
Fault-tolerant quaternary belief
propagation decoding based on a
neural network

Naihua Ji1, Zhao Chen1, Yingjie Qu2, Rongyi Bao1, Xin Yang1 and
Shumei Wang2*
1School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China,
2School of Science, Qingdao University of Technology, Qingdao, China

The article discusses the challenge of finding an efficient decoder for quantum
error correction codes for fault-tolerant experiments in quantum computing. The
study aims to develop a better decoding scheme based on the flag-bridge fault
tolerance experiment. The research compares two decoding algorithms, a deep
neural network decoding scheme and a simple decoder, and a recurrent neural
network decoding scheme based on the belief propagation algorithm variant
MBP4 algorithm. The study improved the syndrome extraction circuit based on the
flag-bridge method to meet the requirements of fault-tolerant experiments
better. Two decoding schemes were studied, a combination of a deep neural
network and a simple decoder and a recurrent neural network structure based on
the MBP4 algorithm. The first scheme used neural networks to assist simple
decoders in determining whether additional logical corrections need to be
added. The second scheme used a recurrent neural network structure
designed through the variant MBP4 algorithm, along with a post-processing
method to pinpoint the error qubit position for decoding. Experimental results
showed that the decoding scheme developed in the study improved the pseudo-
threshold by 39.52% compared to the minimum-weight perfect matching
decoder. The two decoders had thresholds of approximately 15.8% and 16.4%,
respectively. The study’s findings suggest that the proposed decoding schemes
could improve quantum error correction and fault-tolerant experiments in
quantum computing.

KEYWORDS

fault-tolerant, quantum computing, flag-bridge, deep learning, belief propagation

1 Introduction

For reliable implementation of quantum algorithms, fault-tolerant (FT) [1,2]
quantum error correction techniques are essential. Fault tolerance can be
implemented by quantum error correction (QEC) [3,4], where a single logical qubit
is encoded into the state of multiple physical qubits by a QEC code to enable active
diagnosis and correction of potential errors. This process should all be FT. As an
example of topological QEC codes [5,6], surface codes have emerged as a prime
candidate for large-scale FT quantum computing. However, finding the optimal
decoding strategy is already a computationally difficult problem. Various decoding
algorithms have been proposed such as the Blossom algorithm [7], the maximum
likelihood algorithm decoding (MLD) [8], the renormalization group algorithm (RG)
[9], and the minimum-weight perfect matching (MWPM) [10]. Recently, machine

OPEN ACCESS

EDITED BY

Marcos César de Oliveira,
State University of Campinas, Brazil

REVIEWED BY

Yijun Ran,
Southwest University, China
Dongsheng Wang,
Chinese Academy of Sciences (CAS),
China

*CORRESPONDENCE

Shumei Wang,
wangshumei@qut.edu.cn

RECEIVED 13 February 2023
ACCEPTED 20 April 2023
PUBLISHED 17 May 2023

CITATION

Ji N-H, Chen Z, Qu Y-J, Bao R-Y, Yang X
and Wang S-M (2023), Fault-tolerant
quaternary belief propagation decoding
based on a neural network.
Front. Phys. 11:1164567.
doi: 10.3389/fphy.2023.1164567

COPYRIGHT

© 2023 Ji, Chen, Qu, Bao, Yang and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 17 May 2023
DOI 10.3389/fphy.2023.1164567

https://www.frontiersin.org/articles/10.3389/fphy.2023.1164567/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1164567/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1164567/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1164567&domain=pdf&date_stamp=2023-05-17
mailto:wangshumei@qut.edu.cn
mailto:wangshumei@qut.edu.cn
https://doi.org/10.3389/fphy.2023.1164567
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1164567

learning has started to be applied, and to solve the fast decoding
problem, the development of neural network-based decoding
algorithms [11–17] has increased. Such algorithms require less
time, and decoding can achieve a performance similar to that of
classical decoding algorithms. Particularly, machine learning-
based approaches have a variety of decoding algorithms with
great promise, some of which have addressed completely FT
environments and satisfied FT trials [18,19]. Meanwhile, the
development of deep learning [20,21] algorithms has also
made good progress, allowing more room for the development
of neural network-based decoding algorithms. On the other
hand, sparse error correction codes can achieve good decoding
performance through belief propagation (BP) [22,23] because the
BP algorithm can achieve nearly linear complexity. Even so, BP is
less effective on highly degenerate error correction codes. Due to
the existence of short cycles in the Tanner graph of the stabilizer
code, this affects the message passing process in BP and may
result in additional computational burden.

FT quantum error correction schemes applied to various
stabilizer codes are essential but require many ancilla qubits,
which are a scarce resource in quantum processors. To solve this
problem, the flag QEC scheme is proposed, where only one or a few
additional ancilla qubits are added for low overhead and FT
implementation of the syndrome extraction circuit. These
additional qubits are called flag qubits [24,25]. However, the flag
scheme has stringent requirements for qubit connectivity. To
achieve this high qubit connectivity, additional operations (e.g.,
SWAP gates) are usually required, increasing the circuit’s size.
More importantly, the resulting circuits, after applying these
extra operations, may break the fault tolerance. Based on this, the
flag-bridge approach [26] is proposed to extend the flag circuit into
various equivalent circuits for FT execution of stabilizer
measurements. A pressing problem in this flag-bridge scheme is
the design of its decoding algorithm. The flag-bridge scheme
requires high-speed decoding algorithms that must be faster than
the rate of errors that occur. Therefore, efficiently designing the
applicable decoding algorithm is the key to implementing FT
quantum computers.

