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Particle-laden flows are ubiquitous, ranging across systems such as platelets in
blood, dust storms, marine snow, and cloud droplets. The dynamics of a small
particle in such non-uniform flows, under the idealization of being rigid and
spherical, is described by the Maxey–Riley–Gatignol equation, which includes the
Basset–Boussinesq history force among other better-understood forces. The
history force, which is an integral over time with a weakly singular kernel, is
often neglected, not because such neglect is known to be justified, but because it
is difficult to be included in general scenarios. It is becoming increasingly evident
that there are situations where neglecting this force might not be valid. In this
review, after introducing classical knowledge about the history force, we outline
recent studies that suggest alternative forms for it and discuss the range of validity
of each, and describe recent numerical methods that have been developed to
efficiently compute the history force. The question of whether the history force
matters requires careful consideration and can be settled only with its accurate
inclusion. We hope this review will help researchers addressing the multitude of
open questions related to particulate flows to account for this effect.
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1 Introduction

Inertial (finite-sized) particles in fluid exhibit complex dynamics due to finite-time
relaxation to the surrounding flow, allowing excursions from the underlying flow trajectory,
unlike idealized passive particles (tracers) that instantaneously relax to the flow.
Consequently, in multi-particle systems, such as planktons in oceans and aerosols in air,
inertial particles can accumulate in certain regions of the flow, a tendency known as
preferential concentration. Understanding such phenomena warrants an accurate
description of particle motion. Customarily, the motion of an isolated inertial particle in
non-uniform flows, under idealizations specified later, is modeled by the
Maxey–Riley–Gatignol equation (MRG), which comprises a balance of different
hydrodynamic forces [1, 2]. This article focuses on one such force in this balance—the
Basset–Boussinesq history force (BBH) and its potential relevance in describing particle
motion accurately.

There are notable qualitative differences when BBH is neglected in the model even in the
simplest scenarios; a small sphere in a quiescent fluid, either relaxing freely (no external
forcing) or approaching terminal velocity under gravity, does so algebraically when BBH is
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included (Basset [3]1, Belmonte et al. [4], Farazmand and Haller [5],
Prasath et al. [6]), as opposed to exponentially when excluded. This
algebraic behavior is consistent with short-time experimental
observations made by Mordant and Pinton [7] on a sphere
settling under gravity. Similarly, a colloidal particle in fluid
displaying long-time tails in velocity auto-correlations [8, 9] is
supported in theory by inclusion of the history force [10–13]. A
marginally heavy particle in a simulation without BBH is ejected
from a solid-body vortex more rapidly than observed in experiment
[14, 15]; whereas inclusion of BBH provides better agreement with
the experiment. Exceptionally, Sapsis et al. [16] reported that while
certain aspects of the dynamics of neutrally buoyant particles in the
chaotic flow observed by Ouellette et al. [17] are predicted by MRG,
any deterministic force including BBH is inadequate to capture
random fluctuations.

Numerical simulations too have highlighted the role of BBH in
particle dynamics in chaotic/turbulent flows [18–28]. The main
conclusions of these studies are (i) particle clustering and caustic
formation are strongly reduced by BBH; (ii) in a typical chaotic flow
without external forcing, particle attractors are less typical in the
presence of BBH for light particles and the basin of attractions where
particulate matter tends to aggregate shrinks irrespective of the
particle’s Stokes number (ratio of particle relaxation timescale to
flow timescale). Convergence to the attractors that remain is
algebraically slower with BBH as opposed to exponential
convergence in its absence; however, (iii) several statistical
properties of particles remain unchanged. For example, the
standard deviation σ of trajectories of a collection of sedimenting
particles has a ballistic scaling, σ2 ~ t2 for short times and diffusive, σ2

~ t for long times, both with and without BBH. Nevertheless,
individual trajectories of the particles show deviation. Yet, as
Haller [29] summarizes the collective viewpoint, BBH “is
notoriously difficult to handle, which prompts most studies to
ignore this term despite ample numerical and experimental
evidence of its significance.”

