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Indirect reciprocity is a type of social dynamics in which the attitude of an
individual toward another individual is either cooperative or antagonistic, and it
can change over time through their actions and mutual monitoring. This opinion
dynamics is found to be frustrating in certain edge density regimes on random
graphswhen all the components adopt the Kandori rule, which is one of the norms
of indirect reciprocity. In this study, we conducted an exhaustive analysis of so-
called “leading-eight” norms of indirect reciprocity dynamics and found that three
of them (the Kandori and other two rules) keep the opinion dynamics frustrated on
random graphs. We investigated the frustrated opinion dynamics of these three
norms on real acquaintance networks and observed that the degree of frustration
of the system can be inferred when the network properties such as the number of
triangular connections and number of quads are properly taken into account. This
study also reveals that the closeness centrality of a triangular representation is a
good predictor of the degree of local frustration. Furthermore, it is also found that
better prediction is achieved when we do not consider all the reachable triads in
the calculation of a focal triad’s closeness centrality. This result suggests that it is
sufficient to predict the opinion dynamics by considering only the proximity triads
within a certain observation radius from that triad. This finding may facilitate the
analysis of real-world cooperative relationships consisting of a vast number of
triads.
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1 Introduction

Social relations are characterized by being of either cooperative (friendly) or antagonistic
(unfriendly) nature. However, it can also happen that friends turn to foes or foes to friends
[1], i.e., an individual network link changes from positive to negative or negative to positive,
respectively. Hence, understanding the temporal evolution of such a behavior change process
is essential for gaining a deeper insight into the functions of real social networks. For this
purpose, the approach of agent-based modeling has turned out to be very versatile.

One of the earlier models on how people change their attitude toward others was based
on indirect reciprocity [2]; [3], as it is commonly observed in human behavior and is closely
related to the evolution of cooperation in a human society [4]. In this model, people change
their attitude (of either liking or disliking) through their actions and observation of the
actions of others. A typical example of such dynamics is as follows: first, people cooperate
with only those they like. Second, they get to like those who cooperate with those whom they
like and do not cooperate with those whom they dislike. The rule for determining the action
of the agent (whether she/he cooperates or not) is called the action rule, and the rule for
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updating one’s opinion on others (like or dislike) is called the
assessment rule. The set of rules that determine social dynamics is
called norms. Among various possible norms, Ohtsuki et al. found
that certain eight norms can maintain stable cooperation against
minor invasions (i.e., invasions with a small population, for which
both the change in the relative populations of resident individuals
and the interactions among invaders, e.g., by benefitting each
other, can be neglected) and named them the “leading-eight”
norms [3]; [5]. We refer to them as L1–L8 in the following

sections, and the action rules and assessment rules of these
norms are shown in Tables 1, 2, respectively. The assessment
rules are dependent on the context, i.e., the donor’s reputation, the
recipient’s reputation, and whether the donor cooperates (C) or
defects (D) with the recipient.

Despite the importance of indirect reciprocity, the dynamics
of social networks induced by indirect reciprocity have not been
fully understood yet. Previous studies have focused on the case of
fully connected networks (i.e., systems in which all people know
each other) [6]; [7], well-mixed random networks [8], or fixed
random graphs of acquaintances [9]. In the study on fully
connected networks, Oishi et al. found that indirect
reciprocity can result in the split of society into clusters, only
within which people are cooperative [6]. Moreover, in the study
on fixed random graphs, it was found that the density of social
networks drastically changes the structure of friendship and
enmity [9].

Real social networks are known to have different properties
from random graphs, e.g., broad degree distribution (including
scale-free [10]), degree–degree correlation (assortativity), and
higher probability of forming triangles (clustering [11]) [12],
[13]; [14]; [15]. Therefore, we focus on the dynamics of indirect
reciprocity in real social networks to test whether there is a
relationship between the network structure and the pattern of
being friendly or hostile. More specifically, we focus on predicting
the dynamics by network centrality. The idea of applying centrality
to human communication has a long history [16], but sometimes,
the calculation of some centrality measures turns out to be
problematic, especially when applied to large networks. To
ensure that our results can be applied even when analyzing
realistic multiperson cooperative data, we also attempt to
compute predictive quantities for focal sub-graphs by only
considering a subset of the network to obtain the predictiveness
of a sufficient degree.