In this work, based on machine learning technology, we propose
two decoding strategies in the flag-bridge method: the use of a deep
neural decoder (DND) and a recurrent neural network (RNN)
decoder based on MBP4. In the DND strategy, a simple decoder
was designed to replace the original non-scalable look-up table
strategy, and a depth neural decoder was used to determine
whether to add logic correction to the correction of the simple
decoder. The simulation results showed that it has a slight
improvement compared with the MWPM decoder. In addition,
in the second scheme, using the degeneracy of the surface code,
through the variant algorithm of the BP algorithm, the RNN decoder
was designed and the post-processing method was used to improve
the decoding accuracy. The experimental results showed that the
numerical value of the latter scheme was higher than that of the
former scheme.

The structure of the article is divided into the following parts. In
Section 2, the background is described, including topology surface
code, flag-bridge fault tolerance, andMBP4. In Section 3 and Section
4, we introduce the decoder design of the two schemes, respectively.
In Section 5, the numerical results and analysis are given. In Section

6, the research content of this article is summarized and the future
research direction is indicated.

2 Background

2.1 Surface codes

A code space for a stabilizer code is the joint (+1) eigenspace
[27,28] of the elements. The eigenvalues of the stabilizers can be used
to determine if a Pauli error anticommutes with some stabilizers.
Therefore, a corrective procedure is chosen based on the
measurement results, also known as the error syndrome.

The check matrix of the stabilizer code is of the form

S � Smn[] ∈ I, X, Y, Z{ }M×N, (1)
where I � 1 0

0 1
[], X � 0 1

1 0
[], Z � 1 0

0 −1[], Y � iXZ. The

subscript mn denotes a matrix of m × n.
Pauli operators E and R in the same dimension either commute

or anticommute with one another. We define

〈E, R〉 � 0, if ER � RE;
1, otherwise.

{ (2)

The binary error syndrome for the error E = E1E2/EN ∈ GN is
given by z � (z1, z2, . . . , zM) ∈ {0, 1}M, where

zm � 〈E, Sm〉 � ∑N
n�1

〈En, Smn〉 mod 2. (3)

We are focused on rotated surface codes [29,30]. Rotating
surface codes are a class of stabilizer codes in which all qubits
are arranged in a 2D plane and each qubit uses up to four
connections to adjacent qubits (Figure 1). For surface codes,
measuring the stabilizer generator is straightforward and requires
only a local action between data qubits and ancilla qubits. It should
be noted that the weights of all stabilizer operators are either 2 or 4,
independent of the lattice size. In Figure 1, we demonstrate the
stabilizer measurement circuit.

Specifically, in Figure 1, we associate the stabilizer generator
with the color of ancilla qubits. The orange (blue) ancilla qubit forms
anX(Z) stabilizer with the four (two) adjacent data qubits. We define
the stabilizer as

Sv � ⊗ σv, v � x, z{ } (4)
and then define the logical X(Z) operator as XL (ZL).

2.2 Flag-bridge fault tolerance method

Flag qubits are used to monitor errors and notify other error-
correcting qubits to perform error correction operations, while
bridge qubits are used to connect error-correcting qubits and
control qubits (used for executing quantum logical operations) at
a closer physical distance, thereby improving the efficiency of error
correction. The flag-bridge scheme exploits the existence of these
ancilla qubits to more effectively control and reduce error
propagation among quantum qubits, achieving more efficient FT

Frontiers in Physics frontiersin.org02

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

quantum computing. Specifically, using flag and bridge qubits as
ancilla qubits, additional information can be added to encoding
information to detect and correct errors. This encoding method can
be more easily implemented on near-term quantum processors and
can be applied to various types of quantum errors. Flag and bridge

qubits, as ancilla qubits, can improve the efficiency and accuracy of
quantum error correction, providing new ideas for the practical
application of near-term quantum computers.

Consider a stabilizer code S � 〈g1, g2, . . . , gr〉 and its QEC circuit
C consisting of a flag-bridge circuit formeasuring the stabilizer operator,

FIGURE 1
Rotated surface code with a code distance of 5. Each lattice vertex (yellow) is a data qubit. The orange (blue) in the figure is an ancilla qubit used for
X(Z) stabilizer measurements. The quantum circuit for stabilizer measurements using Hadamard and CNOT gates is marked.

FIGURE 2
(A) The Z-stabilizer measurement circuit with a weight of 4. (B–D) Flag-bridge circuits (B, C) using two ancilla qubits and (D) using three ancilla
qubits.

Frontiers in Physics frontiersin.org03

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

i.e., C � c(g1), c(g2), . . . , c(gr){ }, where c(gi) is the flag circuit for
measuring the stabilizer gi. We can check whether each circuit satisfies
the fault tolerance condition by simulating it directly under circuit-level
noise [26]. If two or more sets of errors lead to the same syndrome and
flag string but no stabilizer is generated when multiplying them
together, then the circuit is not FT.

