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Indroduction: The novel model of a non-local elastic semiconductormaterial that
is microelongated is created. The process of photothermal transfer is responsible
for the stimulation of the material. Photo-thermoelastic theories are used when
the thermal conductivity is changed for the non-local medium. Under the
influence of laser pulses, the effective framework describes the nanoscale
microelongation instance as well as the interference between the photo-
thermoelastic propagation waves in the non-local medium. It is possible to
think of thermal conductivity as a linear function of temperature when
electronic and thermoelastic deformation mechanisms are described. Two-
dimensional deformation (2D) is used to extract the main fields, which
obtained in non-dimension.

Methods: Harmonic wave analysis, which is described by the normal mode, has
been used to convert the basic equations into non-homogeneous higher-order
ordinary differential equations. Applying a small subset of the possible non-local
semiconductor surface conditions leads to exhaustive solutions.

Result and Discussion: The outcomes of numerical simulations for silicon (Si) are
graphically shown. There are comparisons made and explanations given for the
investigated physical factors like their thermal conductivity, laser pulses and
microelongation parameters.

KEYWORDS

photoexcitation, microelongation, optical waves, thermal conductivity, semiconductor,
harmonic wave

OPEN ACCESS

EDITED BY

Hamid M. Sedighi,
Shahid Chamran University of Ahvaz, Iran

REVIEWED BY

Ashraf M. Zenkour,
King Abdulaziz University, Saudi Arabia
Ahmed E. Abouelregal,
Mansoura University, Egypt

*CORRESPONDENCE

Khaled Lotfy,
khlotfy_@zu.edu.eg

RECEIVED 15 February 2023
ACCEPTED 17 April 2023
PUBLISHED 18 May 2023

CITATION

Farhan AM, El-Sapa S, El-Bary AA,
Chteoui R and Lotfy K (2023), Photo-
thermoelastic wave propagation with
changing thermal conductivity on excited
pulsed laser nanoscale microelongated
semiconductor material.
Front. Phys. 11:1166622.
doi: 10.3389/fphy.2023.1166622

COPYRIGHT

© 2023 Farhan, El-Sapa, El-Bary, Chteoui
and Lotfy. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 18 May 2023
DOI 10.3389/fphy.2023.1166622

https://www.frontiersin.org/articles/10.3389/fphy.2023.1166622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1166622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1166622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1166622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1166622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1166622/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1166622&domain=pdf&date_stamp=2023-05-18
mailto:khlotfy_@zu.edu.eg
mailto:khlotfy_@zu.edu.eg
https://doi.org/10.3389/fphy.2023.1166622
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1166622


1 Introduction

Recent developments in the generalized thermoelastic theory
have allowed its benefits to be applied to a wider range of fields of
research, including as nuclear reactors, rocket and missile
technologies, shipbuilding, and massive steam turbine systems.
Silicon (Si) and other elastic semiconducting materials found new
applications in many branches of engineering and materials science
as a consequence of technological developments. Semiconductors
play an essential role in modern industry across the board, but
especially in the electronics industry. Semiconductor materials are
crucial to the development of solar cells and other clean energy
technologies. This is why semiconductor physics, and especially
semiconductor internal structure, has been a popular topic of study
in recent years. Electronic deformation occurs when excited
electrons are pushed to the surface through absorption due to the
temperature influence of light (ED). Yet, the internal particle
collisions lead to thermoelastic (TE) deformations in the non-
local semiconductor owing to the depths of the semiconductor.
This is why we focus on the microinertia processes of the
microelements, also called the kinetics of internal particles. We
all know that the electrical resistance of semiconductors decreases
with increasing temperature, and that the degree of conduction
varies with both temperature and distance from the surface. This
suggests that thermal conductivity could change with distance, as
suggested by Eringen [1, 2]. Hence, several factors, such as thermal
conductivity, internal structure (microelements), and light energy
absorbed, must be taken into account while studying
semiconductors (photothermal excitation).

The models utilized to describe the semiconductor material
might be developed using the micropolar elastic solid body and
microstretch thermoelasticity continuum theory. Researchers
around the turn of the last century looked into the relationship
betweenmicropolar processes (micro-deformation) and the physical
characteristics of semiconductors [1]. Eringen [2, 3] considered the
microstructure of an elastic body as part of his examination of the
micropolar theory. Microstretch thermoelasticity is used as a
unifying concept in a new model created by Eringen [3]. Using
microstretch effects, numerous writers [4–7] developed the
generalized thermoelasticity theories. Lotfy et al. [8, 9] presented
a many problem of how the generalized microstretch
thermoelasticity theory may be put to use. Ramesh et al. [10]
introduced the microstretch theory, which has inspired the study
of fluid mechanics models for viscoelastic porous media. Ezzat and
Abd-Elaal [11] studied the porous medium according to viscoelastic
boundary layer flow with free convection effects with one relaxation
time. When waves inside the medium are examined using
functionally graded circumstances, the microelongated medium is
created as a result of the influence of varying internal heat sources
[12, 13]. Ailawalia et al. [14–16] studied the thermoelastic
microelongated elastic material under plane strain deformation in
accordance with different thermal memories by relocating internal
heat sources. Using the twofold porosity phenomenon, Marin [17]
studied the structure of elastic materials when subjected to
micropolar influences.

