
Fuzzy response to SH
guided-wave scattering by
semicircular depressions on the
boundary of a ribbon-shaped
elastic plate

Enxiang Qu  1*, Hui Qi2, Jing Guo2, Shangqi Yuan2 and Chun Lv1

1School of Architecture and Civil Engineering, Qiqihar University, Qiqihar, China, 2School of Aerospace
and Civil Engineering, Harbin Engineering University, Harbin, China

In this paper, the fuzzy scattering problem with semicircular depressions on the
boundary of a band-shaped elastic plate with steady SH guided wave incident is
studied and an analytical solution is given. First, the SH guided wave is constructed
by the guided wave expansion method, and then the scattered wave satisfying the
free condition of the boundary stress of the strip domain is constructed by the
cumulative mirror method. Finally, a definite solution equation is obtained based
on the fact that the shear stress at the edge of the semi-circular recessed hole is
zero. In this paper, the ambiguity of the number of waves and the width of the
bands is taken into account. In order to avoid the irreversibility of interval algorithm
and the difficulty of solving non-linear equations, the membership function of
fuzzy quantity is segmented to make the membership degree and fuzzy quantity
correspond respectively. A deterministic problem that translates into piecewise
processing. Two numerical examples are given to examine the changes in fuzzy
response of different numbers of fuzzy waves and fuzzy thicknesses to the
dynamic stress concentration factor of the hoop at the collapse limit.
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1 Introduction

The scattering theory of elastic waves is widely used in the fields of earthquake
engineering, ocean engineering and geological exploration. The research and application
of elastic wave scattering are very extensive, and rich results have been achieved. For the
study of elastic wave scattering problems, several parameters are uncertain. This is due to the
ambiguity of its own objective attributes, the approximate processing of mathematical
modeling, and the use of random parameters as deterministic parameters. Since the
American cybernetics expert Professor Zadeh proposed fuzzy sets in 1965, the research
direction of fuzzy mathematics has become more extensive, such as fuzzy reliability, fuzzy
control, fuzzy optimization, fuzzy calculus equations and so on. Tong et al. [1] investigated
the adaptive fuzzy output-feedback backstepping control design problem for uncertain
strict-feedback non-linear systems in the presence of unknown virtual and actual control
gain functions and immeasurable states. Shi et al. [2] proposed the issue of the reliable
asynchronous sampled-data filtering of Takagi-Sugeno (T-S) fuzzy delayed neural networks
with stochastic intermittent faults, randomly occurring time-varying parameter
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uncertainties and controller gain fluctuation. Zhao et al. [3] solved
the problem of asymptotic tracking control for a class of uncertain
switched non-linear systems under fuzzy approximation framework.
Shi et al. [4] dealt with the non-fragile memory filtering issue of T-S
fuzzy delayed neural networks with randomly occurring time-
varying parameter uncertainties and variable sampling rates. Liu
et al. [5] proposed the concept of q-rung orthopair fuzzy sets
(q-ROFSs) to be able to describe more complex fuzzy uncertainty
information effectively. Sun et al. [6] researched the issue of fuzzy
adaptive control for a class of strict-feedback non-linear systems
with non-affine nonlinear faults. Hu et al. [7] explored the
performance of fuzzy system-based medical image processing for
predicting the brain disease. Zhu et al. [8] investigated the event-
triggered control problem for stochastic non-linear systems with
unmeasured states and unknown backlash-like hysteresis. Lin et al.
[9] proposed a novel picture fuzzy multi-criteria decision making
(MCDM) model to solve the site selection problem for car sharing
stations. Zhang et al. [10] studied the fault detection problem for
continuous-time fuzzy semi-Markov jump systems (FSMJSs) by
employing an interval type-2 (IT2) fuzzy approach. Wang et al.
[11] presented a fault-tolerant tracking control strategy for Takagi-
Sugeno fuzzy model-based non-linear systems which combines
integral sliding mode control with adaptive control technique.
Garg H et al. [12] introduced a novel multi-attribute decision
making (MADM) method under interval-valued intuitionistic
fuzzy (IVIF) set environment by integrating a Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS)
method. Pan et al. [13] developed a novel risk analysis
approach by merging interval-valued fuzzy sets (IVFSs),
improved Dempster-Shafer (D-S) evidence theory, and fuzzy
Bayesian networks (BNs), acting as a systematic decision
support approach for safety insurance for the entire life cycle of
a complex system under uncertainty. In other numerical
applications, spectral elemental methods are also effectively
applied by researchers [14-15]. Mahariq I et al. [16] explored
the on-resonance and off-resonance optical response of dielectric
cylinders excited by normal incident plane waves. Mahariq I et al.
[17] also studied photonic nanojets resulting from corrugated
cylinders (with irregular boundaries) under normally incident
plane-wave illumination.