As we described in Section 2.1, the weights of all stabilizer
operators are either 2 or 4, regardless of the surface code lattice size.
Therefore, the flag-bridge circuit applied to rotating surface codes
requires at most four data qubits, as shown in Figure 2A. The circuit
for measuring the Z-stabilizer with weight 4 is shown in Figure 2A.
Only one more ancilla qubit is added by the flag-bridge approach in
comparison to the preceding flag method. Each flag circuit behaves
exactly like a non-FT circuit when there are no failures. When there
is an error that appears and may affect subsequent circuits, it will
generate a significant measurement of the flag qubits to be used to
detect these errors. For example, if such an error occurs in the circuit
in Figure 2A, it will not be FT; instead, if it occurs in the circuit
shown in Figure 2B, the measurement of the qubit f will be 1, which
means that a flag is raised [26].

2.3 MBP4 decoding of error codes

Given R ∈ S and a Pauli error E ∈ En, ER is referred to as a
degenerate error of E since ER and E are equal on the code space. If there
are stabilizers with weights smaller than the minimum distance of a
quantum code, it is said to be degenerate; otherwise, it is non-degenerate.

Due to the ease with which a group of independent generators
with weights ≤ 4 may be found, a surface code with d ≥ 5 is highly
degenerate. In this work, we consider the quaternary quantum BP in
log domain with an additional memory effect (MBP4) [31]. A
message passing technique called MBP4, which makes use of the
code’s degeneracy, is described by the check matrix of a code on the
Tanner graph. A check matrix S of a code is an M × N matrix over
error set En ∈ {I, X, Y, Z}, where M is the number of stabilizers that
have been measured. For example, d = 7 rotated surface code has
check matrix

S �

X X I I I I I
Z I I Z I I I
I X I I X I I
I I X I I X I
I I I Z I I Z
I I I I I X X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the corresponding Tanner graph, drawn as a factor graph to
additionally display the initial distribution pn, is shown in
Figure 3.

3 Decoding with deep learning

3.1 Flag-bridge decoding

To demonstrate the operation of the flag-bridge circuit, we will
utilize the circuit shown in Figure 2C. We designate the CNOT gate
as the f-CNOT gate between the ancilla qubits and the s-CNOT gate

FIGURE 3
Tanner graph of d = 7 rotated surface code. ei is a variable node with error. zi is the syndrome.

Frontiers in Physics frontiersin.org04

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

between the data qubit and the ancilla qubit. As seen in Figure 2C,
the ancilla qubits s and f are entangled through an s-CNOT gate
(encoding circuit), and the stabilizer is represented as follows:

〈Xs ⊗ Xf〉, (5)
and its corresponding logical operator is

〈XL � Xs, ZL � Zs ⊗ Zf〉. (6)

This logical qubit is stabilized by XL, after which stabilizer
measurements are performed. Suppose there are four data qubits,
denoted as (a, b, c, d), which are initially stabilized by (−1)yZa,b,c,d, and
the subsequent four s-CNOT gates will keep the stabilizer

〈Xs ⊗ Xf, −1()yZa,b,c,d〉 (7)
invariance of all qubits, but they gradually convert the logic
operator to

〈XL � Xs, ZL � Zs ⊗ Zf ⊗ −1()yZa,b,c,d〉. (8)

Specifically, ks and kf s-CNOT gates can be applied to ancilla
qubits s and f, respectively, where

ks + kf � 4, ks, kf ∈ Z. (9)

For example, in Figure 2C, ks = 2 and kf = 2 [26]. After that, the
last f-CNOT (decoding circuit) unravels so that the final stabilizer
will consist of these two ancillas

〈 −1()yZa,b,c,d〉, (10)
and the logical operators of these ancillas

〈Xf, −1()yZs〉. (11)

This means that the reading y measured on the ancilla s for Mz

represents the measurement of the stabilizer Za,b,c,d. Thus, the circuit
does measure the Z-check with weight 4. In addition, the
measurement of the ancilla f implies the syndromes of the code;
that is, it can detect a single Z-error occurring on any ancilla device
and then raise a flag [26].

The following definition can be used to describe the flag-bridge
method’s whole FT corrective cycle (Algorithm 1).

Input: Syndrome extraction circuit c(gi) ∈ C
1: Initialize syndrome extraction circuit c(gi) ∈ C
2: Fi = number of flag entities in each circuit

3: Si = number of syndrome entities in each circuit

4: for all (Fi, Si) ∈ first round do

5: if ∃ non-trivial F1
i or S1i then

6: break

7: end if

8: end for

9: Perform second round, collect F2 � UiF2
i

and S2 � UiS
2
i

10: if F1
i is not empty then

11: use F1
i and S2 (and F2)

12: else if F1
i is empty, but S2i is not empty then

13: use S2 (and F2)

14: end if

Algorithm 1. Flag-bridge scheme.

3.2 Network architecture

Given that the look-up table decoder strategy is non-scalable, it
would be ideal to have a scalable and quick decoding scheme that,
when combined with the deep neural network approach, can achieve
better results. The time complexity of classical algorithms grows
exponentially with the size of the surface code. In contrast, the deep
neural network decoder uses multiple layers of nonlinear
transformations to model the complex relationship of surface
codes, which can better learn nonlinear functions and, thus,
improve decoding quality. In practice, deep neural network
decoders can improve the performance of the decoder by
increasing the network depth and width. In addition, the deep
neural network decoder can adaptively adjust the model
parameters to suit the structure and noise characteristics of
different quantum surface codes. However, the traditional
decoder needs to manually adjust the parameters of the decoding
algorithm, which is not flexible enough. Deep neural network
decoders can also use multi-task learning to simultaneously
handle different decoding tasks, such as decoding different noise
models or handling different surface code topologies. This multi-
task learning can improve the generalization ability and scalability of
the model. Therefore, the deep neural network decoder is more
scalable than traditional decoders and can better solve the quantum
surface code decoding problem.