It is well known that the rules of classical continuum mechanics
(CCM) remain the same regardless of the size of the system under
investigation. Due to the equations in its system, it cannot predict a

large influence. As a result, it may not work in contexts where
elements like size dependence and the scaling of mechanical
phenomena play a substantial role. Discrete models provide a
solution to all of the above problems, but doing so requires a lot
of computational power. This has prompted efforts to develop
models of modified continuum mechanics that include intrinsic
lengths and so account for size effects. According to the principles of
classical continuum mechanics, all matter is made up of an endless
number of points, including particles, which can only move with
regard to their immediate neighbours. As classical mechanics does
not show many tiny phenomena like microdeformation and
microdislocation, it has limited practical applicability and is thus
seldom used. With this new information in hand, it was clear that a
unified viewpoint was required to inculcate the idea that a material
particle is a volume element that would deform and rotate, and that
the material is, in general, a multiscale material. The particle’s
nonlocal interactions with other particles in the medium must
also be included into the calculation of its equilibrium. From
this, it is clear that the material model is a nonlocal micro-
continuum theory. Nonlocal elasticity was initially proposed by
Eringen [18]. Eringen investigated the theory of nonlocal
thermoelasticity [18]. While discussing nonlocal elasticity, he
went through the following: constitutive relations; governing
equations; balancing laws in continuum mechanics; and
equations of displacement and temperature. The lattice building
theory and the classical continuum theory are connected by the non-
local thermoelastic theory, which acts as a bridge between the two.
Tzou [19, 20] later proposed the dual-phase-lag heat conduction
theory, which incorporates two phase-lags related to the heat flow
and the temperature gradient. Gupta and Mukhopadhyay [21] have
recently done work on extended thermoelastic theory using non-
local theory of heat conduction. A novel theory on the energy
equation was established by Tzou and Guo [22], which depicts
the lagging response in space as the later in time. Phase-lagging
captures the ultrafast response in the femtosecond domain, while
non-local provides light on the underlying nanoscale physical
process [23]. According to nonlocal theories, matter particles are
immobile in space and can only move in one direction (without
spinning or rotating). Attenuation functions are developed to
illustrate how the strength of long-range interactions between
particles decreases with increasing distance [24]. Using these
functions, constitutive equations have been developed, and the
equilibrium equations in continuum theory are defined by the
integral functions for kinematic variables. This was very close to
the classical mechanics theories. To broaden the scope of local
mechanics, nonlocal continuum mechanics at tiny scales was
developed [25].

Applications in semiconductors, magnetometers, solar panels,
nuclear fields, geophysics, and other related domains have boosted
the profile of the study of plane wave propagation in a photo-
thermo-elastic solid. The photothermal phenomena are studied
when multiple laser beams impact a semiconductor sample
during an ED deformation [26]. Photothermal methods with
ultrasensitive laser spectroscopy have been used to evaluate
several physical properties while analyzing the waves’
propagation through a semiconductor using photoacoustic
spectroscopy [27–30]. Hobiny and Abbas [31] used two-
dimensional deformation of semiconductors to investigate the
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interplay between photothermal and thermoelastic theories.
Todorovic et al. [32, 33] used the photoacoustic transmission
technique to get the optical properties of the stimulated
semiconductor from microcantilevers during the ED deformation.
Nevertheless, Lotfy et al. [34–40] presented other uses when the
photo-thermoelasticity strategy was applied to the semiconductor
silicon elastic medium of present day technology. The dual phase-
lags model is used in the photo-thermoelasticity theory for
excitation semiconductor materials [41, 42]. When the
semiconductor medium is excited, its thermal conductivity may
be chosen as a function of distance [43, 44]. Ezzat [45, 46] created a
unique fractional heat order model that defines the non-metallic
organic semiconductor medium for the study of thermal-plasma-
elastic waves. Ismail et al. [47] looked at how excited microelongated
semiconductors with varying thermal conductivity affected thermal-
optical-elastic waves. Hall current’s effect on non-Local
semiconductor material’s Optical-Elastic-Thermal-Diffusive waves
was studied by Chteoui et al. [48]. Thermo-diffusion waves for
nonlocal semiconductor were studied by Almoneef et al. [49]
utilizing the fractional calculus and the laser short-pulse effect.
Using an improved multi-phase-lag theory and thermal
activation with diffusion and gravitational field on a
semiconducting material, Zenkour [50–53] investigated several
challenges in generalized photo-thermoelasticity.

The plasma transfer process and mechanical thermoelasticity
phenomena are investigated using the suggested model in an
endlessly deformable semiconductor medium with homogenous,
isotropic, and thermoelastic characteristics. Previous studies ignore
the fact that nanoscale microelongating a non-local semiconductor
material causes a change in thermal conductivity. Based on the
photo-thermoelasticity theory, this work explores how the thermal
conductivity of a non-local semiconductor mediummight change in
response to a temperature gradient. Using the nanoscale
microelongated non-local semiconductor and the microinertia of
the medium, a novel model is constructed in accordance with the 2D
(TD and ED) deformation processes under the impact of laser pulse
to obtain the transmission of plane waves in a nanoscale medium.
Harmonic wave technique with the normal mode analysis is used to
locate the linear solution to the dimensionally unconstrained main
fields. Elimination technique of simultaneous differential equations
has provided the relevant physical quantities: temperature,
displacement, carrier density, stresses and microelongation
function. In a non-local medium, the fundamental solutions may
be obtained when conditional forces are applied to the free surface.
The results of numerical simulations of silicon material are shown
graphically. The results provide light on the propagation of waves in
an energizedmaterial. Changes in the thermal relaxation time for the
photo-thermoelasticity theory are used to make a number of
comparisons when the thermal conductivity is varied owing to
the influence of elongation factors, laser pulse and the non-local
effect.

2 Mathematical model and main
equations

The plasma distribution (N) (the phase of carrier density),
elastic displacement vector (ui), and microelongational amount

(ϕ) are three additional main variables other than the thermal
wave distribution (variations temperature T). The
microelongated non-local photo-thermoelasticity theory gives
the essential governing equations for 2D deformation in
Cartesian coordinates (see Figure 1). Following Eringen [1–3],
generalized thermoelasticity [54–56], and Lotfy et al. [47, 48] the
basic formulations for non-local thermo-elastic material in the
absence of heat source and body forces, the following constitutive
equations (the nonlocal stress–strain equations) may be
expressed for a nanoscale microelongated semiconductor
photo-electronics medium:

σ iI
′ � λoϕ + λur,r( )δiI + 2μuI,i − γ̂ 1 + vo

z

zt
( )TδiI − 3λ + 2μ( )dnN( )δiI,

mi � a0ϕ, i , 1 − ξ2∇2( )σ iI � σ iI
′,

s − 1 − ξ2∇2( )σ′ � λoui,i − β1 1 + vo
z

zt
( )T + − 3λ + 2μ( )dnN( )δ2 i + λ1ϕ,

ξ � ae0
l
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(1)

