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Micro-structured targets can be employed to enhance the coupling of laser
energy to the high energy density plasma. Here we report on experimental
measurement of enhanced proton beam energy from laser-driven micro-wire
array (MWA) targets along the backward direction. An ultra-intense
(~ 2 × 1020W/cm2) laser pulse of ~ 40 fs pulse duration interacts with the MWA
structure and induces large population of energetic electrons. The enhanced
sheath field efficiently accelerates protons both transversely and longitudinally.
The spectrometers record proton cut-off energy of around 16MeV and
temperature 813keV along the backward direction, which is 20% − 60% higher
than that of a flat target under commensurate laser conditions. Comparison with
particle-in-cell simulations suggests that the enhancement originates from the
increased temperature and population of the hot electrons within the micro-
wires. These measurements provide a direct probe of the high energy density
plasma condition in laser-driven solid targets and a useful benchmark for further
studies on laser-driven micro-structured targets.
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Introduction

In the past 2 decades, laser-driven proton acceleration has been developed as a new
acceleration method. Due to the high peak flux, short pulse duration and small beam size,
laser-driven proton sources are promising in various key applications, such as proton
therapy [1], high energy density physics, fast ignition [2] and laboratory astrophysics [3].
Several acceleration mechanisms have been studied to produce high energy protons,
including the target normal sheath acceleration [4, 5] (TNSA), shock wave acceleration
[6], the radiation pressure acceleration [7] (RPA) etc. While many proposals suggested
proton energies could reach up to GeV level, the state-of-art experimental value is around
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100MeV based on TNSA [8] or hybrid scheme of radiation
pressure-sheath acceleration [9]. The gap between them has led
to continuous efforts in raising the proton energies based on realistic
laser conditions, including improved target designs such as ‘snow
flake’ [10], grating [11], nanotube foam [12], nanospheres [13],
micro-wire arrays [14], nanochannels [15] and even bacteria [16],
among which an important direction is using micro-structured
targets. For example, micro-wire array (MWA) targets have been
proposed to enhance laser energy conversion efficiency into not only
energetic ions [17–21], but also electrons [22–24], x-ray emission
[25, 26], and positrons [27].

When an ultrahigh contrast femtosecond laser penetrates deep
into the MWA, it creates a large volumetrically heated plasma
[24–26], which is the major reason for the high-efficiency
generation of x-rays and relativistic electrons. Further, the
electrons within the wires are pulled out by the laser field and
accelerated via direct laser acceleration (DLA) [28], leading to
substantial enhancement in both the population and energies of
the produced electron beam [23]. These together benefit acceleration
of high energy protons via enhanced sheath field [20]. The laser
energy is thus efficiently coupled into energetic protons and
therefore can be employed to boost the fusion reaction in the
vicinity of high energy density plasma [21, 29]. In this case, the
substrates of some MWA targets are usually quite thick to maximize
the fusion reaction events [21, 22]. Sheath field at the target rear
surface cannot be formed efficiently, thus measuring protons or
energetic ions accelerated at the target rear becomes challenging. For
this reason, detection of the protons emitted from the front surface
turns to be a direct approach to obtain information of interaction
regions in micro-structured targets. It has been reported that
13 MeV deuterium ions were measured in the laser beam

backward direction by irradiating a deuterated nanowire target
with a high contrast strong laser, and the highest proton energy
was 7.25MeV [21].

Some experiments [30, 31] find an almost symmetric behavior
for protons accelerated from rear and front sides with the laser
intensity range 1018W/cm2 − 1020W/cm2 and the contrast ratio
close to 1010, which is interpreted on the basis that similar
sheath fields are built on both target surfaces. However, in the
case of laser intensity 2 × 1020W/cm2 − 1021W/cm2 and pulse
temporal contrast ~ 1010 (a few ps prior to the main pulse), an
imbalance between forward and backward proton acceleration was
observed [32, 33]. The maximum energy of the forward accelerated
protons is about 10MeV higher than that of the backward
accelerated protons. Such a strong asymmetry in proton energies
may be induced by the constrained electron expansion and
electrostatic field generation at the target front. Using a laser of
8 × 1020W/cm2 to irradiate 6 μm thick Al foil targets at an angle of
incidence 30o, the cut-off energy of protons observed in front of the
target is 18MeV [33]. Compared with the forward accelerated
protons, the backward accelerated protons are not affected by the
interaction with the bulk target substrate, so their properties can be
easily referred to the interaction region.