The MRG primarily models rigid, spherical particles that are
small enough compared to the length-scales in the flow and in dilute
enough suspension that one may neglect inter-particle interactions
and assume one-way coupling, i.e., neglect the effect of particle on
fluid flow. Thus each particle can be modeled as an isolated particle
in an unbounded domain. Furthermore, it assumes that the particle
induces only a weak disturbance flow, wd = (v − u), where u is the
undisturbed flow and v is the disturbed flow due to the particle. This
allows a creeping flow theory for the disturbance field wherein the
particle Reynolds number, Rep = Wsa/], which is based on a
characteristic particle slip velocity Ws (a scale for the difference
between particle and local flow velocities), particle radius a, and fluid
kinematic viscosity ], and the shear-based Reynolds number, Res =
a2s/], where s is the typical flow gradient, remain small throughout
the motion. The forces experienced by the particle starting from rest
relative to the flow under these assumptions are the Stokes and
pressure drag, the added mass, and BBH, which appear in the

following non-dimensional form of MRG (Faxén corrections are
omitted for small enough particle)

dxp

dt
� ws + u xp( ), (1a)

dws t( )
dt

� −αws − γ ∫t

0

1�������
π(t − τ)√ dws τ( )

dτ
dτ( ) +N u xp( ),ws( ),

(1b)
where

α ≡
1
RS

, γ ≡
���
3

R2S

√
, S ≡

1
3
a2/]
T

, R ≡
1 + 2β( )
3

.

N u xp( ),ws( ) � 1
R
− 1( )Du

Dt

∣∣∣∣∣∣∣xp − ws · ∇u|xp

Here, xp(t) and ws(t) are the particle’s instantaneous position vector
and slip-velocity (� _xp(t) − u(xp)) respectively; u(x, t) represents
the non-uniform fluid velocity; β, which appears in the non-
dimensional quantity R, denotes the particle-to-fluid density
ratio; and S is the Stokes number based on an appropriately
chosen timescale T. The non-linear function N includes added
mass and pressure drag. The integral term on the right-hand side of
Eq. 1b represents BBH—the standard form of history force with the
Basset kernel, KB � 1/

��
πt

√
.

The relative importance of competing forces in Eq. 1b depends
on the particle-to-fluid density ratio (R), the local particle-to-flow
response-time ratio (S), and the Reynolds numbers. Conventional
arguments based on the density ratio suggest that BBH is as
important as Stokes drag for marginally heavy (R ~ 1) particles,
whereas it is negligible for particles much heavier than the fluid (R→
∞), although the latter is valid only for a point particle. Scaling
analysis of Eq. 1b reveals that for a finite-sized particle, the relative
strength of Stokes drag and BBH is independent of the density ratio;
rather it depends on the particle-to-flow response timescale ratio (S)
[22, 30, 31]. The particle Reynolds number alters the strength of the
history force fundamentally through the functional form of the
kernel.

To aid the upcoming discussion on variants of the history kernel
and numerical methods, it is useful to identify the force in a
generalized form:

Fh t( ) � −∫t

0
K t − τ, ws( ) dws

dτ
dτ, (2)

where K is the general history kernel which reduces to KB(t) �
1/

��
πt

√
for BBH.

2 Developments in theory: History
kernel

Theoretical studies show that the functional form of the history
kernel can deviate from the standard form based on the underlying
physics. Several variants under different conditions including high
Reynolds number and initial accelerating/decelerating wake
structures around the particle have been derived (see reviews by
[32–34]). We selectively discuss two physical aspects driving the
departure from the standard kernel within the creeping flow limit
(Res, Rep ≪ 1): the late-time onset of advective/convective inertial
dynamics for a rigid particle, and the magnitude of slip at the
particle–fluid interface.

1 Basset credits and summarizes Signor Bogglio’s calculation for particle
falling under gravity
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2.1 Late-time onset of advective/convective
inertial effects for rigid particle

In the creeping flow limit, inertial timescales are slow and well-
separated from the faster diffusive timescale, τv ≈ a2/]. However, a
particle accelerating through the fluid progresses through a range of
timescales during which inertial effects could become important.
This warrants a measure of the timescale of interest (τ*) relative to
an inertial timescale (τi) given by the Strouhal number Sl = τi/τ*.
Typically, either the particle convective time a/Ws (τp) or the inverse
of the flow gradient 1/s (τs) is taken as representative of the inertial
timescale, while τ* depends on the regime under consideration. For a
non-uniform undisturbed flow, the non-dimensional Navier–Stokes
equation for the disturbance field, in a frame translating with the
particle, is