The diffusion equation of plasma (the optoelectronics equation)
is given by for the nanostructure medium of semiconductors during
the transport process [44]:

_N � DEN,ii − N

τ
+ κ T. (2)

Where the “comma” before an index suggests space-
differentiation, the dot” above a symbol suggests time-
differentiation and the thermal activation nanoscale
coupling parameter κ � zn0

zT
T
τ (n0 is equilibrium carrier

concentration).
The field equations of motion for non-scale microelongation

and microinertia processes may be represented as [1–3, 47], in
accordance with the temperature field change and Eringen’s
model of nonlocal thermoelastic model:

FIGURE 1
Geometry of the problem.
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σ ij,j′ � ρ 1 − ξ2∇2( )€ui

λ + μ( )uj,ij + μui,jj + λoϕ,i − γ̂ 1 + vo
z

zt
( )T,i − δnN,i � ρ 1 − ξ2∇2( )€ui

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (3)

αoϕ,ii − λ1ϕ − λouj,j + γ̂1 1 + vo
z

zt
( )T � 1

2
jρ 1 − ξ2∇2( ) €ϕ. (4)

When ξ � 0, the third equation may be reduced to the
constitutive equation of classical local photo-thermoelasticity.

The heat equation, also known as the heat transport equation, in
a non-local microelongated optical-thermal-elastic field may be
stated when the thermal conductivity is variable as follows [47]:

KT,i( ),i − ρCE n1 + τo
z

zt
( ) _T − γ̂To n1 + noτo

z

zt
( ) _ui,i − ρQ( )( )

+ Eg

τ
N � γ̂1To

_ϕ. (5)

Where Q � I0γ′t
2πr2t20

exp(−z2

r2 − t
t0
− γ′x) (the external heat sources) is

the thermal effect of laser pulses which falls on the semiconductor
medium, I0 represents the absorbed energy according to the pulse rise
time t0, r expresses the radius of the beam and γ′ is the heating energy
absorption at depth z. Take into account the thermal conductivity K,
which varies andmay be chosen as a linear function of temperature. The
non-local microelongated semiconductor material’s changing thermal
conductivity under the effect of a heat source is represented as a
function of temperature as shown in [57]:

K T( ) � K0 1 + πT( ). (6)
When the medium is temperature independent and the small

parameter π is negative, the constant thermal conductivity
(reference) is K0. The integral form of thermal conductivity
may be derived using the Kirchhoff transform [57], which is
utilized to convert the nonlinear temperature components into
linear ones:

Θ � 1
K0

∫T
0

K R( )dR. (7)

All physical fields and temperature changes will be assumed to
take place in the xz-plane with the t-time variation throughout this
study. As a result, the displacement tensor ui and the scalar ϕ can be
presented as.

ui � u1, 0, u3( ) ; u1 � u x, z, t( ), u3 � w x, z, t( ),
ϕ � ϕ x, z, t( ),

e � zu

zx
+ zw

zz
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (8)

Parameter γ̂1 � (3λ + 2μ)αt2 reflects a portion of the micro-
elongation effects of the non-local semiconductor medium, and its
value, αt2, is the microelongated thermal expansion coefficient. The
following form describes the solution space for the underlying
Eqs 2–4:

λ + μ( ) z2u

zx2 +
z2w

zxzz
( ) + μ

z2u

zx2 +
z2u

zz2
( )+

λo
zϕ

zx
− γ̂ 1 + vo

z

zt
( ) zT

zx
− δn

zN

zx
� ρ 1 − ξ2

z2

zx2 +
z2

zz2
( )( ) z2u

zt2
( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(9)

λ + μ( ) z2u

zxzz
+ z2w

zz2
( ) + μ

z2w

zx2 +
z2w

zz2
( )+

λo
zϕ

zz
− γ̂ 1 + vo

z

zt
( ) zT

zz
− δn

zN

zz
� ρ 1 − ξ2

z2

zx2 +
z2

zz2
( )( ) z2w

zt2
( )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(10)

αo
z2ϕ

zx2
+ z2ϕ

zz2
( ) − λ1ϕ − λoe + γ̂1 1 + vo

z

zt
( )T

� 1
2
jρ 1 − ξ2

z2

zx2
+ z2

zz2
( )( ) z2ϕ

zt2
. (11)

Using the various models of non-scale microelongated photo-
thermoelasticity theories [coupled-dynamical (CD)model, Lord and
Shulman (LS) model, and Green and Lindsay (GL) model] [53, 54,
57], one may calculate the thermal and elastic relaxation times. The
thermal conductivity, which is in the variable case in computations,
may be taken from the fundamental equations by using the map
transform, as shown in Eqs 7, 8:

Operating z
zxi

on the all terms of Eq. 7, yields:

K0
zΘ
zxi

� K T( ) zT
zxi

0K0Θ,i � K T( )T,i,

K0/K( )Θ,i � T,i.

⎫⎪⎪⎬⎪⎪⎭. (12)

Again, the non-linear factor was ignored while differentiating
Eqs 7, 12:

K0
z2Θ
zx2

i

� z

zxi
K T( ) zT

zxi
( ) � z

zxi
K0 1 + πT( ) zT

zxi
( )

� K0 1 + πT( ) z
2T

zxi
2 +K0π

zT

zxi
[ ]2

� K
z2T

zxi
2,

K0/K( )Θ,ii � T,ii.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (13)

The time differentiation of Eq. 7 is:

K0
zΘ
zt

� K T( ) zT
zt
. (14)

The map transformation applied to Eq. 2, where z
zxi

may be used
on both sides through Eq. 12, produces:

z

zt

zN

zxj
� DE

zN,ii

zxj
− 1
τ

zN

zxj
+ κ

zT

zxj
,

z

zt

zN

zxj
� DE

zN,ii

zxj
− 1
τ

zN

zxj
+ κK0

K

zΘ
zxj

,

z

zt

zN

zxj
� DE

zN,ii

zxj
− 1
τ

zN

zxj
+ κ

zΘ
zxj

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (15)