In this paper, using a laser with a peak intensity of
2 × 1020W/cm2 to interact with MWA targets, a proton beam
with cut-off energy of 16MeV was measured at the target front,
which is 20% − 60% higher than that of a flat target under
commensurate laser conditions. The results are well interpreted
by particle-in-cell (PIC) simulations, showing that laser-proton
energy coupling efficiency is enhanced due to the volumetric
heating of the micro-wire. Such interaction will significantly
benefit laser-induced nuclear fusion with micro-structures.

FIGURE 1
(A) Schematic of experimental setup. The laser pulse with a � 10 is incident on the micro-wire target. (B) Contrast measurements with a third-order
scanning cross-correlator [34]. (C) SEM image of the micro-wire target with the wire diameters(D) of 0.5μm, the lengths(L) of 3μm.
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Experimental results

The experiment was carried out on a femtosecond petawatt laser
system at Shanghai Institute of Optics and Fine Mechanics (SIOM),
which delivered laser beams with a central wavelength of λ � 800nm
and a duration of 40 fs. This Ti-Sapphire laser is based on the
standard chirped-pulse-amplification (CPA) technique. The 10 −
20j laser energy was focused to a 10 μm full width at half maximum
(FWHM) focal spot with an F/4 off-axis parabola, reaching a peak
intensity ~ 2 × 1020W/cm2. The corresponding normalized laser

amplitude is a � 10 (a � eE/mecω), where e and me are the
electron charge and mass, E is the laser electric field, ω is the
laser frequency, and c is the speed of light in vacuum, respectively.
The contrast of amplified spontaneous emission (ASE) pedestal is
1011(1010) at 30(6)ps prior to the main pulse [34] shown in
Figure 1B, which could induce pre-plasmas with typical scale
length of several tens of nanometers.

The schematic diagram of the experiment is shown in Figure 1A.
The p-polarized laser pulse is incident on the target surface at an
angle of −26o. Two Thompson spectrometers (shown as TP1 and
TP2) are placed at distances of 49.6 cm and 22 cm from the target
point at angles of 15o and 58o incident angles to the target normal,
respectively. There is a aperture with a diameter of 100 μm in front of
the two spectrometers to avoid signal saturation, and the
corresponding solid angles for ion collection was 3.2 × 10−8Sr
and 1.6 × 10−7Sr. Ion information is recorded by image plates
(IPs). Here the normal direction at the target front is occupied to
detect fusion signals, which will be described in the future work.

The target is made of a mixture material of polyethylene and
boroncarbide powder, with the mass ratio of 1.86: 1. Micro-wires
are fabricated by the Anodized Aluminum Oxide (AAO) template
[35]. After fully mixing polyethylene and boron powder, the target
material enters the AAO template by heating and extrusion, and
decomposes with NaOH solution for 30 min. The micro-wires are
supported by 100 − 300 μm thick mixture substrate, while the wire
diameter, length and spacing are determined by the AAO template.
The distance between the wires is 0.8 μm for both types of targets
used in the experiment, with the wire diameters(D) of 0.5 um as seen
in the scanning electron microscope (SEM) image in Figure 1C and
0.7 um, the lengths(L) of 3 μm and 5 μm, corresponding to average
densities of 35.4% and 69.4% of the intrinsic material density,
respectively. In the experiment, the MWA targets were fixed on a
glass substrate with a thickness of 3.5mm. In addition, the proton-
boron fusion is also measured, which will be discussed in the
future work.

