S ω, σ( ) � ∫+∞

0
exp

−ω
σ

ε( ) ⊙ ~] ε( )dε, ω, σ > 0.

Remark 1

In Equation 14, ~] satisfies the expectation of the reducing
diameter ] , diameter �] of a mapping of fuzzy ]. If σ = 1, then
fuzzy Shehu transform is reduced to * Laplace transform [43–46].

∫+∞

0
exp

−ω
σ

ε( ) ⊙ ~] ε( )dε � ∫+∞

0
exp

−ω
σ

ε( ) ] ε; r( )dε,(
∫+∞

0
exp

−ω
σ

ε( )�] ε; r( )dε).
Moreover, by analyzing the traditional Shehu transformation

[43–46], we achieve

S ] ε; r( )[ ] � ∫+∞

0
exp

−ω
σ

ε( ) ] ε; r( )dε,

and

S �] ε; r( )[ ] � ∫+∞

0
exp

−ω
σ

ε( )�] ε; r( )dε.

The aforementioned expression can then be expressed as

S ~] ε( )[ ] � S ] ε; r( )[ ], S �] ε; r( )[ ]( )
� S ω, σ( ), �S ω, σ( )( ).

Then, we shall define the Caputo generalized Hukuhara
derivative’s fuzzy Shehu transformation as c

gH D⊖
ε ](ε).

Definition 2.9. Suppose there is a fuzzy integrable value mapping
c
gH Dß

ε ~](ε), and ](ε) is the primitive of cgH Dß
ε ~](ε) on [0, +∞), then

the CFD of order ß is expressed as [43–46]

S c
gH Dß

ε ~] ε( )[ ] � ω

σ
( )ß ⊙ S ~] ε( )[ ] ⊖ ∑r−1

J�0

ω

σ
( )ß−J−1 ⊙ ~] J( ) 0( ), ß ∈ r − 1, r( ],

ω

σ
( )ß ⊙ S ~] ε( )[ ] ⊖ ∑r−1

J�0

ω

σ
( )ß−J−1 ⊙ ~f

J( )
0( )

� ω

σ
( )ßS ] ε; r( )[ ] −∑r−1

J�0

ω

σ
( )ß−J−1 ⊙ ] J( ) 0; r( ),⎛⎝

ω

σ
( )ßS �] ε; r( )[ ] −∑r−1

J�0

ω

σ
( )ß−J−1�] J( ) 0; r( )⎞⎠.

Bokhari et al. defined the ABC operator’s fractional derivative in
terms of the Shehu transform. Additionally, we extend the concept
of fuzzy ABC fractional derivative in the context of a fuzzy Shehu
transform as follows:

Definition 2.10. Consider ] ∈ CF[0, s] ∩ LF[0, s] such that
~](ε) � [] (ε, r), �](ε, r)], r ∈ [0, 1]; then, the Shehu transformation
of the fuzzy ABC of order ß ∈ [0, 1] is defined as follows:

S gHDß
ε ~] ε( )[ ] � B ß( )

1 − ß + ß σ
ω( )ß ⊙

~V σ,ω( ) ⊖ σ

ω
~] 0( )( ).

Moreover, by applying the fact of Salahshour et al. [45], we
obtain

Frontiers in Physics frontiersin.org04

Shah et al. 10.3389/fphy.2023.1169548

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1169548


B ß( )
1 − ß + ß

σ

~ω
( )ß ⊙

~V σ,ω( ) ⊖ ω

σ
~] 0( )( )

� ⎛⎝ B ß( )
1 − ß + ß

σ

~ω
( )ß V σ,ω; r( ) − σ

ω
] 0; r( )( ),

B ß( )
1 − ß + ß

σ

ψ
( )θ

�V σ,ω; r( ) − σ

~ω
�] 0; r( )( )⎞⎠.

Road map of the suggested technique

Consider the fractional fuzzy partial differential equation

S ABCDß
ε ~] ψ, ε( )[ ] � S D2

ψ~] ψ, ε( ) +D3
ψ~] ψ, ε( ) + ~k r( )F ψ, ε( )[ ], (3)

where ß ∈ (0, 1]; therefore, the Shehu transform of Equation 3 is

B ß( )
1 − ß + ß

σ

ω
( )ß S ~] ψ, ε( )[ ] − B ß( )

1 − ß + ß
σ

ω
( )ß

v

ω
( )~] ψ, ξ, 0( )

� S D2
ψ~] ψ, ε( ) +D3

ψ~] ψ, ε( ) + ~k r( )F ψ, ε( )[ ].
On using the initial condition, we obtain

S ~] ψ, ε( )[ ] � g ψ, ξ( )
ω

+ 1 − ß + ß σ
ω( )ß

B ß( ) S D2
ψ~] ψ, ε( ) +D3

ψ~] ψ, ε( ) + ~k r( )F ψ, ε( )[ ].
(4)