ReiSl
zwd

zt
+ Res wd · ∇u( ) + Rep wud · ∇wd + wd · ∇wd( )

� −∇pd + ∇2wd, (3)
where wud(r) � (u(x) − _xp(t)) is the known undisturbed field
observed from the moving frame, Rei = a2/]τi is either Rep or Res
depending on the applicable inertial timescale, and the gradients are
spatial derivatives taken with respect to the instantaneous
coordinate, r = x − xp(t). In Eq. 3, distances have been scaled by
a, time (where it explicitly appears) by τ*, velocity by Ws, and
gradient of undisturbed field by s. The Strouhal number indicates the
importance of the unsteady-inertia term |zwd/zt| relative to the
shear-induced inertia term and the convective terms given in
parentheses in Eq. 3.

Early-time diffusive dynamics: For a particle starting from rest in
a homogeneous time-dependent flow, u = u(t), Boussinesq [35] and
Basset [36] showed that at early times, when τ* ~ τv, the leading-
order dynamics is governed by the unsteady Stokes equation,
resulting in the history force with the Basset kernel (see Eq. 1b).
Maxey and Riley [1] and Gatignol [2] derived the same history
kernel for non-uniform flows, u = u(x, t). Thus, for ReiSl ~ O(1)
corresponding to early time and the MRG model, the normalized
history force Fh(t) is given by

Fh t( ) � −6π∫t

0

1�������
π t − τ( )√ dws τ( )

dτ
dτ ≕ − 6πFBBH t( ), (4)

where t has been scaled by τ* = τv.
Late-time advective/convective dynamics: At later times when τ*

~ τi, inertial effects emerge either through convection or shear-
induced advection corresponding to the following two limits:

(i) Oseen limit, Re1/2s ≪Rep < 1, when τ* ~ ]/W2
s ≫ τv and

Sl ~ O(Rep). Mei and Adrian [37]; Lovalenti and Brady [38]
showed deviation from the MRG model with a kernel decaying
faster than the standard kernel (Eq. 4). This is attributed to the
development of spatially distinct inner and outer regions for the
disturbance field (similar to the classical steady Oseen problem). In
the outer region characterized by the Oseen distance r ~ Re−1p , the
convective inertial terms become as important as the viscous terms,
while in the inner region r ~ 1, close to the particle surface, a steady
Stokes flow develops. This suggests that in sufficiently long time,
vorticity generated at the particle’s surface escapes to the Oseen
distance where convection becomes the primary mode of transport.

Mei and Adrian [37] proposed the following semi-empirical form
for the history force that uniformly captures both early- and late-
time behaviors,

Fh t( ) ≈ − 6πRep∫t

0
π t − τ( )( )1/4 + f Rep, t( ) t − τ( )[ ]−2dws τ( )

dτ
dτ,

(5)
where t is scaled by τ* � ]/W2

s , and f (Rep, t) is a well-defined
function, which notably breaks the convolution form of the history
force owing to the explicit dependence on the current time. The
kernel in Eq. 5 reduces to the standard kernel at short times (t→ 0).

(ii) Saffman-limit, Rep ≪Re1/2s < 1. Candelier et al. [39,40]
introduced linear flow inhomogeneity of the form u(x, t) � U(t) +
A · x to study the force on the particle due to shear-induced inertia.
Here, A is a time- and space-independent velocity-gradient tensor
with a characteristic strain rate s. When τ* ~ 1/s and Sl � O(1), an
outer region develops at r ~ Re−1/2s , yielding the following history
force up to the second order in the small parameter Re1/2s :

Fh t( ) � −6π Re1/2s ∫t

0
K t − τ( ) dws

dτ
dτ + Res∫t

0
K t − τ( )[

· d
dτ

∫τ

0
K τ − σ( )dws

dσ
dσ dτ], (6)

where t is scaled by τ* = 1/s andK is a flow-dependent kernel tensor.
At early times, the tensor becomes diagonal with the elements
recovering the standard kernel (Eq. 4). Finite-time corrections
result in gradual development of both diagonal (drag force) and
off-diagonal elements (shear-induced lift forces) with the specific
form being flow-dependent.