The recorded parabolic ion traces on IPs shown in Figure 2A and
Figure 2B were analyzed using a MATLAB code applying an existing
scaling relationship [36]. Figure 2C shows the proton energy spectra
with a wire diameter of 0.5 μm and length of 3μm.Maximum proton
energy of 16 MeV was measured at an angle of 15o to the target
normal direction (TP1). The spectra show an approximately
exponential decay in the low-energy region,
n(E) ~ n0 exp(−E/Tef f ), with an effective temperature
Tef f ≈ 813keV. This is beneficial to increase the nuclear reaction
rate of hydrogen and boron, which is related to the densities n and

FIGURE 2
(A), (B) The raw IP data of TP1 and TP2 respectively. (C)
Experiment energy spectrum of the proton in front of the target with a
wire diameter of 0.5μmand awire length of 3μmat an angle of 15o 58o

to the target normal direction (D) Simulation energy spectrum of
the proton in front of the target at an angle of
cos 15o ± 0.033cos 58o ± 0.033 to the target normal direction while
maintaining the same average density with (C). The shaded regions
represent uncertainty. (E) Cut-off energies of backward TNSA-
accelerated protons with short pulses (τ <60fs) and target
thicknesses greater than 0.1μm. The published results are taken from
the reference shown in square brackets. The error bars are defined by
the uncertainty in maximum proton energy arising from the energy
resolution of the Thompson spectrometer.

TABLE 1 Laser-driven backward proton acceleration results are shown in comparison with previous experiments.

Laser FWHM (fs) Laser intensity (W/cm2) Target thickness (μm) Proton energy (MeV)
Bychenkov et al [33] 30 8 × 1020 6 18

Ceccotti et al [30] 65 5 × 1018 0.08–105 4.2

Fourmaux et al [31] 30 8.9 × 1019 0.015–50 9.6

Prasad et al [32] 50 2 × 1020 0.05–10 3

Schnurer et al [38] 45 5 × 1019 0.029–0.05 6.1

This work 40 ~ 2 × 1020 — 16
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relative velocity v of two reacting species, R ~ n1n2 < σv>~ n1n2Tα.
Here σ is cross section, T is temperature and α ~ 3 − 4 for light ion
reactions in the temperature range of 10 − 30keV [37]. As the
reflection angle increases (TP2), both the proton cut-off energy
and population decrease significantly, indicating the dominance of
TNSA mechanism.

The current experiment did not consider the case for flat foils.
However, one could refer to previous results with similar laser
conditions. In Ref. [30–33, 38], flat foils of thickness >0.1 μm
were irradiated by laser pulse shorter than 60 fs at various laser
intensities. The cut-off energies of backward TNSA-accelerated
protons are listed in Figure 2E. In the range of
0.5 − 2 × 1020W/cm2, one finds that the MWA targets employed
here produce maximum energies 20% − 60% higher than that of flat
targets shown in Table1. We also include the results with a wire
diameter of 0.7 μm and a length of 5 μm in Figure 2E, which show
consistent enhancement as compared to the flat targets. The
maximum proton energy is slightly lower than that for D �
0.5μm and L � 3μm owing to its higher average density when
laser impinges onto the structure.

Simulation results

We use the particle-in-cell (PIC) program SMILEI [39] to
interpret the experimental observation. Due to the demanding
computation requirement for simulating dense micro-structures,
we restrict our simulations to two-dimensional (2D) geometry.
Based on the test simulations, we found that the proton
acceleration saturates at about 500 fs, corresponding to roughly
40 μm. Thus, the longitudinal length of the simulation box is
40 μm. The y dimension of the simulation box is set to 81.92 μm,
following the rule in SMILEI simulation (λ � 0.8 μm is the laser
wavelength). The cell size of 10nm × 10nm and the time-step of
0.022fs is set to fulfill the resolution requirement of convergent
simulation results and balance the computational cost. The number
of macro-particles per cell to 16 for all simulations. A linearly
polarized laser with a peak intensity of a � 10 and a focal spot of
10μm (FWHM) is incident on the target surface at an angle of −26o,
consistent with the experimental conditions. The number ratio of
C6+ and H+ in simulated target is 1: 2, and the total electron density
is 80nc. Here nc � (ε0meω2)/e2 � 1.7 × 1021cm−3 is the critical

FIGURE 3
2D PIC simulations results. (A–C) Spatial distribution of the electric field Ey and the electron energy density (E–G) and the x − px phase of electrons
(I–K) at the simulation time t � 188fs, 222fs, 255fs for the micro-wire target. The MWA is between the dotted line and the solid line in (I–K). (d)Spatial
distribution of the electric field Ey and the electron energy density(h) and the x − px phase of electrons (L) at the simulation time t � 255fs for flat target.
The flat target is between the dotted line and the dotted line. (A–H) have same scale and label.