SH waves are the most fundamental elastic waves, propagating
in a direction perpendicular to the direction of vibration. The SH
wave has only one inverse plane vibration displacement (out-of-
plane displacement). Compared to P and SV waves, SH waves have
the simplest elastodynamic behaviour. For elastic dynamics
problems with complex initial boundary conditions, P and SV
waves can be difficult to find solutions for. For SH waves,
however, such problems can be easily solved to obtain further
analytical solutions. There are a lot of ambiguity factors in the
elastic wave scattering problem, such as seismic intensity, wave
speed, medium shear modulus, medium density, amplitude and
frequency of incident waves, etc., all of which are typical ambiguities
with randomness and ambiguity. In this paper, the ambiguity of the
number of waves and plate thickness ambiguity of SH guided wave
scattering are studied for the semicircular depression on the
boundary of the band-shaped elastic plate, and the membership
function is segmented so that the ambiguity and the membership
function correspond respectively. This method can avoid the
appearance of interval numbers and combine the decomposition
theorem of fuzzy numbers well. In this paper, a new theoretical
method is given to deal with fuzzy dynamics knowledge, and the
curve of dynamic stress concentration factor of semicircular sag
boundary with membership degree of fuzzy quantity is discussed in
detail, and a valuable reference conclusion for practical engineering
is obtained.

2 Theoretical model and analysis

2.1 Theoretical model

In this paper, the classical model in the reference [18] is used as
an example to further illustrate the use of fuzzy mathematics in
solving the scattering problem for defects in thin plates. As shown in
Figure 1, the thickness of the infinitely long strip-shaped domain is
h, the upper boundary is BU, the lower boundary is BL, the center of
the depression is o, and the radius is r. The shear modulus and
density of the medium are μ and ρ, respectively. The right-hand
plane rectangular coordinate system (o, x, y) is established with the
center of a circle o as the origin, where the X-axis is parallel to the
length direction of the belt shape domain, and the Y-axis is parallel
to the thickness direction. At the same time, taking the center of the
circle as the pole, a plane polar coordinate system (O, r, θ) is
established. Introduce complex variables z � x + iy � reiθ ;
�z � x − iy � re−iθ , of which i � ���−1√

, and establish complex plane
(z, �z). When the SH wave propagates in the plate, the out-of-plane
direction is the vibration direction of the particle, and the amplitude
w is only a function of the coordinates (x, y, t) or (r, θ, t).

2.2 Control equation

According to the theoretical model shown in Figure 1, the
control equations satisfying the upper and lower boundary stress
freedom can be obtained. According to reference [19], the control
equation for the anti-plane dynamics problem can be obtained. The
governing equation of the elasto-dynamic inverse plane problem is
the scalar wave Eq. 1:

FIGURE 1
Theoretical model of steady-state scattering of SH waves by
semi-cylindrical depressions in elastic ribbon domains.
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μΔw � ρ
z2w

zt2
(1)

In the formula: Δ is the two-dimensional Laplace operator. In
this chapter, the steady-state SH wave is analyzed. According to the
separation variable method, after separating the space variable and
the time variable, the time harmonic factor e−iωt is omitted, and the
Helmholtz equation, which is the governing equation of Eq. 2 is
obtained:

Δw + k2w � 0 (2)
Where: k � ω/cs is the wave number of the anti-plane shear

wave, ω is the circular frequency, and cs �
���
μ/ρ

√
is the phase velocity.