This paper is organized as follows: the model is covered in
Section 2. This is followed by the Result section. Finally, in the
Discussion section, we summarize the results of this study and
discuss their implications for gaining further understanding of the
complexities of opinion dynamics in social networks.

TABLE 1 Action rules of the “leading-eight” norms such that they define the
donor’s action whether she or he will cooperate (C) with or defect (D) with the
recipient. The action of the donor depends on the recipient’s reputation, and
in the case of some norms, it also depends on the donor’s reputation.

Action rule L1 L2 L3 L4 L5 L6 L7 L8

Good meets good C C C C C C C C

Good meets bad D D D D D D D D

Bad meets good C C C C C C C C

Bad meets bad C C D D D D D D

TABLE 2 Assessment rules of the “leading-eight” norms, determining whether
a donor is assessed as good (g) or bad (b). The assessment depends on the
context: the donor’s reputation, the recipient’s reputation, and the donor’s
action toward the recipient.

Assessment rule L1 L2 L3 L4 L5 L6 L7 L8

Good cooperates with good g g g g g g g g

Good cooperates with bad g b g g b b g b

Bad cooperates with good g g g g g g g g

Bad cooperates with bad g g g b g b b b

Good defects with good b b b b b b b b

Good defects with bad g g g g g g g g

Bad defects with good b b b b b b b b

Bad defects with bad b b g g g g b b

FIGURE 1
Schematics of the model. (A)Donor, recipient, and a third-party observer. (B)Observers in a network. The non-labeled neighboring agents (colored
orange) do not observe the exchange between the donor and recipient because they are connected to only one of the pairs.

Frontiers in Physics frontiersin.org02

Kuroda et al. 10.3389/fphy.2023.1166219

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1166219


2 The model

Let us consider a non-directed network of agents G = (V, E),
where V = 1, . . . , N is the set of agents or network nodes and E is the
set of links or network edges eij ∈ E between agents i and j, meaning
that they know each other. We denote the number of edges as Nedge.
Here, the structure of the network is assumed not to change in time,
i.e., being static, while the agents have their opinion about their
neighbors and change it in time, i.e., being dynamic. We denote the
opinion of the agent i about the agent j as σij. If the agent i likes the
agent j at time step t, then σij(t) = 1, but if the agent i dislikes j, then
σij(t) = −1. The opinions do not need to be reciprocal so that i may
dislike j even if j likes i.

The time evolution of the model is set in such a way that at
each time step, two neighboring agents are randomly chosen
(i.e., random link sampling), one as the donor and the other as the
recipient. In the system, the population adopts the same moral
being one of the leading-eight norms x ∈ {L1, L2, L3, L4, L5, L6,
L7, L8}, and the action of the donor d to a recipient r is
determined as follows:

adr t( ) � ax σdd, σdr( ), (1)
where ax(σdd, σdr) is the action function that returns 1 for
cooperation and −1 for declining to cooperate. The value the
action function ax(σdd, σdr) returns corresponds to the a(σdd, σdr)
of the column x ∈ {L1, L2, L3, L4, L5, L6, L7, L8} in Table 1, with
replacing C by 1 and D by −1 (or as is explicitly shown in
Supplementary Table S1).

The action of the donor, either to cooperate (adr(t) = 1) or not to
cooperate (adr(t) = −1), is observed by the donor (him- or herself),
the recipient, and the common acquaintances (common neighbors
in the graph) of the donor and the recipient. Here, the third party is
called the observer, as depicted in Figure 1A. The agents other than
the donor, the recipient, and the observers do not update their
opinions (Figure 1B) since they do not observe the transactions.
However, other settings are also possible. For example, one can
assume that the agents who know the donor but do not know the
recipient can still observe the transactions and update their opinions
of the donor.

The opinion of an observer o about the donor is updated as
follows:

σod t + 1( ) � vx σod, σor, adr( ), (2)
where vx(σod, σor, adr) is the assessment function, which returns 1 for
assessing good and −1 for assessing bad. The values of the
assessment function vx(σod, σor, adr) returns correspond to the (g
or b) of the column x ∈ {L1, L2, L3, L4, L5, L6, L7, L8} in Table 2, with

FIGURE 2
Temporal evolution of imbalance under the “leading-eight”
norms, for the system of 50 nodes and edge connection probability of
0.5. The results are averaged over 20 independent runs, and the
standard error bars are smaller than the symbols. Only the norms
L2, L5, and L6 (Kandori) stay frustrated, i.e., the system does not reach
an absorbing state.