We present the Saffman-limit and Oseen-limit separately in our
schematic in Figure 1, but in actual flows, they could appear in
complex combinations.

2.2 Kernels for slipping particle

The term “slip” is used to denote the difference in the
particle’s velocity and the undisturbed flow velocity at the
particle’s position. This is mere terminology, and in fact, the
drag for rigid particles is derived with the imposition of the no-
slip boundary condition at the particle–fluid interface. When
some slippage is permitted as on a hydrophobic object, a modified
history force emerges. Gatignol [41] provided the history kernel
K(t) � (exp{t]/(a2δ2)}erfc{ ��

t]
√

/(aδ)})/δ, where δ is a slip-
parameter. The standard kernel for no-slip is recovered when
δ → 0. Effects of similar non-Basset-type kernels on partial-slip
particles were also studied by Premlata and Wei [42].

Yang and Leal [43] and Galindo and Gerbeth [44] derived the
hydrodynamic force on an accelerating spherical drop (viscosity μd)
in a quiescent fluid (viscosity, μ). The modified history kernel for the
drop has the form KB(t; μd/μ) + Knew (t; μd/μ), where Knew is
distinguished by its temporally non-monotonic behavior. Unlike
the standard kernel, which is singular at initial time, the new kernel
is always finite. On the other hand, both kernels have similar long-
time behavior. For μd/μ → 0 corresponding to a shape-preserving
‘bubble’, the kernel reduces to the form observed in Gatignol [41]
with δ = 1/3. Experiments by [45, 46] provide evidence to the short-
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time validity of the aforementioned forms of the history kernel for
slipping particles (drops and bubbles).

3 Developments in numerics

The previous discussion shows that the form of the history force
is tied to the underlying physics; nevertheless, it always assumes a
generalized form (Eq. 2), and particularly the singular BBH form
(Eq. 4) for rigid particles as t → 0. In this section, we discuss the
peculiarities associated with BBH (treating it as the model form) and
report on the progress made in building numerical methods to solve
the equation (1b). Most of the methods discussed can be adapted to
other history kernels, especially when they are of the form KB(t) +
Knew(t), where Knew is a well-behaved function with no singularity.
However, the construction of general-purpose methods to handle
various singular kernels is still an active area of research.

3.1 The standard Basset kernel

For arbitrary initial slip-velocity, the modified BBH force (Eq. 4)
at time t is

ws 0( )��
πt

√ + ∫t

0

1�������
π t − τ( )√ dws τ( )

dτ
dτ. (7)

The first term imparts an initial-time singularity for non-zero
particle slip-velocities. Often in numerical implementations, this
term is avoided by imposing an unphysical zero initial slip-velocity.

In general, we expect an initial slip-velocity for the inertial particle
due to its finite-time response to the flow. In an equivalent
representation [47], the modified BBH can be expressed in terms
of the Riemann–Liouville half-derivative,

d

dt
∫t

0

ws τ( )�������
π t − τ( )√ dτ ≕

d1/2ws t( )
dt1/2

. (8)

The connection to the half-derivative (Eq. 8) forms the basis for the
schemes discussed in the following Section 3.2. A common feature of
both representations (Eqs 7, 8) is the non-locality in time. For BBH,
the non-locality is expressed as a convolution of the standard kernel
with the history of particle-states. It should be noted that the state at
time t enforces the most “vivid” memory-effect due to the current-
time singularity of the kernel, while the impact of past states decays
algebraically with elapsed time.

The form of the kernel and the non-locality-in-time imply that
MRG is not a dynamical system [5, 6]: the particle position and
velocity at time t are insufficient to uniquely determine the path of
the system in position-velocity space. This fact precludes the use of
standard numerical ODE-integrators, and the task of computing the
history integral at each time-step is unavoidable. Computing the
history integral entails (i) a memory requirement to store all past
states and (ii) an operational cost to compute the convolution. As
one evolves the system forward in time, both memory requirement
and operational cost increase. Indeed, if we evolve the system
through discrete times {tN = NΔt}, where Δt is the step size, the
operational cost increases quadratically with the number of time
steps (~ O(N2)) and the memory requirement increases linearly
(~ O(N)). These increasing costs are the reason why many simply