In the preceding Eq. 15, the last term in the first half may be
enlarged as follows, ignoring the non-linear elements:

κK0

K

zΘ
zxj

� κK0

K0 1 + πT( )
zΘ
zxj

� κ 1 + πT( )−1 zΘ
zxj

� κ 1 − πT + πT( )( 2 − .......) zΘ
zxj

�

κ
zΘ
zxj

− κπT
zΘ
zxj

+ πT( )2 zΘ
zxj

− ....... � κ
zΘ
zxj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(16)

Equation 15 is the result of using the Leibniz integral rule:

zN

zt
� DEN,ii − 1

τ
N + κ Θ. (17)
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The microelongated heat Eq. 5 may be rewritten as follows after
applying the map transform:

Θ,ii − 1
k

n1 + τo
z

zt
( ) zθ

zt
− γ̂To

K0
n1 + noτo

z

zt
( ) zui,i

zt
− ρQ( )( )

+ Eg

K0τ
N � γ̂1T0

K0

_ϕ,

(18)
where 1

k � ρCE

K0
represents the thermal diffusivity.

We propose the following non-dimensional quantities to
eliminate the complexity of mathematical model:

�N � δn
n0γ̂

N, �xi, �ξ1( ) � ω* xi, ξ1( )
CT

, �ui � ρCTω*
Toγ̂

ui, �t, �τo, �]o( ) � ω* t, τo, ]o( ),

C2
T � 2μ + λ

ρ
, �θ � θ

To
, �σ ij �

σ ij
Toγ̂

, �ϕ � ρC2
T

Toγ̂
ϕ, ω* � ρCEC

2
T

K0
, C2

L �
μ

ρ
,

Π′,ψ′( ) � ρω*2 Π,ψ( )
T0γ̂

, Q′ � Q

T0CE
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(19)

The displacements may be further reduced in complexity by
representing them as functions into the potential scalar Π(x, z, t)
and Ψ(x, z, t) � (0,ψ, 0) vector space-time, as illustrated below, in
accordance with Helmholtz’s theory:

�u � grad Π + curl Ψ. (20)
Subtracting the superscripts from Eq. 19, which is the

consequence of applying it to Eqs 9, 10, 17, 18, we get:

∇2 − ε3 − ε2
z

zt
( )N + ε4Θ � 0, (21)

1 + ξ2
z2

zt2
( )∇2 − z2

zt2
( )Π + 1 + vo

z

zt
( )Θ + a1ϕ −N � 0, (22)

1 + ξ2
z2

zt2
( )∇2 − a3

z2

zt2
( )ψ � 0, (23)

1 + C
z2

zt2
( )∇2 − C3 − C4

z2

zt2
( )ϕ − C5∇

2Π + C6 1 + vo
z

zt
( )Θ � 0,

(24)
∇2Θ − n1

z

zt
+ τo

z2

zt2
( )Θ − ε n1

z

zt
+ noτo

z2

zt2
( )∇2Π( ) + ε5N − ε1

zϕ

zt
� Θ0Θ*e−γ′x}.

(25)

Where Θ* � ε(1t (n1t + n0τ0 1 − t
t0

{ }))e−(z2r2+ t
t0
) and Θ0 � I0γ′K0

2πa2t20
.

The constitutive equations for the 2D variation in heat
conductivity are as follows:

1 − ξ2∇2( )σxx � zu

zx
+ a2

zw

zz
− 1 + vo

z

zt
( )Θ −N + a1ϕ,

1 − ξ2∇2( )σzz � a2
zu

zx
+ zw

zz
− 1 + vo

z

zt
( )Θ −N + a1ϕ,

1 − ξ2∇2( )σxz � a4
zu

zz
+ zw

zx
( ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (26)

where,

a1 � λo
ρc2T

, a2 � λ

ρC2
T

, a3 � ρC2
T

μ
, ε � γ̂2no

K0ρ
, ε1 � γ̂1γ̂To

K0ρ
,

ε2 � C2
T

DEω*
, a4 � μ

ρC2
T

, C4 � ρjω*4

α0C
2
2

,

ε3 � C2
T

τDEω*
2, ε4 �

δnC
2
T

DEγ̂ω*
2, ε5 �

Egγ̂C
2
T

τK0ω*δn
,

C3 � λ1ω*
2

α0C
2
T

, C5 � λoω*
2

α0C
2
T

, C6 � γ̂1ρω*
2To

γ̂α0
,

∇2 � z2

zx2 +
z2

zz2
,C � ρjξ2ω*2

α0C
2
2

.

3 Harmonic wave analysis

Any function ∐(x, z, t) whose solutions satisfy Eqs 21–25 may
be represented for time-harmonic vibrations with a plane wave
propagating in 2D with wave number b in the direction of the
positive z-axis [42–46]:

∐ x, z, t( ) � �∐ x( ) exp ω t + i b z( ). (27)

Non-dimensional complex frequency ω � ω0 + i ζ corresponds
to the amplitude �∐(x) of the function∐(x, z, t) fields and i � ���−1√

.
Using the fundamental Eq. 21–26, and the normal mode analysis Eq.
27, we obtain:

D2 − α1( ) �N + ε4 �Θ � 0, (28)
D2 − A1( )�Π + A2

�Θ + +a1′�ϕ − a2
′ �N � 0, (29)

D2 − A3( )�ψ � 0, (30)
D2 − A4( )�ϕ − C5

* D2 − b2( )�Π + A5
�Θ � 0, (31)

D2 − A6( )�Θ − A7 D2 − b2( )�Π + ε5 �N − A8
�ϕ � Θ0

~Θexp −γ′x( ), (32)
1 − b2( ) − ξ2D2( )�σxx � D�u + iba2 �w − A2

�Θ − �N + a1�ϕ,

1 − b2( ) − ξ2D2( )�σzz � a2D�u + ib �w − A2
�Θ − �N + a1�ϕ,

1 − b2( ) − ξ2D2( )�σxz � a4 ib�u +D �w( ).