Frontiers in Physics frontiersin.org04

Fan et al. 10.3389/fphy.2023.1167927

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1167927


electron number density, where ε0 is the vacuum permittivity. The
initial temperature of each species is 1eV. The substrate is located at
35μm< x< 40μm, where x � 40μm is the right boundary of the
simulation window. We employ absorbing boundary conditions for
particles. Considering the influence of the pre-pulse of the laser, we
set a neutral pre-plasma with an electron density of
80nc exp (−d/L0) on the front surface of the wire target, which
extends to 3μm at the target front, where L0 is the density scale
length and d is the distance to the target surface. Considering the
initial temperature of the target in our simulation and the laser
conditions in our experiment, we estimate L0 � cstp � 60nm, where
cs and tp are ion sound velocity and pre-pulse duration [40]. To
maintain the same average density as in the experiment, wire period
(P) of theMWA in the 2D simulation is set to 1.4 μm, while diameter
of 0.5 μm, length of 3 μm remain the same, and the base thickness is
set as 5 μm. The thickness of the flat target is 5 μm, and the front
surface is located at x � 32μm.

The electric field Ey distributions in Figures 3A–C show that a
femtosecond laser pulse can penetrate deeply into the wire array.
Compared with the flat target shown in Figure 3D, the MWA target
has a larger contact area with the laser. The transverse Ey field
extracts the electrons from the wire, which either quiver across the
density gradient region or move longitudinally under the effect of
relativistic J × B force. The ultrashort duration of the laser pulse
allows for the majority of the energy to be efficiently deposited
before gap closure such that the thermal energy density of the
plasma is significantly enhanced via volumetric heating [26], as
shown in Figures 3E–G. The maximum energy density of electrons
in micro-wires is 6.4 × 1010J/cm3, which is twice that of flat target at

t � 255fs shown in Figure 3H under same laser conditions. The
energetic electrons escape from the target front surface and establish
space-charge sheath [22]. Compared with the flat target (Figure 3L),
the population of hot electrons (Figures 3I–K) for theMWA target is
significantly increased. These all together lead to efficient proton
acceleration. The proton energy spectra and the cut-off energies
from PIC simulations agree well with the experimental results, as
already illustrated in Figures 2C, D.

Figures 4A–D describes the x − px and y − py phase
distribution of protons for the flat target and MWA target. The
longitudinal momenta of protons in MWA are notably higher than
that of the flat target as seen in Figures 4A, B, a natural result from
the enhanced sheath field driven by large population of high energy
electrons from the surface. An interesting phenomenon revealed in
Figure 4D is that the protons also gain significant transverse
momenta, reaching 25% of the longitudinal one. Apparently, the
expanding electrons also build up huge sheath field perpendicular to
target normal direction. These protons are confined between MWA
units shown in Figure 2D, corresponding to an effective temperature
at 777keV. This is beneficial to increase the nuclear reaction rate R of
hydrogen and boron. The boosted nuclear reaction with MWA
structures has also been verified in experiment and will be discussed
in an independent work.

In Figure 4E we compare the total proton energy obtained from
the laser. The energy conversion tends to saturated after 500 fs away
from the beginning of the interaction for the MWA targets, while it
only take 50 fs for the flat targets. The total energy obtained from the
laser by protons (>1 MeV) at the target front is 6 times higher than
the flat target for the MWA target.