FIGURE 1
Spatio-temporal landscape of the leading-order physics in (i) the Oseen limit, Re1/2s ≪Rep < 1, and (ii) the Saffman limit, Rep ≪Re1/2s < 1. The triplets (◦,
◦, ◦) in the figure indicate the relative strengths of the inertial terms, in the order unsteady (|zwd/zt|), shear-advective (|wd ·∇u|), and slip-convective
(|wd ·∇wd|) inertia, compared to the viscous terms (|∇2wd|~|∇pd|). Asterisks denote dimensional quantities. Note in either limit, at later times, distinct “inner”
and “outer” regions in space develop, and deviation from the standard kernel (Eqs. 5,6) is attributed to this. However, at short times, the diffusive
unsteady Stokes equation drives the dynamics uniformly in space, yielding the standard Basset kernel. Idea courtesy: The schematic representation is
inspired from Bentwich and Miloh [60] and Sano [59].
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neglect the history force (justifiably or otherwise) in Eq. 1b, thereby
obtaining a dynamical system. On the other hand, the approaches
we discuss in the following section do account for the history effect.

3.2 Overview of numerical approaches

We classify numerical solution approaches by identifying the
overarching strategy used to address the computational challenges
described in Section 3.1, into the following categories (subsections).
An earlier review by Moreno-Casas and Bombardelli [48]
supplements this overview as we also discuss approaches
developed since.

3.2.1 Full quadrature

Daitche [47] developed a general scheme to compute the BBH
integral to arbitrarily high degrees of accuracy. Using the
expression (Eq. 8), the integrated form of MRG may be
written as follows:

ws tn+1( ) � ws tn( ) + ∫tn+1

0
KB tn+1 − τ( )ws τ( ) dτ − ∫tn

0
KB tn − τ( )ws τ( ) dτ( )

+∫tn+1

tn

(− αws τ( ) +N ws τ( )( ) dτ.
(9)

Quadrature routines involve polynomial interpolation of the
integrand and require evaluation of the integrand at the limits of
the integral. Hence, Daitche [47] employed a Lagrange-polynomial
interpolant only for the slip-velocity, retaining the kernel (and
singularity) as it is. The resulting integrals are then evaluated
exactly. Here, the degree of the interpolating polynomial
determines the order of accuracy. The quadrature is given by

∫tn

0
KB tn − τ( )ws τ( ) dτ � ∑n

m�1
∫tm

tm−1
KB tn − τ( )ws τ( ) dτ ≈

��
Δt

√ ∑n
m�1

μnmws tn−m( ),

(10)

where {μnm} are scheme-specific, time-dependent weights which can
be pre-computed and are explicitly provided by Daitche [47] for
O(Δt),O(Δt2),O(Δt3)-accurate schemes. The need to retain the
slip-velocities in the past to compute the quadrature persists. Hence,
we must accept the increasing memory and operational cost.
However, higher-accuracy schemes come at essentially no
additional cost.

Another class of full quadrature schemes, of varying accuracy,
designed specifically for fractional–differential equations are
described in the works of Garrappa and Popolizio [49]; Garrappa
[50]. These methods are similar to exponential integrators
introduced by Cox and Matthews [51] but adapted to fractional
derivatives.

3.2.2 Window-based approaches

This class of methods involves splitting the integral in Eq. 7 into
one over the distant past and another for the recent past. The
motivation is to accurately treat the current-time singularity, while

approximating the history kernel in the distant past to reduce
operational costs. A general construction is given by

FBBH tn( ) ≔ ∫tn

0
KB tn − τ( )dws τ( )

dτ
≈ Ftail tn( ) + Fwin tn( ), (11)

where

Ftail tn( ) � ∫tn−twin

0
Ktail tn − τ( ) dws τ( )

dτ
dτ,

Fwin tn( ) � ∫tn

tn−twin
Kwin tn − τ( ) dws τ( )

dτ
dτ. (12)

Here, twin = MΔt is the recent-past window size. The studies
reviewed here are essentially distinguished by their choice of
Kwin, Ktail.