Decomposing the solution as ~](ψ, ε) � ∑∞
n�0~]n(ψ, ε), then (4)

implies

S∑∞
n�0

~]n ψ, ε( ) � g ψ, ξ( )
ω

+
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ∑∞
n�0

~]n ψ, ε( )⎡⎣
+D3

ψ∑∞
n�0

~]n ψ, ε( ) + ~k r( )F ψ, ε( )⎤⎦.
(5)

Taking parts of the solution by the choice of comparison, we obtain

S ~]0 ψ, ε( )[ ] � g ψ, ξ( )
ω

+
1 − ß + ß

σ

ω
( )ß

B ß( ) S ~k r( )F ψ, ε( )[ ].
S ~]1 ψ, ε( )[ ] � 1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ~]0 ψ, ε( ) +D3

ψ~]0 ψ, ε( )[ ].
S ~]2 ψ, ε( )[ ] � 1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ~]1 ψ, ε( ) +D3

ψ~]1 ψ, ε( )[ ].
..
.

S ~]n+1 ψ, ε( )[ ] � 1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ~]n ψ, ε( ) +D3

ψ~]n ψ, ε( )[ ].

(6)

Taking the inverse Shehu transform, we obtain

] 0 ψ, ε( ) � g ψ, ξ( ) + S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S k r( )F ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

�]0 ψ, ε( ) � g ψ, ξ( ) + S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S �k r( )F ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

] 1 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ] 0 ψ, ε( ) +D3

ψ] 0 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

�]1 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ�]0 ψ, ε( ) +D3

ψ�]0 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

] 2 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ] 1 ψ, ε( ) +D3

ψ] 1 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

�]2 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ�]1 ψ, ε( ) +D3

ψ�]1 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
..
.

] n+1 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ] n ψ, ε( ) +D3

ψ] n ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

�]n+1 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ�]n ψ, ε( ) +D3

ψ�]n ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(7)

Thus, the solution becomes

] ψ, ε( ) � ] 0 ψ, ε( ) + ] 1 ψ, ε( ) + ] 2 ψ, ε( ) +/ ,
�] ψ, ε( ) � �]0 ψ, ε( ) + �]1 ψ, ε( ) + �]2 ψ, ε( ) +/ .

(8)

Equation 8 is the solution in series form.

Implementation

Example 4.1. Consider the fractional fuzzy Gardner equation as
follows:

ABCDß
ε ~] ψ, ε( ) + 6 ~] ψ, ε( ) − ϒ2~]2 ψ, ε( )( ) ∂~] ψ, ε( )

∂ψ
+ ∂~]3 ψ, ε( )

∂ψ3
� 0,

0< ß ≤ 1, (9)
with the fuzzy initial condition

~] ψ, 0( ) � ~k
1
2
+ 1
2
tanh

ψ

2
( )( ). (10)

Applying the proposed Equation 7, we achieve
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] 0 ψ, ε( ) � k r( ) 1
2
+ 1
2
tanh

ψ

2
( )( ),

�]0 ψ, ε( ) � �k r( ) 1
2
+ 1
2
tanh

ψ

2
( )( ),

] 1 ψ, ε( ) � k r( )
sech2

ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8

×
1

B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },
�]1 ψ, ε( ) � �k r( )

sech2
ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8

×
1

B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },
(11)

] 2 ψ, ε( ) � k r( )
−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( ) − 6 22 − 37ϒ2 + 15ϒ4( )(

× cosh
3ψ
2

( ) + 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( ) + 2 103 − 102ϒ2( )sinh ψ

2
( )

−3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
×

1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ },
�]2 ψ, ε( ) � �k r( )

−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( ) − 6 22 − 37ϒ2 + 15ϒ4( )(

× cosh
3ψ
2

( ) + 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( ) + 2 103 − 102ϒ2( )sinh ψ

2
( )

−3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
×

1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ }.
(12)

The higher terms can also be obtained in a similar manner.
Equation 8 provides solution in series form; consequently, we
write

~] ψ, ε( ) � ~]0 ψ, ε( ) + ~]1 ψ, ε( ) + ~]2 ψ, ε( ) + ~]3 ψ, ε( ) + ~]4 ψ, ε( ) +/ ,

(13)
while, in lower and upper portion types, it is, respectively,
written as

] ψ, ε( ) � ] 0 ψ, ε( ) + ] 1 ψ, ε( ) + ] 2 ψ, ε( ) + ] 3 ψ, ε( ) + ] 4 ψ, ε( ) +/ ,
�] ψ, ε( ) � �]0 ψ, ε( ) + �]1 ψ, ε( ) + �]2 ψ, ε( ) + �]3 ψ, ε( ) + �]4 ψ, ε( ) +/ .