The recovery operator Rz based on the syndrome z can be
expressed as

Rz � L z()T z()G z() (12)
and is called the LST decomposition of E [32]. In Eq. 12, L(z) is the
product of logical operators, T(z) is the product of pure errors, and
G(z) is the product of stabilizers. It should be noted that since the
G(z) operator represents the stabilizer product, its choice does not
affect the outcome of the recovery state. Therefore, given a measured
syndrome z, our goal is to find the most probable logical operator in
the non-trivial operator, denoted L(z), and then use L(z) to decode.
The goal of the neural network is to find the most probable operator
L(z) from the input syndrome z. All the codes we consider encode a
single logical qubit; so, Eq. 12 can be rewritten as follows:

Rz � Xb1 z()
L Zb2 z()

L T z()G z(), b1 z(), b2 z() ∈ Z2{ }. (13)
All syndromes were recorded following the conclusion of the

two-round marker bridge syndrome extraction circuit. Given the
error E and the syndrome z(E) = z (usually E will not know), the
neural network must find the vector b � (b1(z), b2(z)) such that
Xb1(z)

L Zb2(z)
L RzE ∈ S, where Rz is the original recovery operator

obtained from the simple decoder.
We present our decoding strategy in Figure 4. The decoding

strategy includes two module methods, the simple decoder and a
DND. The purpose of using a DND is to improve the decoding
performance of the simple decoder. In the depolarization error
model, the correction provided by a simple decoder will result in
an error-free logic state (I), approximately 42% of the time [33]. In
this case, the neural network will output the identity operator (b in
Figure 4). We will now describe our decoding strategy in detail. The
first step is to use the flag-bridge method described in Section 2.2 to
fault-tolerantly extract flags and error syndromes information to

Frontiers in Physics frontiersin.org05

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

generate dataset information. Then, the simple decoder and DND
will analyze and judge the dataset in a distributed manner. A simple
decoder will correct for partial error syndrome, and the DND will
predict from the dataset whether or not it will cause a logical error (I,
X, Y, Z), and its expected output is a binary value indicating whether
extra correction needs to be applied. The dataset is finally corrected
by combining the prediction results of the simple decoder and DND
to achieve a high accuracy rate.

3.3 Training

The syndromes and flags from both rounds will be gathered in
the input stages when employing the flag-bridge error correction.
Therefore, the input layer should contain information about both
rounds of syndromes and flags. For better application to the
convolutional neural network, we embed the L = d code lattice
into a (2L + 1) × (2L + 1) binary matrix. We encode error syndromes
and sign messages in this way. The total input can be obtained by
stacking the flag pieces on top of the error syndrome pieces, thus
effectively creating inputs suitable for use as a convolutional neural
network. The feed-forward neural network is stacked on top of
several convolutional layers to create the deep neural network that
we utilize. Fully connected feed-forward layers follow the

convolutional layers, and we use ReLU [34] as the activation
function for the hidden layer and softmax as the activation
function for the output layer. The error syndrome is passed
through a series of convolutional layers of decreasing size (from
(2L + 1) × (2L + 1) to 2 × 2), each with 64 output filters, followed by a
fully connected layer with 512 neurons, and then in decoder labels.
To quicken the model’s training process and make sure the model
can successfully learn more extensive datasets, ResNet [35] network
layers were introduced as the underlying architecture, ensuring that
the shortcut output is added to the output of the stacking layers
through the remaining blocks, and data are stacked using ResNet 7,
14, and 21 network layers. Training allows for a large amount of
stacking without degrading the learning efficiency of the
convolutional layers. Additionally, the feed-forward neural
network’s fully connected network parameters and the
convolutional neural network parameters must be regularly
synchronized to maintain data integrity.

Training starts with the input syndromes and flags data; the
input layer receives syndromes and flags information, and the
output layer ideally should encapsulate any logical mistakes
caused by the auxiliary decoding algorithm in the target output.
The objective is to use the DND to forecast these logical mistakes,
and when it does, we apply a logic Pauli operator following the
recovery recommended by the auxiliary decoder. To train the DND

FIGURE 4
Description of the design of the DND decoder.

Frontiers in Physics frontiersin.org06

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

decoder, we use one-hot encoding to represent the decoder labels
and binary cross-entropy loss as the training objective. This design is
enough to convey the power of our paradigm while avoiding further
complexity.

Input: D � (xk,yk){ }mk�1; learning rate η

Output: One-hot encoding label

1: Embed L = d code lattice into a (2L + 1) × (2L + 1)

binary matrix

2: Initialize training set D � (xk,yk){ }mk�1 ← flag-

bidge scheme

3: Randomly initialize all connection weights in

the network in the range (0,1)

4: repeat

5: for all (xk, yk) ∈ D do

6: Compute the current sample

output ŷk � f(βj − θj)
7: Calculate the gradient of the output neuron gi
8: Compute the neuron gradient term for the

hidden layer eh
9: Update weights

Δwhj � ηgjbh
Δvih � ηehxi

10: end for

11: until stop condition reached

12: Return one-hot

Algorithm 2. Network training.
Convolutional neural networks consist of two steps in their

training process. The forward propagation phase, also referred to as
the first phase, is when data are sent from the lower level to the upper
level. The second stage, or the backward propagation stage, occurs
when the outcome of forward propagation does not match the
expectation and the mistake is transmitted from the higher level to
the lower level for training. The training process initializes the

network weights. The training is completed when the error is
equal to or less than the desired level of accuracy [36].