TABLE 3 Number of nodes (N), number of edges (Nedge), edge density (ρedge), average degree (〈k〉), average clustering (〈C〉), average shortest path length (〈lmin〉),
number of triads (Ntriad), number of triads’ connections (Ntriad link) of the original network, and the 10 largest clusters in the real acquaintance network are shown
here.

N Nedge ρedge 〈k〉 〈C〉 〈lmin〉 Ntriad Ntriad link

Original 351,299 434,083 7.03 × 10−6 2.47 4.73 × 10−2 7.90 47,646 249,910

Cluster 1 5,641 15,906 1.00 × 10−3 5.64 6.75 × 10−1 6.30 10,996 64,090

Cluster 2 2,571 11,253 3.41 × 10−3 8.75 4.43 × 10−1 4.79 6,306 39,444

Cluster 3 307 773 1.65 × 10−2 5.04 7.23 × 10−1 3.82 512 2,859

Cluster 4 292 791 1.86 × 10−2 5.42 7.07 × 10−1 3.73 586 3,342

Cluster 5 208 542 2.52 × 10−2 5.21 7.53 × 10−1 4.13 458 2,565

Cluster 6 179 466 2.93 × 10−2 5.21 7.20 × 10−1 3.86 367 1,720

Cluster 7 176 503 3.27 × 10−2 5.72 7.55 × 10−1 2.83 488 4,526

Cluster 8 172 437 2.97 × 10−2 5.08 7.92 × 10−1 3.66 394 2,743

Cluster 9 156 537 4.44 × 10−2 6.88 6.38 × 10−1 2.59 587 5,850

Cluster 10 155 476 3.99 × 10−2 6.14 7.56 × 10−1 2.60 552 5,613

Frontiers in Physics frontiersin.org03

Kuroda et al. 10.3389/fphy.2023.1166219

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1166219


replacing g by 1 and b by −1 (or as is explicitly shown in
Supplementary Table S2).

The agents’ initial opinions are drawn independently at random
from an even distribution of opinions, i.e., {− 1, + 1}, where −1
corresponds to an antagonistic or unfriendly opinion and +1
corresponds to a cooperative or friendly opinion (i.e., liking or
disliking, respectively).

3 Numerical results

3.1 Norms for frustrated opinion dynamics

First, we investigate all the “leading-eight” norms to find out if there
are other norms than the Kandori rule, which do not relax to the
absorbing states, i.e., the dynamics is frustrated. For this, we define a
parameter that characterizes the distance of a configuration of the
system from an absorbing state. In the following sections, we call this
parameter imbalance according to the convention that the triad relation
is balanced if that relation is stable under social dynamics and
imbalanced if that relation can be altered [17]; [18]; [19]; [20]; [21]; [22].

In our model, for all the “leading-eight” norms, axdr � σxdr is
satisfied after some transient time (see Supplementary Section S3).
Therefore, Eq. 2 shows that, for every norm x,

ψx
odr � σod vx σod, σor, σdr( ) (3)

is 1 if the opinion of an observer o toward the donor d will not
change after a donation game between the donor d and recipient r,
and −1 if the opinion will be flipped. Because the choice of the donor
and recipient in each round of game is random, then the function

ϕx
τ �

1
2

1 − ψx
ijk + ψx

jki + ψx
kij + ψx

ikj + ψx
kji + ψx

jik

6
( ) (4)

represents the probability of the relation to be flipped after a
game played in a triad τ of three agents i, j, and k. Therefore, we
call ϕx the local imbalance. Note that by definition, ϕxτ is uniquely
determined by the triad τ and conserved against any permutation
of agents i, j, k. If the system is in an absorbing state, all ϕxs should
take the value 0 and the global average of the Ntriad local
imbalance triads

Φx ≡
1

Ntriad
∑
τ

ϕx
τ , (5)

takes the value 0.
We have simulated all the “leading-eight” norms on random

graphs of 50 nodes and varied the edge density from 0.1 to 1.0 with
an interval of 0.1. Note that the system size is chosen so that it is large
enough for our analysis, and the computational cost remains
feasible. In the previous paper [9], we found that the time taken
to reach an absorbing state diverges exponentially with the number
of nodes N, when a small system is in the frustrated phase. On the
basis of the finite-size-scaling analysis, we have shown that N = 50 is
enough to determine the state of a larger system.We have found that
only three norms make the system frustrated. In Figure 2, we show
an example of random graph results averaged over 20 independent
runs when the edge connection probability is 0.5. In this figure, one
can confirm that on the random graphs, only the norms L2, L5, and
L6 (Kandori rule) do not relax to the absorbing states. From now on,
we focus on these three norms.