⎫⎪⎪⎬⎪⎪⎭. (33)

where,

a2
′ � 1

1 + ω2ξ2( ), A1 � b2 + ω2

1 + ω2ξ2( ), A2 � 1 + ]oω
1 + ω2ξ2( ), A3 � b2 + a3ω

2

1 + ω2ξ2( ),
D � d

dx
, A4 � b2 + C3 + C4ω

2

1 + Cω2 , A5 � C6 1 + ]oω( )
1 + Cω2 , C5

* � C5

1 + Cω2, a1
′ � a1

1 + ω2ξ21( ),
A6 � b2 + ω n1 + τoω( ), A7 � ε n1ω + noτoω

2( ), A8 � ε1ω, α1 � b2 + ε3 + ε2ω,

~Θ � Θ* exp −ωt − ibz( ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(34)

The determinant of the coefficient matrix f must for the system
of Eqs 28–32 appear for there to be a non-trivial solution for �ϕ, �N, �Θ
and �Π after simplifying we have this result:

D8 − B1D
6 + B2D

4 − B3D
2 + B4{ } �ϕ, �N, �Θ, �Π( ) � g exp −γ′x( ),

(35)
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where,

B1 � − −A2A7 + C5
*a1 − A1 − A4 − A6 − α1( ),

B2 � A2A7 − C5
*a1

′ + A1 + A4 + A6( )α1 + A7 − ε3( )ε4a2′
+ b2A7 + A4A7 − A8( )A2 − b2C5

*a1
′ − A5A7a1

′

−A6C5
*a1

′ − A1A4 + A1A6 + A4A6,

B3 � − −A2A7 + C5
*a1

′( )b2 − A2A4A7 + A5A7a1
′ + A6C5

*a1
′(

−A1A4 − A1A6 + A2A8 − A4A6)α1 −C5
*a2

′ + A1 + A4( )ε4ε3
+ −b2A7a2

′ − A4A7a2 + A8( )ε4 + −A2A4A7 + A5A7 + A6C5
*( )a1′( )b2

−A1A4A6 + A2A4A8a2
′ − A5A8a1

′,

B4 � b2C5
*a1

′ − A1A4( )ε3 + b2A4A7 − A4A8( )ε4
+ A2A4A7 − A5A7 − A6C5

*a1
′( )b2 + A1A4A6a2

′ − A2A4A8 + A5A8a1
′( )α1.

g � γ′8 − A2A4 − C5
*a1

′ + b2 + A4( )γ′6 + A2A4a1
′ + A4C5

*a1
′b2( )γ′4(

− b2C5
*a1

′ − A2A4( )γ′2 + A2A4b
2C5

*a′)Θ0
~Θ

Equation 35 may be factored to provide [42]:

D2 − k21( ) D2 − k22( ) D2 − k23( ) D2 − k24( ) �Θ, �N, �Π, �ϕ{ } x( ) � 0. (36)
It has been noted that in order for the roots to satisfy our

condition that they have positive real portions, we need them to
satisfy the solution of Eq. 36, which is limited as x → ∞. The
auxiliary equation with the roots k2n(n � 1, 2, 3, 4,Re(kn)> 0) of Eq.
36 is:

k8 − B1k
6 + B2k

4 − B3k
2 + B4 � 0. (37)

Generalized linear solutions to Eq. 35 may be written for the
temperature fields as follows:

�Θ x( ) � ∑4
i�1
Λi b,ω( )e−kix + L1g exp −γ′x( ). (38)

The other physical quantities are:

�ϕ x( ) � ∑4
i�1
Λ′

i b,ω( )e−kix � ∑4
i�1
h1iΛi b,ω( )e−kix⎛⎝ ⎞⎠ + L2g exp −γ′x( ),

(39)
�Π x( ) � ∑4

i�1
Λ″

i b,ω( )e−kix � ∑4
i�1
h2iΛi b,ω( )e−kix⎛⎝ ⎞⎠ + L3g exp −γ′x( ),

(40)
�N x( ) � ∑4

i�1
Λ‴

i b,ω( )e−kix � ∑4
i�1
h3iΛi b,ω( ) e−kix⎛⎝ ⎞⎠ + L4g exp −γ′x( ).

(41)
The relations between Λi, Λ′

i , Λ″
i and Λ‴

i (unknown parameters)
can be obtained from the above system of Eqs 28–32 as:

h1i � d1k
4
i + d2k

2
i + d3( )

k6i + d4k
4
i + d5k

2
i + d6( ), h3i � − ε4( )

k2i − α1( ), h2i � A2k
4
i + d7k

2
i + d8( )

k6i + d4k
4
i + d5k

2
i + d6( ),

d1 � A2C5
* − a2

′A5, d2 � −A2b
2C5

* − A2C5
*α1 − C5

*a2a2
′ε4 + A1A5 + A5α1,

d3 � b2A2C5
*α1 + b2C5

*a2ε4 − A1A5α1, d4 � C5
*a1

′ − A1 − a′A4 − α1,

d5 � −b2C5
*a1

′ − C5
*a1

′α1 + A1A4 + A1a2
′α1 + A4a2

′α1, d6 � b2α1a1
′C5

* − A1a2
′A4α1,

d7 � −a2′A2A4 − A2α1 + A5a1
′ − a2ε4, d8 � A2A4α1 + A4a2ε4 − a1

′A5α1,

L1 � − γ′8 − B1γ′6 + B2γ′4 − B3γ′2 + B4( )−1,

L2 � − d1γ′4 + d2γ′4 + d3( )
γ′6 + d4γ′4 + d5γ′4 + d6( ),

L3 � − ε4( )
γ′2 − α1( ),

L4 �
A2γ′4 + d7γ′2 + d8( )

γ′6 + d4γ′4 + d5γ′2 + d6( ).
The real root of Eq. 30 is k25 which can be obtained from the

factorized following form:

D2 − k25( )�ψ x( ) � 0. (42)
The values of the root k25 represents as:

k5 � ±
���
A3

√ � ± ω
���
a3.