Specifically, in Figure 5, we describe how the neural network we
used was trained. In the first step, we encode the flag and error
syndrome information into a binary matrix of size (2L + 1) × (2L +
1) to better fit the input of the convolutional layer. The orange and
green matrices consist of error syndrome and flag information,
respectively. The second step is to change the network weights
initially. The input data are forwarded through the convolutional
layer, the downsampling layer, and the fully connected layer to
obtain the output value (i.e., the forward propagation stage in Figure
5). In this work, we did this by chaining a feed-forward neural
network after a convolutional neural network. After the feed-
forward neural network, we get the output (represented as the
green block one-hot encoded label in Figure 5). After the third
step, the error is obtained by comparing the output value with the
target value, and the weights are optimized according to the error.
Algorithm 2 shows the pseudo-code form of the training phase.

4 Decoding with MBP4 as an RNN

4.1 Models and algorithms

A quaternary BP(BP4) algorithm computes an approximated
marginal distribution P(en � w | z) � qwn , where w ∈ {I, X, Y, Z}
indicates the error type, n = 1, 2, . . . , N in linear domain [23], and
outputs ê � (ê1, ê2, . . . , êN) such that

ên � argmax
w

P en � w | z().

As an alternative, the log-likelihood ratio (LLR) of the form can
be used

FIGURE 5
Details of the DNDdecoding used for the L× L code grid. Individual fault syndromes are embedded in a (2L+ 1) × (2L+ 1) binarymatrix with all entries
initially set to 0 by default. Entries indicated by red circles are set to −1 to show the offending syndrome, and entries indicated by blue circles are flag
information. By overlaying syndromes and flag slices, the input data can be created in a way that is appropriate for convolutional neural network input. We
stacked a feed-forward neural network on top of the convolutional layer, and the final output was one-hot coded.

Frontiers in Physics frontiersin.org07

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

ΓXn � ln
qIn
qXn

, ΓYn � ln
qIn
qYn
, ΓZn � ln

qIn
qZn

in log domain [37]. The decoder will output ê if the syndrome of ê
matches z.

BP4 is given in log domain with an LLR vector
Γ � (Γ1, Γ2, . . . , ΓN) ∈ R3N, where

Γn � ΓXn , ΓYn , ΓZn() ∈ R3 n � 1, 2, . . . , N.

On each edge (m, n) linking variable node n and check node m,
two different sorts of messages are iteratively transmitted. Let M(n)
denote the set of variable nodes n nearby check nodes and N(m)
denote the set of check nodes m nearby variable nodes [23]. A
variable-to-check message is displayed using λSmn(Γn→m) that
contains the LLR that En commutes or anticommutes with Smn

from variable node n to check node m, where Γn→m �
(ΓXn→m, ΓYn→m, ΓZn→m) is the LLR of en = w, according to the
messages from the other nodes m′ ∈ M(n)\m, and the function
λw: R

3 → R is defined as follows

λw x, y, z() ≜ ln
1 + e−ω

e−x + e−y + e−z − e−ω
.

The LLR of whether en commutes or anticommutes with Smn is,
therefore, revealed by a check-to-variable message Δm→n from check
node m to variable node n. More specifically,

Δm→n � −1()zm ⊞
n′
λSmn′ Γn′→m(),

where for a set of k real scalars a1, a2, . . . , ak ∈ R, the operation ⊞ is
defined by

k
n�1

an � 2 tanh−1 ∏k
n�1

tanh
an
2

⎛⎝ ⎞⎠.

Then, Γn is updated according to Δm→n for allm ∈M(n) and the
initial distribution of en.

The BP algorithm iteratively updates the LLR of the marginal
distributions Γn{ }Nn�1 according to the passed messages on the
Tanner graph. A Tanner graph, which is a bipartite graph with
variable nodes and checks nodes connected appropriately by edges,
may be used to represent the parity-check matrix of a code. The BP
algorithm on the Tanner graph sends messages between the nodes
iteratively in order to obtain an estimate of the marginal distribution
for each coordinate of the error.

Consider an M × N check matrix S. A Tanner graph that has M
check nodes (corresponding to the given binary syndrome vector)
and N variable nodes (corresponding to the N-fold Pauli error to be
estimated) can be used to represent the relationships between a Pauli
error operator and its syndrome bits. Variable node n and check
node m are connected by Smn whenever I ≠ Smn ∈ {X, Y, Z}. Figure 6

illustrates the Tanner graph for a check matrix S � X Y I
Z Z Y

[].
Considering degenerate quantum codes; for all the check nodes,

we use two unifying parameters a−1, b ∈ R in MBP4. At the beginning
of MBP4, for check matrix S, let

Γwn→m � Λw
n , (14)

where Γwn→m is LLRs from variable node n to check node m and Λw
n is

the channel statistics vector. We parallelly calculate check node m

and variable node n horizontally and vertically, respectively. First, in
the horizontal step, we compute

Δm→n � −1()zm ⊞
n′
λSmn′ Γn′→m(), (15)

where Δm→n means the check-to-variable message and λSmn′(Γn′→m)
means the variable-to-check message. Furthermore, in the vertical
step, we compute