3.2 Acquaintance network

The acquaintance network we investigated is a part of the
network that is reconstructed from the human mobile-phone call
detail record data [23], [24] consisting of 351,299 nodes and
434,083 edges. Each node represents a person, and a pair of
people who have made at least one mutual call is considered
acquaintances forming a social link. In this study, we treat this

FIGURE 3
Time series of the imbalance for norm L6 on clusters 1, 2, 3, and
9 taken from the real acquaintance network. Averages and standard
errors are calculated from 100 independent runs. The standard errors
are smaller than the symbols. Absorbing states can never be
reached in these large clusters.

FIGURE 4
Schematics of the higher-order motifs that play critical roles in the opinion dynamics. (A) Triad, (B) truss, and (C) quad.
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network as an unweighted network. We also treat the networks as
fixed networks. This is because opinion dynamics can be drastically
different depending on the density of the links [6] and on whether an
edge is randomly rewired or not [9]. Therefore, the dynamics would
turn out to be different if one updates the network by rewiring the
links or by adding a random link at a time. The dynamics of such a
system would be more complicated, for the understanding of which
one needs to consider dynamics of fixed networks.

Before conducting numerical simulations, we first map the
network into a triangular network representation since the
triangular connections are already known to be important for the
opinion dynamics [9]. In this representation, nodes represent triads in
the original representation, and edges represent triads’ connections
formed by sharing edges between triads. Note that sharing nodes
between triads does not necessarily constitute a connection. An edge
must be shared for the nodes to be considered connected. In this
network, we detect 1,632 percolated clusters which include at least two
triads. These clusters are triangularly percolated clusters, meaning that
every triad shares at least one edge with another triad and can be
regarded independent in the present indirect reciprocal model
(Supplementary Section S4). This step is equivalent to k-clique
community detection, commonly proposed to detect overlapping
communities [25] with k = 3. The distribution of the clusters
(i.e., the number of nodes and triads) is shown in Supplementary
Figure S3. The characteristics of some clusters and the original
network are shown in Table 3. In the following section, we focus

A B

C D

FIGURE 6
Scatter plot between the closeness centrality and the local imbalance for norm L6 in the clusters (A) 1, (B) 2, (C) 3, and (D) 9. The closeness centrality
CWF(τ) shows high correlations with the local imbalance ϕL6(τ).

FIGURE 5
Comparison of the imbalance for norm L6, on clusters in the real
acquaintance network with the imbalances of Erdős–Rényi random
graphs. The vertical axis represents the observed imbalance on
clusters 1, 2, 3, and 9 of the acquaintance network. The horizontal
axis shows the imbalances on randomgraphs whose number of nodes
is the same as that in each cluster. The edge densities in the random
graphs are chosen for each motif so that the graph has the same
expected number of that motif with the target cluster. Each symbol
corresponds to a different motif. The black dotted line is the guide to
the eye for the case where the imbalance on the cluster and the
imbalance on the random graphs with the same density of the motif
for that symbol are the same. All the imbalances are observed at a time
step of 200 × Nedge. The standard errors are smaller than the symbols.
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on only four clusters, i.e., clusters 1, 2, 3, and 9, of which the first three
clusters are the largest in terms of the number of nodes. When
measured by the number of triads or the number of the triads’
connections, clusters 1, 2, and 9 are the three largest clusters.

3.3 Comparison with random graphs

In this subsection, we focus on the Kandori rule (L6) and
examine whether the opinions in the system eventually become
fixed, as was found in the case of fully connected networks [6], or
fluctuate, as was found in the non-complete random graphs [9].
Figure 3 shows the time evolution of the imbalances for L6 on
clusters 1, 2, 3, and 9. The results are averaged over 100 independent
replications. As shown in Figure 3, on these four clusters, absorbing
states are never reached and the system stays frustrated.