√
(43)

It is possible to rewrite Eq. 42 so that its linear solution is:

�ψ x( ) � Λ5 b,ω( ) exp −k5x( ). (44)
Where Λ5 is the last unknown parameter. With Eq. 20, we can

express the displacement components in terms of the free
parameters as:

�u x( ) � −∑4
n�1

Λnh2ikne
−knx − ibΛ5e

−k5x − L3gγ′ exp −γ′x( ),
�w x( ) � ∑4

n�1
ib h2iΛne

−knx + L3gγ′e−γ′x( ) − k5Λ5e
−k5x.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (45)

The constitutive relations according to Eq. 33 can be
represented as:

�σxx � ∑4
n�1

Λn h2i k2n − b2a2( ) − A2 − h3i + a1h1i( )e−knx − ibk5 a2 − 1( )Λ5e
−k5x

1 − b2( ) − ξ2k2n( ) − ς1g exp −γ′x( ),
�σzz � ∑4

n�1

Λn h2i a2k
2
n − b2( ) − A2 − h3i + a1h1i( )e−knx − ibk5 1 − a2( )Λ5e

−k5x

1 − b2( ) − ξ2k2n( ) − ς2g exp −γ′x( ),
�σxz � ∑4

n�1

ibΛnkn h2i − 1( )e−knx + 1 + k25( )Λ5e
−k5x

1 − b2( ) − ξ2k2n( ) − ς3g exp −γ′x( ),
ς1 � −A2b

2 + a1 γ′2 − 1( ) − 2ib − γ′L4 + L2 + L3),
ς2 � −A4b

2 + a2 γ′2 − 1( ) − 2ib − γ′L4 + L2 + L3),
ς3 � γ′2L4 − γ′L1 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(46)

4 Photo-thermomechanical conditions

In this part, different boundary restrictions are imposed at the surface
of the nanoscale microelongated medium while the thermal conductivity
is changing in order to acquire the general parameters Λn [57].

The mechanical load conditions have a degree of flexibility in
their selection and may be expressed as follows [is subjected to a
mechanical load in x-direction (traction load) and free otherwise
(tangent traction is free)] [48]:

σxx � p,
�σxx � �p x( ) exp ω t + i b z( ),}
σxz � 0,
�σxz � 0

}.
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (47)

Frontiers in Physics frontiersin.org06

Farhan et al. 10.3389/fphy.2023.1166622

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1166622


Because the temperature can rise or fall so rapidly, or at least in
such a short time, when pulsed laser stimulation is used, very little heat
is lost to the surrounding area. As a consequence of this, the use of
pulsed laser excitation can be helpful for absorption measurements. It
is also good to know that the illumination of a solid surface by a laser
beammay cause a range of different physical reactions, some of which
are reliant on the amount of energy present. If a material is subjected
to laser radiation, some of the energy will be transformed into heat.
This particular kind of heat creation allows heat waves to spread
across the material, which has a number of different impacts (e.g.,
photothermal effects). The fact that the surrounding plane (x = 0) of
the material is subjected to laser pulses is another factor that is taken
into consideration. In this scenario, the temperature state that may be
taken into consideration is as follows:

T 0, z, t( ) � Φ z, t( ) � ~Hλ– 1 − ~R( )f z( )g t( ). (48)

Where f(z) � 2 exp(−2z2/RG)
RG

��
2π

√ and g(t) � 8t3 exp(−2t2/t20)
t20

( ~H
represents the energy of laser pulse per unit length (the
maximum amount of light energy that a laser is capable of
producing in the course of one of its pulses), ~R denotes the
surface reflectivity, RG expresses the radius of the Gaussian beam,
t0 denotes the laser pulse rise-time and λ– is the coefficient of
extinction).

The elongation scalar function, which expresses the
microelongation situation in normal mode as follows, may be
selected at will:

�φ � 0. (49)
Carriers, after diffusing with the recombination speed on the

surface ~S, reach the sample’s surface, where they may recombine
with a given probability. As a result, the following expression may be
used to describe the carrier density border condition:

z �N

zx

∣∣∣∣∣∣∣∣x�0 � − ~S

DE
n0. (50)

Using the above boundary conditions Eqs 47–50 with normal
mode analysis, yields:

∑4
n�1

Λn h2i k2n − b2a2( ) − A2 − h3i + a1h1i( ) − ibk5 a2 − 1( )Λ5 � −�p x( ) exp ω t + i b z( ) + ς1g � P0 ,

∑4
n�1

ibΛnkn h2i − 1( ) + 1 + k25( )Λ5 − ς2g � 0,

∑4
i�1
Λi b,ω( ) � Θ z, t( ) exp ωt + ibz( ) − L1g � Φ0 ,

∑4
i�1
h1iΛi b,ω( ) + L2g � 0,

∑4
i�1
h3ikiΛi b,ω( ) �

~S

De
n0 − γ′L4g � N0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(51)

Five unknown constants Λn, may be solved for by using the
matrix inverse approach. Deformations, temperature fields, and all
other physical medium variables have solvable solutions.

5 Special cases

There will be a presentation of some appropriate cases in order
to put into consideration the influence that different models have on

the variable quantities. The material properties of the nanoscale
microelongated semiconductor be characterized as follows,
according to the values of the parameters that are mentioned below.

5.1 Generalized nanoscale microelongated
thermoelasticity theory with variable
thermal conductivity

When the plasma wave distribution, which is dependent on the
carrier density, is ignored, i.e., N � 0, the problem is obtained in
accordance with the generalized non-scale microelongated
thermoelasticity theory under the influence of variable thermal
conditions. This occurs when the theory is applied under the
influence of variable thermal conditions. In this particular
instance, the series of equations has been streamlined in order to
conform to past studies [14, 15].

5.2 Non-local photo-thermoelasticity
theory with variable thermal conductivity

The non-local photo-thermoelasticity theory with the plasma
effect and variable thermal conductivity is shown for the
semiconductor medium when the microelongation parameters
are ignored (αo � λo � λ1 � 0). The equations that control the
situation may be written as [42, 43].