Γwn � Λw
n + 1

a
∑

〈w,Smn〉�1
Δm→n − b ∑

Smn�w
Δm→n . (16)

Then, we have a hard decision. Let ê � ê1ê2/êN, ên � I if Γwn > 0
and ên � arg min

w∈{X,Y,Z}
Γwn , otherwise. At this time, for ∀m, if

〈ê, Sm〉 � zm, we say it is converge. If 〈ê, Sm〉 ≠ zm or the
maximum number of iterations Tmax is reached, we say it is a
fail. If any of the conditions are not met, we repeat all steps from the
horizontal step. At the end of the algorithm, MBP4 introduced a
fixed inhibition, by computing

Γwn→m � Γwn − 〈w, Smn〉Δm→n. (17)
Equation (17) can be expressed in the following form:

Γwn→m � Λw
n + 1

a
∑

〈w,Sm′ n〉�1
Δm′→n − b ∑

Sm′n�w
Δm′→n

−〈w, Smn〉Δm→n.

(18)

The term −〈w, Smn〉Δm→n is called inhibition [31], which
provides adequate strength to resist a wrong belief looping in the
short cycle. By maintaining such inhibition strength, decoding can be
made less affected by the short cycles. Moreover, the term
−b∑

Sm′n�wΔm′→n is also like an inhibition. Since it is induced from
gradient decent optimization, we simply have a step size b to adjust its
strength. It has been proved that MBP4 performs better with b = 0.

As far as we know, the decoding process of BP can bemodeled as an
RNN [38,39], which usually adopts a parallel scheduling scheme. For
the RNN, and for simplicity and effect, we set b = 0. In the Tanner graph
corresponding to the M × N check matrix S, there are two types of
messages that are iteratively updated, namely, variable-to-check and
check-to-variable messages. Therefore, there will be two hidden layers
in the designed RNN, which alternately compute Δm→n or λSmn(Γn→m)
message, with N input neurons Λn{ }Nn�1 and output neurons Γn{ }Nn�1.
The estimated error ê can be calculated from Γn{ }Nn�1. The ultimate goal
of the RNN is to find the most likely error ê for the syndrome z. It
should be noted that the computation will also terminate if the
maximum number of iterations Tmax is reached.

Figure 7 illustrates the RNN designed on the basis of Figure 6.
The neuron Γn→m computes λSmn(Γn→m), from Δm→n to the dotted
line between λSmn(Γn→m) indicates suppression and each solid edge is
an incentive.

To sum up, we have shown that MBP4 can be extended to a
neural network decoder, which may be further improved by using
appropriate weight α for each edge. We select the edge weight a by
using the general optimization scheme of the neural network.

4.2 Decoding surface code

We provide an example of the decoding on the d = 7 surface code
in Figures 8A–C.

Frontiers in Physics frontiersin.org08

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

FIGURE 6
Tanner graph for S. There are three variable nodes (represented by circles) and two check nodes (represented by squares).

FIGURE 7
RNN designed on the basis of Figure 6; the two hidden layers alternately calculate Δm→n or λSmn(Γn→m)messages on each edge, and there areN input
neurons Λn{ }Nn�1 and output neuron Γn{ }Nn�1.

Frontiers in Physics frontiersin.org09

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

Figure 8A depicts the error with a weight of 7. The error X on
qubit 6 is anticommutated with the stabilizer Z5Z6Z12Z13, so the
corresponding syndrome bit is 1. The simple BP algorithm cannot
determine whether the error X is on qubit 5 or qubit 6. In order to
overcome this symmetry, post-processing or pre-processing can be
chosen. Since we use the RNN model designed by MBP4 for
decoding, we take a post-processing method, which will
determine that the error X occurs in qubit 5. Post-processing has
two steps. The first step is to remove surface complexity from the
lattice. Whenever the error approximation distribution pe > 0.5 [15],
we apply the appropriate error correction operation on the error
lattice and switch pe to its original value. While neural networks can
learn to do the same thing, it is often very expensive. The second step
is to concretize. The most likely error location can be found by
approximating the distribution.

Now, we consider the complete set of errors on the surface code
in Figure 8A. The RNN scheme performs fast asymmetric updates
with large strides. It performs a very aggressive search without
jumping erroneously, finally converging to a valid degenerate error.
Figure 8C depicts all the errors identified. The error in Figure 8C is
equivalent to the error in Figure 8A, up to three stabilizers X5X6,
Z29Z30Z36Z37 and X33X34X40X41.

5 Numerical experiments and analysis

5.1 Performance analysis

The corresponding circuits were simulated, first using the flag-
bridge syndrome extraction circuit so that syndromes and flags were
included in the dataset. The size of the training set was chosen
according to the size of the code distance. For d = 3, d = 5, and d = 7,
the size of the dataset was set to 2 × 106, 2 × 107, and 2 × 108,
respectively. In the design of the training set, we used 95% as the
training data, and the remaining 5% was used as the test set to test
the actual learning ability of the network. We tested our integrated
decoder on these data and assessed its logical error rate compared to
the MWPM decoder.

Figure 9 depicts a graph of the logical error rate and physical
error rate. When using our decoder, the error correction success rate
was greatly improved. The dashed line y = x intersecting each
decoder indicates the pseudo-threshold [40]. The results show
that the pseudo-threshold of the surface codes was improved
when using our decoder. For example, Figure 9A illustrates an
improvement in the pseudo-threshold of 39.52% for the d = 3
surface code.