In the complex plane, the Helmholtz equation and the stress-strain
relationship can be expressed as:

4
zw

zzz�z
+ k2w � 0 (3)

τxz � μ
zw z, �z( )

zz
+ zw z, �z( )

z�z
( )

τyz � μi
zw z, �z( )

zz
− zw z, �z( )

z�z
( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4)

τrz � μ
zw z, �z( )

zz
eiθ + zw z, �z( )

z�z
e−iθ[ ]

τθz � μi
zw z, �z( )

zz
eiθ − zw z, �z( )

z�z
e−iθ[ ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(5)

2.3 Incident wave

Establish a global coordinate system at any point of the upper
boundary BU of the belt domain, and satisfy the stress freedom
condition (6) of the upper and lower boundaries of the belt
domain. The SH guided wave expression is Eq. 7, where
exp[i(kmx − ωt)] is the propagation term in the x-direction. m
is the guided wave order and its physical meaning is the number
of nodes of the interference term in the y-axis direction. w1

m and
w2

m are the amplitudes of the corresponding propagating guided
waves. When m is an even number w1

m � 0. When m is an odd
number w2

m � 0.
qm satisfies Eq. 8, km is the apparent wave-number in the

x-axis direction, and qm satisfies Eq. 9. Only when km is a real
number, exp[i(kmx − wt)] can represent a propagating traveling
wave in the direction of the x-axis. Considering the issues
discussed in this chapter, the study of non-propagating waves
has no meaning. Therefore, when the m-order SH guided wave is
incident, the wave number is required to satisfy k>mπ/h.

μ
zw

zy

∣∣∣∣∣∣∣∣y�−h,0 � 0 (6)

wm � w1
m sin qm y + h

2
( )[ ]

+ w2
m cos qm y + h

2
( )[ ] exp i kmx − ωt( )[ ] (7)

qm � mπ

h
(8)

q2m � k2 − k2m (9)
Using the superposition method to superimpose the guided

waves of each order, all the displacement waves in the strip-
shaped medium satisfying the stress freedom of the upper and
lower boundaries can be obtained:

wi � ∑+∞
m�0

wm � ∑+∞
m�0

fm y( ) exp i kmx − ωt( )[ ] (10)

In this chapter, the steady-state SH wave is discussed, and the
time harmonic factor e−iωt is omitted. When the incident guided
wave is of order m, the expressions of displacement and stress are
as follows:

w i( ) � w1
m · sin qm y + h

2
( )[ ] + w2

m · cos qm y + h

2
( )[ ]{ }

· exp ikmx( ) (11)
τ i( )
xz � iμkm · w1

m · sin qm y + h

2
( )[ ] + w2

m · cos qm y + h

2
( )[ ]{ } · exp ikmx( )

τ i( )
yz � qm w1

m · cos qm y + h

2
( )[ ] − w2

m · sin qm y + h

2
( )[ ]{ } · exp ikmx( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

τ i( )
rz � τ i( )

xz cos θ( ) + τ i( )
yz sin θ( )

τ i( )
θz � −τ i( )

xz sin θ( ) + τ i( )
yz cos θ( )

⎧⎪⎪⎨⎪⎪⎩ (13)

2.4 Scattered waves

Under the action of incident SH waves, the concave will
produce scattered waves. By using the method of repeated mirror
image, the semi-cylindrical depression B1 is extended to the
medium into a whole circle, which is named as the circular
hole B1. According to the wave function expansion method,
the displacement and stress of all-space scattered waves
generated by the boundary of a circular hole satisfy:

w s( )0
0 z( ) � w0 ∑+∞

n�−∞
AnH

1( )
n k z| |( ) z

z| |( )n

(14)

τ s( )
rz

0

0 z( ) � kμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k z| |( ) · z

z| |( ) n−1( )

eiθ −H 1( )
n+1 k z| |( ) · z

z| |( ) n+1( )
e−iθ] (15)