FIGURE 4
The x − px and y − py phase spaces of the protons for the flat target (A) (C) and the MWA target (B) (D) at t � 777fs. The flat target is between the
dotted line and the dotted line in (A), the MWA is between the dotted line and the solid line in (B), MWA are represented by gray transparent stripes in (D).
(E) Proton total energy over the simulation time for the flat target and MWA target.
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FIGURE 5
The angular-energy distribution of electrons in (A) flat target, (B) micro-wire target at t � 255 fs. Spatial distribution of the electric field Ex at the
simulation time t � 288 fs for the flat target (C) and the micro-wire target (D). The red line shows the sheath field along the x-axis at y � 43μm. The
angular-energy distribution of protons in (E) flat target, (F)micro-wire target at t � 777 fs. The electrons density distribution for the flat target is shown in
the inset of (A). The red arrow in the inset of (A) and the solid line in (B) is the direction of the incident laser. The red line in (E) and (F) represent the
angular distribution of the protons above 5MeV.
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The relative number density distributions of electrons and
protons in the energy-angle domain are presented in Figure 5.
One can see that there is a gap at 26o for both the flat and
micro-wire targets in Figures 5A, B. It is related to the fact that
the electrons are expelled by the ponderomotive force of the reflected
laser shown as the inset of Figure 5A. The total number of electrons
with energy above 1MeV for the MWA target shown in Figure 5B is
8 times that of the flat target shown in Figure 5A. The TNSA field is
enhanced approximately twice by these electrons shown in Figures
5C, D. The total number and maximum energy of the proton beam
are also increased for the MWA target through the enhanced TNSA
field (Figures 5E, F), which is consistent with Figures 4A, B.
Applying the scaling law of ion cut-off energy versus hot electron
temperature Eion � αThot [5, 41], we find a value of α ~ 6.6, which is
consistent with previous report [21]. The angular distribution of the
protons above 5 MeV is denoted by the red line in Figures 5E, F. For
the MWA target, the proton divergence angle (FWHM) is 25o but
only 1.8o for the flat target. This is because the transverse
momentum of most protons is relatively large for MWA target
shown in Figure 4F. It is interesting to notice that the proton energy
spectrum exhibits asymmetry profiles, where protons are deflected
along the direction of the reflected laser. This is because the oblique
incidence of the laser pulse induces a large number of electrons
deviate from the normal direction of the target.

Discussion

An important feature of the MWA structure is the promising
scaling law Eion max ∝ a2 between the laser intensity and proton cut-
off energy, which is different for standard TNSA mechanism

Eion max ∝ a, as shown in Figure 6B. This is possibly because the
high energy electrons are generated via direct laser acceleration
rather than ponderomotive acceleration for flat surfaces, which
generate higher temperature shown in Figure 6A. The former
provides a more efficient scaling with respect to the laser field
[23] than the latter. This trend is observed in experiment from a �
5 ~ 10 due to the limitation of the laser system. PIC simulations
reproduce the results in this range and indicate that it can be
extended to laser intensities approaching a � 20. For even higher
intensities, the scaling law may come to saturation, as pointed out by
previous simulations using micro-channel structures [42]. Such
behavior is yet to be confirmed in experiment. Energy conversion
efficiency increases with the increase of laser amplitude as shown in
Figure 6C. The energy conversion efficiency increases first and then
decrease when the micro wire period is increased as shown in
Figure 6D. The MWA target is close to the flat target when the
period is large, and the laser cannot enter between the wires when
the period is small, so the energy coupling efficiency decreases.

Conclusion

We report on experimental measurement of proton beams with
maximum energy of 16MeV accelerated by a target normal sheath
acceleration (TNSA) field at the target front, and confirm the
enhanced effect of MWA on the acceleration of protons in front
side of the target in the experiment. It can be found by simulation
that the enhancement originates from the increased temperature
and population of the hot electrons within the micro-wires. These
protons are confined between MWA units, corresponding to an
effective temperature at 813keV. This is beneficial to increase the

FIGURE 6
(A) The scaling law of laser amplitude and electron temperature. (B) The experiment (red) and simulation (blue) scaling law of laser intensity versus
proton maximum energy. The error bars are defined by the uncertainty in maximum proton energy arising from the energy resolution of the Thompson
spectrometer. The distance between thewires is 0.8μm for the target used in the experiment, with the wire diameters(D) of 0.5 um and length(L) of 3μm.
Energy conversion efficiency as a function of laser amplitude (C) and micro wire period (D). The micro wire period of 0 means a flat target.
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nuclear reaction rate R of hydrogen and boron. This work will be
beneficial to the research of laser-driven nuclear fusion.
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