FIGURE 8
(A–C) Examples of a d = 7 surface code. Error-free quantum graduations are represented by numbered yellow circles. A blue, green, or red square
column indicates a qubit with X-, Y-, or Z-error, respectively. (A) The actual error pattern. (B) The decoding result of the simple BP algorithm, when the
decoding result has errors that do not match the syndrome. (C) The RNN decoding process of MBP4.

Frontiers in Physics frontiersin.org10

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

The decoding performance and decoder threshold of the two
decoders are illustrated in Figures 10A, B, and we illustrate the
decoder performance with MLD in Figure 10C. In order to study the
impact of a larger code distance, we increased the distance to 13, and
the surface codes correspond to the code distance of d = 9, 11, 13
using the DND decoders that are described in Figure 10A. In the
figure, the intersection of the yellow dashed line and three curves
represents the decoder threshold, and a decoding threshold of about
15.8% can be observed. This is higher than the 15.5% [41] achieved
by the previous MWPM decoding algorithm.

The decoding threshold can be observed in Figure 10B.
Through the iterative calculation and optimization of the RNN,
the edge weight α was determined between {1, 0.99, . . . , 0.5}, but
because the RNN we used has an inhibitory effect, it also includes
the existence of edges with a weight of −1, which can enhance the
performance of the RNN. By using the weight combination of a =
0.65 and a = −1, the performance curve of the decoder is as shown
in Figure 10B. Since surface codes with larger distances have better
degeneracy, we extended the code distance to 13 in the figure to
better demonstrate the decoding performance. The dotted line in
the figure represents no error correction. About 16.4% of the

decoder threshold performance can be observed in Figure 10B.
Compared with the DND decoding scheme, this scheme has better
decoding performance. Furthermore, we also illustrate the
decoding performance curve with MLD in Figure 10C. During
the decoding process of MLD, the maximum likelihood decoder
will first establish a probability model. This model describes the
relationship between the received codewords and the codewords
actually sent by all possible senders and uses statistical methods to
estimate model parameters, such as the mean and variance of the
error distribution. Next, the maximum likelihood decoder
calculates the distance or difference between each possible
codeword and the received codeword and converts this into a
probability value. Specifically, it calculates the probability of each
possible codeword generating the received codeword based on the
model parameters and chooses the one that minimizes the distance
or difference between the received codeword and the codeword
actually sent by the sender. The codeword is used as the decoding
result. Although, in general, the effect of MLD is better than that of
MWPM. However, MLD needs to calculate all possible error
modes and select the mode with the highest probability as the
decoding result. The time complexity of this process is very high.

FIGURE 9
Rotating surface codes are decoded using MWPM and a DND, and the values represent pseudo-threshold values. (A) d = 3. (B) d = 5. (C) d = 7.

FIGURE 10
Decoding performance of d = 9, 11, 13 rotated surface codes; the intersection represents threshold. (A) Decoding using a DND. (B) Decoding using
an RNN of MBP4. (C) Decoding using MLD.

Frontiers in Physics frontiersin.org11

Ji et al. 10.3389/fphy.2023.1164567

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

As the system scale increases sharply, it becomes difficult to
achieve practical applications. In contrast, our scheme is faster,
easier to implement, and more practical than MLD when dealing
with larger-scale quantum surface codes. By observing Figure 10C,
we can find that the threshold of MLD is slightly lower than that of
our scheme.

5.2 The cost of a decoder

The cost of a QEC decoder can vary depending on the specific
algorithm used and the hardware platform it is implemented on. In
general, decoding algorithms for QEC can require significant
computational resources, which can translate to increased
hardware and energy costs. In addition to the threshold, the cost
can also be considered as a measure of decoder quality because a more
efficient and cost-effective decoder can make QECmore practical and
scalable for real-world quantum computing applications.

In our deep neural network decoder scheme, the cost of the
decoder depends on various factors, such as the specific architecture
of the neural network, the size of the surface code, and the hardware
platform used for training and inference. Specifically, GPUs or TPUs
are required for training neural networks. Additionally, the time and
effort spent on training the neural network in terms of surface code
size should also be considered.

6 Conclusion

It is difficult to find effective decoders that are appropriate for
quantum error-correcting codes for FT experiments. In this article,
based on the flag-bridge fault tolerance experiment, we studied two
decoding strategies. The first scheme used the deep learning method
to improve the original decoding process based on the flag-bridge
method and we added a simple decoder to it to cooperate with the
neural network decoding work. The simple decoder that replaced the
look-up table decoder in the original flag-bridge method allows for
better scalability. Compared with the MWPM decoder, the pseudo-
threshold of our decoding scheme was improved by 39.52%, and it
can reach a decoder threshold of approximately 15.8%. The second
scheme used the MBP4 algorithm to design the RNN structure and
used the post-processing method to achieve better decoding
performance than the deep neural network decoding scheme.
Our approach also has the potential for LDPC codes. For
instance, in [39], a neural network was combined with the
traditional BP algorithm and the neural network’s nonlinear
characteristics were utilized to improve the accuracy and speed of
error correction. The neural BP decoder was successfully applied to
quantum LDPC codes. Our work is based on the improvement of the
BP algorithm and neural network. Therefore, our decoder has
potential when applied to quantum LDPC codes. Stable mistakes

are another factor that mature neural network decoders must
consider. However, our training process does not take this into
account, and the training accuracy was far from sufficient. More
importantly, our scheme can only meet the fault tolerance of small
experiments. In the future, we need to find the conditions that meet
the fault tolerance experiments of large-distance codes to realize
fault tolerance and correction better.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