τ s( )
θz

0

0 z( ) � ikμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k z| |( ) · z

z| |( ) n−1( )

eiθ +H 1( )
n+1 k z| |( ) · z

z| |( ) n+1( )
e−iθ] (16)

The scattered wave w(s)0
0 generated by the circular hole �B is

reflected for the first time at the boundaries BU and BL of the band
domain, respectively. This reflected wave can be represented by the
mirror images w(s)1

1 and w(s)1
2 of the scattered wave w(s)0

0 to the
boundaries BU and BL, which is called the first mirror scattered wave.
The first reflected wave will have a second reflection on the boundaries
BU and BL of the strip domain, respectively. The reflected wave can be
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represented by the mirror images w(s)2
1 and w(s)2

2 of the first mirror
scattered waves w(s)1

1 and w(s)1
2 on the boundaries BU and BL, known

as the secondary mirror scattering wave.
Repeating this, the displacements of the P-th mirror scattered

waves are w(s)P
1 and w(s)P

2 , and the corresponding stresses are τ(s)rz
p
1 ,

τ(s)θz

p

1 , τ
(s)
rz

p
2 and τ

(s)
θz

p

2 . Among them, P is the number of mirror images
and the subscripts 1 and 2 represent the mirror faces of BU and BL,
respectively.

w s( )p
1 z( ) � w0 ∑+∞

n�−∞
AnH

1( )
n k zp1

∣∣∣∣ ∣∣∣∣( ) zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )pn

(17)

τ s( )
rz

p

1 z( ) � kμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k zp1
∣∣∣∣ ∣∣∣∣( ) · zp1

zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

−H 1( )
n+1 k zp1

∣∣∣∣ ∣∣∣∣( ) · zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ]
(18)

τ s( )
θz

p

1 z( ) � −1( )Pikμ
2

∑+∞
n�−∞

An[H 1( )
n−1 k zp1

∣∣∣∣ ∣∣∣∣( ) · zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

+H 1( )
n+1 k zp1

∣∣∣∣ ∣∣∣∣( ) · zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ⎤⎥⎦ (19)

w s( )p
2 z( ) � w0 ∑+∞

n�−∞
AnH

1( )
n k zp2

∣∣∣∣ ∣∣∣∣( ) zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )pn

(20)

τ s( )
rz

p

2 z( ) � kμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k zp2
∣∣∣∣ ∣∣∣∣( ) · zp2

zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

− H 1( )
n+1 k zp2

∣∣∣∣ ∣∣∣∣( ) · zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ⎤⎥⎦
(21)

τ s( )
θz

p

2 z( ) � −1( )Pikμ
2

∑+∞
n�−∞

An[H 1( )
n−1 k zp2

∣∣∣∣ ∣∣∣∣( ) · zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

+H 1( )
n+1 k zp2

∣∣∣∣ ∣∣∣∣( ) · zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ⎤⎥⎦
(22)

In the above formula:

zp1 � z − i
−1( )ph + h

2
+ p − 1( )h[ ] (23)

zp2 � z + i h + −1( )p+1h + h

2
+ p − 1( )h[ ] (24)

Using the superposition method, the scattered waves
obtained by each mirror image are accumulated together, and
the displacement of the scattered waves generated by the circular
hole �B that can satisfy the stress freedom of the upper and lower
boundaries of the strip domain can be obtained as Eq. 25, and the
stress is expressed as Eq. 26 and 27.

w s( ) z( ) � w s( )0
0 z( ) + ∑+∞

P�1
w s( )P

1 z( ) + w s( )P
2 z( )( ) (25)

τ s( )
rz z( ) � τ s( )

rz

0

0 z( ) + ∑+∞
P�1

τ s( )
rz

P

1 z( ) + τ s( )
rz

P

2 z( )( ) (26)

τ s( )
θz z( ) � τ s( )

θz

0

0 z( ) + ∑+∞
P�1

τ s( )
θz

P

1 z( ) + τ s( )
θz

P

2 z( )( ) (27)