(14)

] ψ, ε( ) � k r( ) 1
2
+ 1
2
tanh

ψ

2
( )( )

+ k r( )
sech2 ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8
1

B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ }
+ k r( )

−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( ) − 6 22 − 37ϒ2 + 15ϒ4( )(

cosh
3ψ
2

( )+ 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( ) + 2 103 − 102ϒ2( )sinh ψ

2
( )

− 3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ ,�] ψ, ε( )
� �k r( ) 1

2
+ 1
2
tanh

ψ

2
( )( )

+ �k r( )
sech2 ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8

1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ } + �k r( )
−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( )(

−6 22 − 37ϒ2 + 15ϒ4( )cosh 3ψ
2

( )+ 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( )
+ 2 103 − 102ϒ2( )sinh ψ

2
( )

− 3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ . (15)

The exact result is given as

~] ψ, ε( ) � ~k
1
2
+ 1
2
tanh

ψ − ε

2
( )( ). (16)

Example 4.2. Consider the fractional fuzzy Cahn–Hilliard
equation as follows:

Dß
ε ~] ψ, ε( ) − ∂~] ψ, ε( )

∂ψ
− 6~] ψ, ε( ) ∂~]2 ψ, ε( )

∂ψ

− 3~]2 ψ, ε( ) − 1( ) ∂2~] ψ, ε( )
∂ψ2 + ∂4~] ψ, ε( )

∂ψ4 � 0, 0< ß ≤ 1, (17)

with the fuzzy initial condition

~] ψ, 0( ) � ~ktanh
ψ+
2

√( ). (18)

Applying the system of Equation 7, we achieve

] 0 ψ, ε( ) � k r( )tanh ψ+
2

√( ),
�]0 ψ, ε( ) � �k r( )tanh ψ+

2
√( ),

] 1 ψ, ε( ) � k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },

�]1 ψ, ε( ) � �k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },

(19)

] 2 ψ, ε( ) � − k r( )sech2 ψ+
2

√( )tanh ψ+
2

√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ },
�]2 ψ, ε( ) � −�k r( )sech2 ψ+

2
√( )tanh ψ+

2
√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ }.

(20)

The higher terms can also be obtained in a similar manner.
Equation 8 provides solution in series form; consequently, we
write

~] ψ, ε( ) � ~]0 ψ, ε( ) + ~]1 ψ, ε( ) + ~]2 ψ, ε( ) + ~]3 ψ, ε( ) + ~]4 ψ, ε( ) +/ .

(21)
In the lower and upper portion types, it is, respectively,

written as
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] ψ, ε( ) � ] 0 ψ, ε( ) + ] 1 ψ, ε( ) + ] 2 ψ, ε( ) + ] 3 ψ, ε( ) + ] 4 ψ, ε( ) +/ ,
�] ψ, ε( ) � �]0 ψ, ε( ) + �]1 ψ, ε( ) + �]2 ψ, ε( ) + �]3 ψ, ε( ) + �]4 ψ, ε( ) +/ .

(22)

] ψ, ε( ) � k r( )tanh ψ+
2

√( ) + k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ }
− k r( )sech2 ψ+

2
√( )tanh ψ+

2
√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ ,

�] ψ, ε( ) � �k r( )tanh ψ+
2

√( ) + �k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ }
− �k r( )sech2 ψ+

2
√( )tanh ψ+

2
√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ .

(23)

The exact result is

~] ψ, ε( ) � ~ktanh
ψ + ε+

2
√( ). (24)

Discussion of results

In Figure 1, the first graph presents the two-dimensional fuzzy
lower and upper branch graphs showcasing the analytical series
solution. This graph visually represents the behavior and
characteristics of the solution in a two-dimensional space. The
second graph in Figure 1 illustrates the fractional-order
differences between the two different series of Example 1. This
graph highlights the variations and disparities between the
fractional-order components of the series, providing insights into
the impact of fractional-order differences on the overall solution.

Moving on to Figure 2, similar to Figure 1, the first graph displays the
two-dimensional fuzzy lower and upper branch graphs representing the
analytical series solution. This visualization offers a comprehensive view of
the solution's behavior and properties. The second graph in Figure 2
focuses on the fractional-order differences between the two different series
of Example 2. By examining this graph, one can observe and analyze the
variations and discrepancies in the fractional-order components, gaining a
deeper understanding of their influence on the overall solution.

Overall, the graphical discussion presented in Figure 1 and
Figure 2 provides a visual representation of the analytical series
solutions, allowing for a better comprehension of the fuzzy lower
and upper branch graphs as well as the fractional-order differences
in the respective examples. These graphical analyses enhance the
interpretation and interpretation of the results obtained in the study,
contributing to a more comprehensive understanding of the
investigated phenomena.

Conclusion

The Atangana–Baleanu operator is used in this work to attempt
a semi-analytic solution to the fuzzy fractional Gardner and
Cahn–Hilliard equations. As a result, in this case, fuzzy operators
are better suited to describe the physical phenomena. Using a fuzzy
method that takes into account the starting condition’s uncertainty,
we computed the solutions to the Gardner and Cahn–Hilliard
equations. This study generalized the fuzzy fractional of the
Gardner and Cahn–Hilliard equations. Next, we created the
approximate parametric formulation of the suggested problem
using a novel iterative transform technique. We demonstrated
many examples that supported the methodology’s intended use
and created a parametric solution for each case. Last but not
least, solving a wide variety of fuzzy fractional partial differential
equations analytically is not an easy task.
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