Then, we compare these imbalances with the results of the random
graphs in the study by [9] (Figure 5). They pointed out that the direct
parameters for the imbalances are the motifs such as triad (Figure 4A),
truss (Figure 4B), or quad structures (Figure 4C). We compare the
imbalances of the clusters with the random graphs whose numbers of
motifs are expected to be the same as those in the clusters. In addition to
these motifs, we also compare the random graphs whose number of

edges in the triangular representation (i.e., number of triad pairs that
share edges) is expected to be the same as that of the clusters. How the
expected number of motifs is calculated in the random graphs is
presented in the Supplementary Section S5.

In Figure 5, we observe that although the number of any motifs
does not predict the imbalances in the real clusters, the imbalance in
the real clusters is between the imbalances of the random graphs
generated according to the number of triads and the random graphs
generated according to the number of quads. This suggests that the
frustrated opinion dynamics are determined neither by the edge
density nor the number of edges but by the number of these higher-
order motifs or the connections among them, as pointed out by [9].

3.4 Relationship between the local network
structure and local instability

In this section, we investigate the correlations between the
frustrated opinion dynamics and the local structure of the
networks, namely, centralities. First, we look for network
centrality suitable for predicting the time average of the local
imbalance ϕx. We have found that the closeness centrality [26] of
the triangular network representation is calculated as

A B

C D

FIGURE 7
Spearman’s rank correlation coefficient between the closeness centrality Cl

WF(τ) and the time average of the local imbalance for norm L6 (ϕL6(τ)) in
the four clusters as a function of the observation radius l. The black dotted lines show the optimal observation radius lp at which the correlation takes the
maximum value. The plots for clusters 1, 2, 3, and 9 are in panels (A–D), respectively. Although there is a slight difference in the optimal observation radius
lp among different networks, we find that there is an optimal observation radius lp (around lp is 3–6) for predicting the local imbalance in all the
clusters.
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CWF τ( ) � n τ( )
Ntriad − 1

( ) n τ( )
∑n τ( )

υ�1 d τ, υ( )( ), (6)

where Ntriad, n(τ), and d(τ, υ) stand for the number of triads in the
network, the number of reachable triads from the triad τ, and the
distance between triad τ and triad υ, respectively, predicting the
opinion dynamics well. Figure 6 shows the correlation between the
closeness centrality and the local imbalance. The closeness centrality
shows a high correlation with local imbalance for the L6 norm in
every cluster (Spearman’s rank correlations in clusters 1, 2, 3, and
9 are 0.59, 0.81, 0.93, and 0.92, respectively. Pearson product
correlations in clusters 1, 2, 3, and 9 are 0.61, 0.77, 0.92, and
0.95, respectively). As this centrality measure corresponds to the
inverse of average distance from the focal triad to the neighboring
triads, the result we obtained suggests that a triad fluctuates more in
its opinions when there are more triads in its vicinity.

Next, we study how far triads affect the local imbalance of a focal
triad. To evaluate this, we introduce a characteristic that is denoted
by the following equation:

Cl
WF τ( ) � nl τ( )

Ntriad − 1
( ) nl τ( )

∑nl τ( )
υ�1 d τ, υ( )( ), (7)

where l is the observation radius from the focal triad τ to consider
for the calculation of the characteristics and nl(τ) is the number of
triads that can be reached within the network diameter l from the
triad τ. If l =∞, this property is exactly the same as the closeness

centrality calculated in Eq. 6. By varying the parameter l, we can
see which observation radius l is sufficient to predict the opinion
dynamics in a realistic network. Figure 7 shows Spearman’s rank
correlation coefficient between Cl

WF for the observation radius l
and the local imbalance for norm L6 (ϕL6). When the observation
radius is l, Cl

WF is found to predict the local imbalance (ϕL6) well
(clusters 3 and 4) or optimally (clusters 1 and 2). Similar results
are also obtained with the Pearson correlation coefficient (see
Supplementary Section S8). The improvement is more
pronounced for the clusters with larger network diameters
(i.e., clusters 1 and 2). Figure 8 shows a scatter plot of C

l*
WF

and ϕL6, where lp is the optimal observation radius, i.e., when l =
lp, the Spearman’s rank correlation between C

l*
WF and ϕ

L6 takes the
highest value. In Figure 8, we can also observe strong non-linear
correlations. As shown in Figure 9, we can also observe the
optimal observation radius for the calculation of Cl

WF(τ) for
the prediction of the local imbalances even in the case of the
L2 and L5 norms, i.e., the norms that make the opinions fluctuate.