2.5 Definite solution conditions

The incident wave and scattered wave constructed according to
the above method have already satisfied the condition that the shear
stress at the boundary BU and BL is zero, so that the condition of
stress freedom at the concave boundary B1 becomes the definite
solution condition of the whole problem. The resulting coefficients
An on the scattered wave function level are the set of Eq. 28. Firstly,
the coordinate translation technique is used to translate the stress
expressions solved in other coordinate systems into the complex
plane (z, �z). Then, the Fourier expansion method is used, and both
ends of the formula are multiplied by e−imθj at the same time, and
then the infinite algebraic equations with coefficient An are
integrated on the interval (−π, 0). Finally, the truncated finite
terms are solved.

τ i( )
rz z( ) + τ s( )

rz z( ) � 0, z ∈ B (28)

2.6 Dynamic stress concentration factor

Under the action of steady-state SH wave, the dynamic stress
concentration factor characterizes the degree of dynamic stress
concentration. Define Eq. 29 as the dynamic stress concentration
factor of the recessed edge.

γ � τθz| |
τ0| | (29)

Where: τθz is the angular stress on the edge of the depression
and τ0 � μkw0 is the maximum amplitude of the incident stress.

FIGURE 2
Trapezoidal distribution.
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FIGURE 3
Distribution of hoop dynamic stress concentration factor of semi-
circular depression when the thickness of the ribbon domain is h � 3.
(A–C) represent the results of these three subsets: Left transition area,
Nuclear region and Right transition area.

FIGURE 4
Distribution of hoop dynamic stress concentration factor of semi-
circular depression when the thickness of the ribbon domain is h � 6.
(A–C) represent the results of these three subsets: Left transition area,
Nuclear region and Right transition area.
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3 Examples and analysis

3.1 Analysis of fuzzy example 1

There are several fuzzy parameters in this problem including
wave amplitude, frequency, and wave speed in the plane of
perturbation which may all be fuzzy numbers. As can be seen
from reference [20], the different affiliation curves are treated
according to trapezoidal segments. It is assumed that the
ambiguity membership function of the wavenumber is μk(x) and
the trapezoidal distribution is shown in Figure 2. According to the
method of fuzzy cut set, the interval under a certain degree of
membership is obtained. The points in this interval actually have
different degrees of membership, so that the fuzzy cutest set is not
exactly the same as the general interval number. Since the
subtraction and division of the four arithmetic operations of
interval numbers are not reversible, it is difficult to deal with
fuzzy numbers, and at most an enlarged interval solution can be
obtained. According to the corresponding relationship between
points and membership degrees, different membership degree
curves are processed in segments.

The related membership relationship can be expressed as:

μk x( ) �

0 ; x≤ a − a2
a2 + x − a

a2 − a1
; a − a2 < x≤ a − a1

1 ; a − a1 < x< a + a1
a2 − x + a

a2 − a1
; a + a1 ≤x< a + a2

0 ; x≥ a + a2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The analysis only needs to consider a range of a − a2 <x≤ a + a2

divided into three segments. Order μk(x) � λ.
When x � k ∈ (a − a2, a − a1), k � (a2 − a1)λ + a − a2 ;
When x � k ∈ (a − a1, a + a1), λ ≡ 1;
When x � k ∈ (a + a1, a + a2), k � a2 + a − λ(a2 − a1);
Let a = 2, a2 = 1.5, a1 = 1, r = 1. By considering the different

thicknesses h � 3, h � 6, h � 10 and h � 20 in the strip domain and
substituting different affiliation relations, the cyclic dynamic stress
concentration factor at the semi-circular depression are further
obtained at different levels of affiliation.

Figure 3 shows the distribution of the hoop dynamic stress
concentration factor of the semicircular depression in different
sections when the thickness of the belt domain is h � 3. The left
transition region of the membership function curve is the low
wave number region, and the dynamic stress concentration factor
is significantly higher than that of the core region and the right
transition region (high wave number region). The angle of the left
transition zone is 1800–2700 for the front wave and 2700-3600 for
the back wave. The front wave front in the left transition region
oscillates more obviously than the back wave front, because the
front wave first arrives when the incident wave hits the inside of
the band. The core area is a non-empty and non-single element
interval. Although the membership degree of points in the core
area is λ � 1, due to the difference in the numerical value of
specific points, the dynamic stress concentration factor of the
core area exhibits irregular oscillations, which is caused by fuzzy
uncertainty.