5.3 Different models of non-local photo-
thermoelasticity theory

Several models of non-local microelongated photo-
thermoelasticity theory under the effect of changing thermal
conductivity may be constructed [54–56] depending on the
values of the parameters n1, no, τo and vo. These models can be
generated as follows: the CD model: n1 � 1, no � τo � vo � 0, the LS
model: vo � 0, τo > 0, n1 � no � 1, and the GL model: n1 � 1, no �
0, vo ≥ τo > 0.

5.4 The variable thermal conductivity

If the nanoscale microelongated semiconductor medium is
unaffected by the negative parameter and is unaffected by the
temperature gradient, then it is said to be independent of both
(π � 0, K � K0). In this particular case, the issue is studied using a
thermal conductivity that is held constant [31, 44].

5.5 The nonlocality effect

The issue is addressed in the local semiconductor situation, and
the local microelongated photo-thermoelasticity theory is studied
[47]. Ignoring the non-local parameter allows for the investigation of
the problem in its local form.

Using the equation for the map, which is Eq. 7, we can determine
that the relation between T and Θ:
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Θ � 1
K0

∫T
0

K0 1 + πT( )dT � T + π

2
T2 � π

2
T + 1

π
( )2

− 1
2π

, or (52)

T � 1
π

�������
1 + 2πΘ

√ − 1[ ] � 1
π

������������������
1 + 2π�Θ exp ωt + ibz( )

√
− 1[ ]. (53)

6 Numerical results

During the numerical simulation, silicon (Si) is used in the role of
the polymer non-local microelongated semiconducting material. In
this instance, the main fields and wave propagations are acquired in
the form of graphs. The many different input parameters for the
physical constants of Si are employed via the use of computer software
programming (Matlab 2022a). The following table presents the SI unit
representations of the physical constants for non-local silicon
(homogeneous, isotropic, thermoelastic from n-type) [32, 58, 59]:

λ � 3.64x 1010 N/m2, μ � 5.46 × 1010 N/m2, ρ � 2330 kg/m3,

T0 � 800 K,

dn � −9 x 10−31 m3, DE � 2.5 × 10−3 m2/s, Eg � 1.11 eV,

~s � 2m/s, τ � 5x 10−5 s,

αt1 � 0.04x 10−3 K−1, αt2 � 0.017x 10−3 K−1, K � 150 Wm−1K−1,

Ce � 695 J/ kgK( ),
j � 0.2 × 10−19m2, γ � 0.779 × 10−9N, k � 1010Nm−2, t � 0.001,

λ0 � 0.5 × 1010Nm−2,

λ1 � 0.5 × 1010Nm−2, α0 � 0.779 × 10−9N, τ0 � 0.00005,

]0 � 0.0005, ~n0 � 1020 m−3.

The laser parameters which are utilized [46]:

R
� � 91%, t0 � 10 ns, λ– � 0.001m−1, RG � 0.45mm, ~H � 10 J, t0

� 9ps, r � 100 μm, γ′ � 0.001m−1, I0 � 105 J.

FIGURE 2
The effect of a non-local parameter and laser pulses with varying thermal conductivity on the change of the main fields versus dimensionless
distance in different thermal memory.
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The wave number is b � 0.5 when a mechanical stress �P � 1 is
applied in the closed range 0≤ x≤ 5 at z � −1 (dimensionless distance).
For a limited amount of time t � 0.001, a graphical representation of
the non-dimensional properties of the key quantities in 2D deformation
is provided. The results have been represented using the field quantities’
real values for simplicity (ω � ω0 + i ζ, when ζ � 0.05 and ω0 � −2.5 ).

7 Discussion

Figure 2 displays, in six different subfigures, the primary field
distributions of temperature, microelongation, elastic (displacement),
plasma (photo-electronic), and two mechanical wave components (σxx
and σxz) versus the dimensionless distance. The CD, LS, andGLmodels
of nanoscale microelongated photo-thermoelasticity are compared in
the figures’ insets in terms of how their thermal and elastic relaxation
times differ from one another. All numerical findings are influenced by

a non-local parameter when π � −0.04, indicating that the thermal
conductivity is changeable. The free non-local semiconductor surface is
compatible with all physical field distributions shown in this group’s
overview (Figure 2). In the first subfigure, the boundary condition ismet
because the mechanical and laser thermal effect conditions cause the
temperature rise distribution to be different for each of the three curves
when t≥ t0. The endpoint values of the two curves diverge as a result of
the impact that is caused by the mechanical relaxation time parameter.
When the value of the temperature increment distribution is increased,
the mechanical relaxation time and thermal memory parameter both
have a negative impact on the value. This highlights how themechanical
relaxation time parameter may have an effect on the temperature
increment distribution as well as the thermal wave that is based on
thermal memory. The distribution of the carrier density function, also
known as the plasma wave, is shown in the fourth subfigure. All three
curves have the same starting values at the positive point on the surface
according to the carrier concentration. Because of the photo-electronics

FIGURE 3
The wave propagation of the main fields according to variable thermal conductivity, the GL model, and laser pulses in the presence or absence of
non-local parameter.
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effect, this meets the boundary criterion since it significantly increases
from the beginning owing to the thermal effect of laser pulses in order to
reach the maximum point. Because of the influence of the relaxation
time parameters, the values at the ends of all three curves are identical to
one another. The significance of the relaxation time parameters for the
carrier density distribution and photothermal waves is demonstrated by
the fact that the value of the carrier density distribution decreases when
the mechanical relaxation time parameter is increased. This finding
demonstrates the importance of the relaxation time parameters
for these two phenomena. In accordance with the photothermal
impact, also known as the ED and TE deformation, the thermal
wave and plasma wave both increase until they reach their
highest point. The temperature and carrier density
distributions both experience a decrease in the second range
that follows an exponentially decreasing trend as the distance
between them increases. This trend continues until the
distributions are close to one another, at which point they

converge to the zero line and are in agreement with the
experimental findings [60]. The nanoscale microelongation
function (second subfigure) starts at zero, rises during the
course of the three models in line with the photothermal
effect, and achieves its maximum value with an increase in
distance. The distribution reduces as it moves away from the
surface until it approaches the lowest value, then regularly grows
and decreases until it achieves the equilibrium state that
corresponds to coincide with the zero line. Because of the
influence of thermal and elastic relaxation periods, the
displacement distributions predicted by the LS and GL models
(shown in the third subfigure) behave in the same way as those
predicted by the CD model (decreases gradually, minimal). The
elastic waves within the medium coincide and converge at the
equilibrium state to the zero line. The non-local stress
distribution (σxx) starts at the same positive location near the
surface of the semiconductor in all three models, and then