4 Discussion

In earlier studies [3]; [5]; [8], it was pointed out that the
“leading-eight” norms are the most prominent norms. In the
present study, we show that among these, there are only three
norms, i.e., L6, L2, and L5, that cannot reach absorbing states,

A B

C D

FIGURE 8
Spearman’s rank correlation between the closeness centralityC

l*
WF(τ) and local imbalance ϕ(τ) is shown. lp is the l forCl

WF(τ)when it takes the highest
Spearman’s rank correlation coefficient with local imbalance ϕL6. The vertical axis shows the time average of ϕ(τ), while the horizontal axis shows C

l*
WF(τ).

The plots for clusters 1, 2, 3, and 9 are in panels (A–D), respectively. The optimal observation radius is lp = 4 in cluster 1, lp = 3 in cluster 2, and lp = 6 in
clusters 3 and 9.
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i.e., the states in which all the opinions become fixed. This takes
place not only for random graphs but also for the real large
acquaintance-based social network, when the edge density is in
the middle range.

We first examined whether the clusters we found by mapping
the real acquaintance network to a triangular representation are
able to reach an absorbing state and, if not, how far they are from
absorbing states. This was performed by using a generalized
order parameter imbalance introduced previously by [9]. The
results showed that the clusters that should be in the absorbing
states, as inferred from the number of nodes and edges, stay in
the non-absorbing states. On this basis, we suggest that the
distance of these clusters from the absorbing states can be
inferred if the network properties such as the number of
triangular connections and number of quads are properly
taken into account.

In this study, we have also found that the closeness centrality in
the triangular network representation predicts well which parts of
the network are frustrated. Furthermore, we have found that better
prediction is achieved when we do not consider all the reachable
triads when calculating the closeness centrality of the focal triad. In
addition, it has turned out that in order to predict the dynamics, it is
sufficient to consider only the proximity triads within a certain

observation radius from the focal triad. This suggests that there is an
optimal observation radius for predicting the dynamics of the model
on networks.

We find that simply considering adjacent triads within an
observation radius of 3–6 yields good predictions of the dynamics
of focal triads in case of general cooperation dynamics. This could
constitute a decisive advantage when analyzing cooperation dynamics
in the real-world social networks. In the future, it would be interesting
to set up a large-scale human experiment (e.g., [27]) to collect and
analyze empirical data for a deeper insight into real social dynamics.
Nevertheless, our main result of discovering a good measure for
finding a locally frustrated opinion area in the social network paves
the way for suchmore indirect testing with empirical data. Also, in the
case of adopting the donation game under certain payoff conditions,
the imbalance is highly correlated with the lower average fitness of the
agents. This means that local regions with higher imbalance are more
prone to invasions (for example, against unconditional defectors).
Our findings on the correlation between the local structure and the
imbalance is, therefore, also relevant to the evolutionary dynamics of
cooperation.

It is not clear why we can observe an optimal radius for
predicting the opinion dynamics in networks. It is natural to
assume that the closeness centrality can give, at best, a good

A B

C D

FIGURE 9
Spearman’s rank correlation coefficient between the closeness centrality Cl

WF(τ) and the time average of the local imbalance for L2 on cluster 1 (A),
L5 on cluster 1 (B), L2 on cluster 2 (C), and L5 on cluster 2 (D) in the acquaintance network with a ranging observation radius l. The vertical axis shows the
correlation, while the horizontal axis shows the parameter l to limit the network diameter for the calculation of Cl

WF . The black dotted lines show the
parameter lpwhich has the highest correlations.We have found that there is an optimal observation radius lp (lp=6 for L2 and L5 on cluster 1 and lp=4
for L2 and L5 on cluster 2) for predicting the local imbalance.
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approximation of the dynamics of opinion in social networks due to
the influence of triads further away from a focal triad being small.
However, this influence can be very subtle and dependent upon the
structure of the network under consideration. Therefore,
investigating the relationship between the optimal observation
radius for calculating the closeness centrality and the local
imbalance in various other network structures, i.e., realistic
networks or random graphs, would provide us an insight into the
nature and a theoretical explanation for this relationship.
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