As the current-time singularity always occurs in the window
[tn − twin, tn], the form of the kernel (hence singularity) is usually
retained in this window. One sets Kwin (◦) = KB(◦) and thereafter
employs a quadrature scheme similar to Daitche [47]. For instance,
Brush et al. [52] assumed constant slip-acceleration, whereas van
Hinsberg et al. [53] used a linear interpolant of the slip-acceleration.
In another instance, instead of constructing a quadrature,
Bombardelli et al. [54] approximated the integral in the recent
time window by the series representation of the
Riemann–Liouville half-derivative.

In the tail window [0, tn − twin], one seeks fast-converging
approximate kernels. Dorgan and Loth [55] and Bombardelli et al.
[54] completely ignored the tail, effectively truncating the integral by
setting Ktail (◦) = 0. On the other hand, a new class of exponential
methods emerged, e.g., van Hinsberg et al. [53], where Ktail (◦) is
given by a sum of decaying exponentials that approximate KB in [0,
tn − twin]. The resulting tail integral for method-specific positive
constants {ai, ti} and known functional forms of {α, β} is given by

Ftail tn( ) � ∑m
i�1

Fi tn( ) � ∑m
i�1

∫tn−twin

0
aiKi tn − τ( ) dws τ( )

dτ
dτ,

� ∫tn−twin

0
aiα ti( )e−β ti( ) tn−τ( )dws τ( )

dτ
dτ. (13)

In particular,

Fi tn( ) � e−β ti( )ΔtFi tn − Δt( )+ aiα ti( )∫tn−twin

tn−twin−Δt
e−β ti( ) tn−τ( )dws τ( )

dτ
dτ.

(14)
Note that the recursive nature of this method in its treatment of

the tail integral is a consequence of the exponential-form
approximation. This suggests Fi(t) are dynamical variables that
satisfy linear equations forced by the slip-acceleration. Parmar
et al. [56] essentially pursued this idea to obtain a differential
equation for each approximate force Fi(t). The quadrature is
significantly curtailed by requiring small twin, and the exponential
approximation is obtained following Beylkin and Monzón [57], but
otherwise their method is similar to that previously described.

For window-based approaches, the parameter twin must be
chosen carefully, and often the criterion is problem-specific. For
the physical system of interest in Bombardelli et al. [54], twin is
determined based on the time beyond which the particle-state
correlations are observed to be weak. However, van Hinsberg
et al. [53] and Parmar et al. [56] set up a minimization problem
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for an error-like quantity to determine their optimal twin. Casas et al.
[58] improved the optimization for van Hinsberg et al. [53]’s
approach.

3.2.3 Formulation as a partial differential
equation

A different approach was introduced by Prasath et al. [6], who
showed that the governing MRG, in its entirety, can be posed as a
dynamic boundary condition for a suitable 1D diffusion equation
over a half-line—a system for which much is known and solvable.
Prasath et al. [6] essentially exploited the fact that the
Dirichlet–Neumann operator for the diffusion equation is (up to
a sign) the Riemann–Liouville half-derivative, whereas the window-
based methods hinted at or constructed dynamical systems that
approximate MRG; Prasath et al. [6] described an exact
reformulation of MRG that is local-in-time. Indeed, they defined
a diffusing quantity q (ζ, t) in a pseudo-space coordinate ζ > 0. The
slip-velocity ws(t) is related to q by q (0, t)≔ws(t). Under these
definitions, they proposed the following system:

qt � qζζ , (15a)
q ζ > 0, t � 0( ) � 0, (15b)

qt 0, t( ) + αq 0, t( ) − γqζ 0, t( ) � N q 0, t( ), u xp t( )( )( ), (15c)
lim
t→0

q 0, t( ) � ws 0( ), (15d)

where qζ(0, t) represents the BBH term, and the subscripts t and ζ

refer to partial derivatives. Indeed, MRG (Eq. 15c) manifests as a
generalized Robin boundary condition.