As can be seen from Figure 4, the left transition area of the
membership function curve is a low wave number area,
the maximum value of dynamic stress concentration factor

FIGURE 5
Distribution of hoop dynamic stress concentration factor of
semi-circular depression when the thickness of the ribbon domain is
h � 10. (A–C) represent the results of these three subsets: Left
transition area, Nuclear region and Right transition area.
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appears on the membership degree λ � 1 curve, and the peak
value of the core area appears on the membership degree k � 2.0
curve, while the peak value of the right transition area appears on

the membership degree λ � 0.5 curve. The peaks of
membership degrees appear on the curves of different
membership degrees, which is obviously caused by fuzzy
uncertainty. The change of the stress concentration factor
curve in the right transition region is more complicated than
that in the left transition region, which indicates that the high
wave number region has a more serious influence than the low
wave number region.

From Figure 5, the thickness h � 10 of the band-shaped
domain shows the distribution of the hoop dynamic stress
concentration factor of the semicircular depression. The left
transition area of the membership function curve is the low
wave number area, and the dynamic stress concentration
factor curve is not obviously oscillated, and the core area and
the right transition area are the medium wave number area and
the high wave number area, respectively. When the membership
degree of the left transition zone is λ � 0.25, the maximum value
of the peak appears. The membership degrees of the core area are
all λ � 1, but the maximum value of the wave peak appears at
k � 1.0, and the maximum value of the peak of the dynamic stress
concentration factor in the right transition area appears at
λ � 0.25. Due to the influence of fuzzy and uncertain factors,
the positions of the peaks in different sections of the membership
curve are different. It can be seen from the figure that the number
of wave peaks in the right transition area is significantly more
than that in the nuclear area and the left transition area, and the
right transition area oscillates more violently.

It can be seen from Figure 6 that the dynamic stress
concentration factor in the left transition area of the
membership function curve is significantly higher than that in
the core area and the right transition area, and the curve of the
stress concentration factor in the left transition area changes
gently. With the increase of wave number, the curve has obvious
oscillation, and the change is more obvious in the right transition
region (high wave number region). The maximum value of the
wave crest in the left transition area appears at the position of
membership degree λ � 0.25, and although the membership
degree of the core area is λ � 1, the maximum value of the
wave crest appears at k � 2.5. The peak value of the right
transition area appears at λ � 0.25. The transition regions of

FIGURE 6
Distribution of hoop dynamic stress concentration factor of
semi-circular depression when the thickness of the ribbon domain is
h � 20. (A–C) represent the results of these three subsets: Left
transition area, Nuclear region and Right transition area.

FIGURE 7
Triangular distribution.
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different segments show different correlations, which also lead to
the maximum value of the peaks appearing on the curves of
different membership degrees.

3.2 Analysis of fuzzy example 2

As can be seen from reference [21], the different affiliation
curves are treated according to triangular segments. Assuming
that the fuzzy membership function of the thickness h of the
elastic plate in the belt domain is μh(x), it is a triangular
distribution as shown in Figure 7. According to the method
of fuzzy cut set, the interval under a certain degree of
membership is obtained. The points in this interval actually
have different degrees of membership, so that the fuzzy cut set is
not exactly the same as the general interval number. Since the

subtraction and division of the four arithmetic operations of
interval numbers are not reversible, it is difficult to deal with
fuzzy numbers, and at most an enlarged interval solution can be
obtained. According to the corresponding relationship between
points and membership degrees, different membership degree
curves are processed in segments.