FIGURE 4
The principal fields as a function of horizontal distance over a range of thermal conductivities in a Si medium exhibiting non-local properties and
laser pulses as predicted by the GL model.
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quickly rises to reach its greatest value close to the surface. This
pattern is consistent across all three models. As the distance from
the surface increases, the stress distribution takes on the form of a
wave, and as the distance continues to increase, the wave
eventually vanishes into the material. The non-local tangent
stress distributions begin with a value of zero and then rapidly
increase until they reach their maximum value for GL model, but
take an opposite behavior for CD and LS models. After reaching
their lowest position, they begin to rise again and continue to do
so until they reach the zero line, which they do when the distance
reaches its maximum.

Figure 3 now includes a total of six subfigures that illustrate
the primary field distributions vs. distance for two different
scenarios. In each subfigure, there is a comparison between
the distributions that take place when the nanoscale material

(Si) non-local parameter is present and those that take place
when it is absent (local). Calculations are carried out in line with
the GL model of the photo-thermoelasticity theory whenever the
variable thermal conductivity (π � −0.04) occurs at the same
minuscule dimensionless time. The propagation of the waves
generated by distribution fields is substantially impacted by the
non-local parameter.

The examined functions plotted when π � 0, π � −0.02 and π �
−0.04 (three different thermal conductivity values) against the
dimensionless distance are shown in Figure 4 under the GL model
for non-local medium. These functions correspond to each of the
three possible outcomes for the thermal conductivity
(π � 0, π � −0.02 and π � −0.04). The waves travel in a manner
that is identical to that seen in Figure 2, except with unique
explored function amplitude values. These values are

FIGURE 5
The wave propagation of the main fields according to variable thermal conductivity, the GL model, and the nonlocality medium in the presence or
absence of laser pulses.
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determined by the several possible values of. The changes in
thermal conductivity have a significant impact on the fields that
have been investigated.

Figure 5 shows the impact of the laser pulses on the wave
propagation of the main physical filed. When the changing
thermal conductivity (π � −0.04) happens at the same microscopic
dimensionless time, calculations are carried out in accordance with
the GL model of the non-local photo-thermoelasticity theory. During
this category, themodel was studied under the influence of laser pulses
and without the influence of laser pulses. We notice through the
propagation of the waves that the laser pulses clearly affect the
distribution of the fields under study with the increase of the distance.

8 The validation of the results

When non-local parameter instances are missing and variable
thermal conductivity is present, the present results are consistent
with those in [47]. When the nanoscale microelongation parameters
are not known and the thermal conductivity is constant (π � 0)
across a wide temperature range, the results of the present
investigation are consistent with those presented in [46].

9 Conclusion

As a result of applying the nanoscale microelongated photo-
thermoelasticity theory to the non-local semiconductor material, a
novel model is proposed. In order to get a deeper understanding of
how the thermal conductivity parameter influences the model within
the context of photoexcitation transport mechanisms, we examine the
model in a thermal domain. Graphical representations of the effects of
wave propagation are provided for the thermal relaxation durations,
changing thermal conductivity, laser pulses, and non-local parameters.
In order to account for thermal memory fluctuation, two-dimensional
deformation is accounted for utilizing model equations when thermal
conductivity changes with temperature. Thermal relaxation durations
have a substantial impact on the wave propagations of temperature
increment, microelongation function, displacements, carrier density
increase, normal stress, and tangential stress (CD, LS, and GL
models). In contrast, all physical fields achieve equilibrium and
satisfy the boundary conditions. Non-local factor has a significant
influence on the distributions of the key fields. Variable thermal
conductivity parameter values have a significant role in the
propagation of waves. In a numerical study of the non-local
semiconducting semiconductor silicon, the thermoelastic and plasma
wave equations, together with the necessary boundary conditions, fulfill
all physical field variables (n-type). In contrast, the effect of non-local
factors and changing thermal conductivity has been extensively studied.

The integration of thermal conductivity and non-local parameters has a
significant impact on all field values in the half-space, such as
temperature, displacements, stresses, carrier density, and chemical
potential. The non-local microelongated semiconductor material
may be used extensively in the fabrication of semiconductor devices
such as integrated circuits, medical equipment, accelerometers, mobile
phones, and optical lithography. This article’s study and findings will be
essential for understanding how non-local semiconductors, such as
diodes and triodes, are used in contemporary electronic devices.
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Nomenclature

λ, μ Lame’s parameters.

δn � (3λ + 2μ)dn Deformation potential difference.

T0 References temperature.

γ̂ � (3λ + 2μ)αt1 Volume thermal expansion.

σij Stress tensor.

ρ The density.

αt1 Coefficients of linear thermal expansion.

Ce Specific heat.

K The thermal conductivity.

DE The carrier diffusion coefficient.

τ Lifetime.

Eg The energy gap.

eij Components of strain tensor.

Π,Ψ Two scalar functions.

j0 The microinertia of microelement.

a0 , α0 , λ0 , λ1 Microelongational parameters.

τ0 , ν0 Relaxation times.

ϕ The scalar micro-elongation function.

mk Components of the microstretch vector.

s � skk Stress tensor component.

δik Kronecker delta.

dn The electronic deformation coefficient.

ξ The length-related elastic nonlocal parameter

l The external characteristic length scale

a The internal characteristic length

e0 Non-dimensional material property
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