Using the aforementioned reformulation, one derives an
expression for q (0, t) (equivalently the slip-velocity) for tn < t ≤
tn+1 given q (0, tn), with the introduction of a new (dynamical)
quantity called the ‘history function’, denoted by H(k, t),

−π
2
q 0, t( ) � ∫∞

0
e−k

2 t−tn( )Im kH k, tn( )( ) dk + ∫t−tn

0
N q 0, tn + τ( )( )

× ∫∞

0
Im

ke−k2 t−tn−τ( )

ikγ − k2 + α
( ) dk[ ] dτ,

(16a)
H k, tn+1( ) � e−k

2ΔtH k, tn( )

− ∫Δt

0
e−k

2 Δt−τ( ) q 0, tn + τ( ) + N q 0, tn + τ( )( )
ikγ − k2 + α

( ) dτ.

(16b)

At t = 0, the history function is known analytically, and for tn > 0,
H(k, tn) is represented using Chebyshev polynomials. One assumes the
slip-velocity q (0, t), t ∈ [tn, tn+1] also has a Chebyshev expansion. Given
H(k, tn), Prasath et al. [6] solved Eq. 16a using theNewtonmethod for the
Chebyshev coefficients of q (0, t). Then, they updated the history using Eq.
16b to solve for the slip-velocity in the next time-step. The highlight of the
scheme is that no approximation is made to the kernel. Moreover, by
includingH(k, t) as a dynamical variable, the operational cost, thememory
requirement, and cost to restart the simulation become independent of
time.

In summary, the choice of the numerical approach would
depend on available computational resources and the required
accuracy. In Table 1, we provide a comparison of approaches
based on how computational expenses increase with simulated
time (~ N). The costs are scaled by a method-dependent
prefactor, suggesting a break-even point between the cost and
simulated time, where one method outperforms another. Briefly,

- for short-duration simulations (small memory build-up), the
quadrature approach with its scalable accuracy and nominal
cost for short times is a reasonable choice;

- for kernels with fast decay (e.g., (Eq. 5)), window-based
approaches are a computationally relieving alternative;

- for long-time and multi-particle simulations, where little can
be said about the dynamics a priori, such as particles in
turbulence, partial differential reformulation guarantees
accuracy without growing-in-time computational costs.

4 Summary and future directions

The ubiquity of inertial particles in non-uniform flows makes it
important to develop accurate methods to obtain their dynamics. We
have highlighted analytical and numerical studies which indicate that
the inclusion of a history force in the model is important to describe
transient dynamics observed in experiments, whereas statistical
properties often remain unaffected by its inclusion. This requires
further understanding. The computational barrier to simulating a
large number of particles with history force has been progressively
bridged by numerical strategies (Section 3.2), opening ways to
numerically explore history effects in large-scale systems. However, a
lack of consensus on the role and functional form of this force in general
multi-scale flows provides an active area of research with several open
questions.We list a few promising directions pertaining to history force:

TABLE 1 Computational demands such as memory storage requirement, operational cost (FLOPs), and the corresponding accuracy of different methods that
capture the effects of BBH.NΔt is the simulated time, andM = twin/Δt is the number of time-steps in the recent-past window twin (fixed a priori). The accuracy column
indicates the order of accuracy obtained by the explicitly available schemes developed under each approach (see Section 3.2). The order of accuracyO(Δtp) used
here indicates that the local error of the scheme scales as O(Δtp+1).

Approach Memory storage Operational cost Accuracy

Full quadrature O(N) O(N2) O(Δt),O(Δt2),O(Δt3)

Window-based
methods

(window = MΔt)

O(N) N<M,
O(M) N≥M{ O(N2) N<M,

O(M2) +O(N −M) N≥M{ O(Δt1/2),O(Δt)

PDE
formulation

Constant O(N) Spectral
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- History force in turbulent flows. Existing theories for a single
particle in a simple flow [37–40, 59] demonstrated how the
history force changes its form due to the emergence of
fundamentally different physics over multiple timescales. This
compels enquiry into the history force on an inertial particle
sampling spatio-temporally varying features in turbulence.

- Inter-particle hydrodynamic interactions and collision kernels.
BBH (and MRG) is derived for an isolated particle, and by
extension is valid for dilute suspensions. However, the form of
the history force when particles approach each other has not
been explored. Are there screening effects due to inter-particle
interactions that supersede history effects? An associated
question is when particles collide or droplets coalesce, how
do their histories exchange or combine? Answers to these
questions will inform accurate construction of collision
kernels.

Interesting insights are likely to emerge one way or the other in
finding whether the history force and its effects matter.
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