μh x( ) �

0 ;x< b1

1
b2 − b1

x − b1
b2 − b1

; b1 ≤ x< b2

− 1
b3 − b2

x + b3
b3 − b2

; b2 ≤x< b3

0 ; b3 ≤ x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
In this analysis, only b1 < x≤ b3 is considered and divided into two

sections. Order μh(x) � λ1. When x � h ∈ (b1, b2),
h � (b2 − b1)λ1 + b1. When x � h ∈ (b2, b3), h � b3 − λ1(b3 − b2).

FIGURE 8
Distribution of hoop dynamic stress concentration factor with
k � 0.1 at semicircular depressions. (A,B) represent the results of these
two subsets: Left transition area and Right transition area.

FIGURE 9
Distribution of hoop dynamic stress concentration factor with
k � 1 at semicircular depressions. (A,B) represent the results of these
two subsets: Left transition area and Right transition area.
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Let b1 = 1, b2 = 2, b3 = 5, r = 0.8 and consider the hoop dynamic stress
concentration factor curve at the semicircular depression under
different membership levels under the condition of k � 0.1, k � 1
and k � 2.

It can be seen from Figure 8 that when m � 0, k � 0.1 is a
phenomenon of low-frequency quasi-static incidence of SH guided
waves. Whether it is the left transition region or the right transition
region, the dynamic stress concentration factor curve exhibits a
position symmetry about 2700. The variation law of the dynamic
stress concentration factor of the membership function is very
similar, and when the membership degree is λ � 0, the peak of
the dynamic stress concentration factor is the largest. The changing
law of the dynamic stress concentration factor in the right transition
zone is also very similar in the case of different membership
relationships, but the maximum value of the wave peak appears
at the position of λ � 1. Due to the uncertainty of the fuzzy wave

number, the positions of the peaks in the left and right transition
regions are different.

It can be seen from Figure 9 that when k � 1 corresponds to the
incident situation of the intermediate frequency SH guided wave. From
the curves of the left and right transition regions, it can be seen that the
dynamic stress concentration factor of the front wave surface is more
obvious than the fluctuation stress concentration factor of the back side.
The maximum value of the wave crest in the left transition area appears
at the position of membership degree λ � 0, while the maximum value
of the wave peak in the right transition area appears at the position of
membership degree λ � 0.75. The values of different membership
degrees are different, and the changes of the dynamic stress
concentration factor in the left and right transition regions are also
different.

It can be seen from Figure 10 that when k � 2 corresponds to the
incident case of high-frequency SH guided waves. The values of
different membership degrees in the left and right transition regions
are different, and the variant rules of the dynamic stress
concentration factor are also different. However, it can be clearly
seen that the variation law of the dynamic stress concentration factor
curve in the left and right transition zones basically appears in the
form of two peaks. The peak maximum value in the left transition
area appears on the λ � 0 curve, while the peak maximum value in
the right transition area appears on the λ � 0.75 curve. From this, it
can be concluded that the fuzzy relationship is uncertain, and
different fuzzy membership relationships lead to different
positions of wave crests.

4 Conclusion

The solution to the elastic wave scattering problem is often a
non-linear function of various parameters, and there is no mature
and unified method to obtain the explicit expression of the fuzzy
parameters. Even if the inverse function is reached, it is mostly a
multi-valued function. Various parameters are often ambiguous,
and the membership function of fuzzy response is not always solved
by using the membership function of known fuzzy parameters, and
the irreversibility of interval algorithm also brings many difficulties
in solving fuzzy response problem. In this paper, the correspondence
between the subordinate function and the fuzzy quantity pairs is
exploited to segment the subordinate function so that each segment
corresponds to the fuzzy quantity. This method can effectively avoid
the process of interval calculation and does not violate the
decomposition process of fuzzy numbers. Two different affiliation
curves are given for the trapezoidal and triangular distributions. We
solve the multi-source fuzzy scattering problem for wave number
and band shape domain thickness, respectively. The calculation
example results show the feasibility of the algorithm, and provide
theoretical basis and reference value for the application of fuzzy
mathematics to earthquake engineering.
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FIGURE 10
Distribution of hoop dynamic stress concentration factor with
k � 2 at semicircular depressions. (A,B) represent the results of these
two subsets: Left transition area and Right transition area.
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