NJ: conceptualization, methodology, and software; ZC: data
curation and writing—original manuscript preparation; YQ:
visualization, investigation, and supervision; RB: writing—reviewing
and editing; XY: funding acquisition and resources; and SW:
conceptualization, funding acquisition, and resources. All authors
contributed to the article and approved the submitted version

Funding

This project was supported by the National Natural Science
Foundation of China (Grant No. 42201506), Natural Science
Foundation of Shandong Province, China (Grant No.
ZR2021MF049), Joint Fund of the Natural Science Foundation of
Shandong Province (Grant No. ZR2022LLZ012), and Joint Fund of
the Natural Science Foundation of Shandong Province (Grant No.
ZR2021LLZ001).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Knill E, Laflamme R. Theory of quantum error-correcting codes. Phys Rev A (1997)
55:900–11. doi:10.1103/physreva.55.900

2. Kitaev AY. Fault-tolerant quantum computation by anyons. Ann Phys (2003) 303:
2–30. doi:10.1016/s0003-4916(02)00018-0

3. Shors P. Scheme for reducing decoherence in quantum computer memory. Phys
Rev A (1995) 52:2493–6. doi:10.1103/physreva.52.r2493

4. Steane AM. Active stabilization, quantum computation, and quantum state
synthesis. Phys Rev Lett (1997) 78:2252–5. doi:10.1103/physrevlett.78.2252

Frontiers in Physics frontiersin.org12

Ji et al. 10.3389/fphy.2023.1164567

https://doi.org/10.1103/physreva.55.900
https://doi.org/10.1016/s0003-4916(02)00018-0
https://doi.org/10.1103/physreva.52.r2493
https://doi.org/10.1103/physrevlett.78.2252
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

5. Dennis E, Kitaev A, Landahl A, Preskill J. Topological quantum memory. J Math
Phys (2002) 43:4452–505. doi:10.1063/1.1499754

6. Bombín H. An introduction to topological quantum codes. arXiv preprint arXiv:
1311.0277 (2013).

7. Kolmogorov V. Blossom v: A new implementation of a minimum cost perfect
matching algorithm. Math Programming Comput (2009) 1:43–67. doi:10.1007/s12532-
009-0002-8

8. Bravyi S, Suchara M, Vargo A. Efficient algorithms for maximum likelihood decoding
in the surface code. Phys Rev A (2014) 90:032326. doi:10.1103/physreva.90.032326

9. Duclos-Cianci G, Poulin D. Fast decoders for topological quantum codes. Phys Rev
Lett (2010) 104:050504. doi:10.1103/physrevlett.104.050504

10. Cook W, Rohe A. Computing minimum-weight perfect matchings. INFORMS
J Comput (1999) 11:138–48. doi:10.1287/ijoc.11.2.138

11. Torlai G, Melko RG. Neural decoder for topological codes. Phys Rev Lett (2017)
119:030501. doi:10.1103/physrevlett.119.030501

12. Varsamopoulos S, Criger B, Bertels K. Decoding small surface codes with
feedforward neural networks. Quan Sci Tech (2017) 3:015004. doi:10.1088/2058-
9565/aa955a

13. Chamberland C, Ronagh P. Deep neural decoders for near term fault-tolerant
experiments. Quan Sci Tech (2018) 3:044002. doi:10.1088/2058-9565/aad1f7

14. Sweke R, Kesselring MS, van Nieuwenburg EP, Eisert J. Reinforcement learning
decoders for fault-tolerant quantum computation. Machine Learn Sci Tech (2020) 2:
025005. doi:10.1088/2632-2153/abc609

15. Ni X. Neural network decoders for large-distance 2d toric codes. Quantum (2020)
4:310. doi:10.22331/q-2020-08-24-310

16. Wang H-W, Xue Y-J, Ma Y-L, Hua N, Ma H-Y. Determination of quantum toric
error correction code threshold using convolutional neural network decoders. Chin
Phys B (2021) 31:010303. doi:10.1088/1674-1056/ac11e3

17. Xue Y-J, Wang H-W, Tian Y-B, Wang Y-N, Wang Y-X, Wang S-M. Quantum
information protection scheme based on reinforcement learning for periodic surface
codes. Quan Eng (2022) 2022:1–9. doi:10.1155/2022/7643871

18. Baireuther P, O’Brien TE, Tarasinski B, Beenakker CW. Machine-learning-
assisted correction of correlated qubit errors in a topological code. Quantum (2018)
2:48. doi:10.22331/q-2018-01-29-48

19. Baireuther P, Caio MD, Criger B, Beenakker CW, O’Brien TE, Neural network
decoder for topological color codes with circuit level noise. New J Phys (2019) 21:
013003. doi:10.1088/1367-2630/aaf29e

20. Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. Germany:
Springer (2006).

21. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press
(2016).

22. Kuo K-Y, Lai C-Y. Refined belief propagation decoding of sparse-graph
quantum codes. IEEE J Selected Areas Inf Theor (2020) 1:487–98. doi:10.1109/jsait.
2020.3011758

23. Yan D-D, Fan X-K, Chen Z-Y, Ma H-Y. Low-loss belief propagation decoder with
tanner graph in quantum error-correction codes. Chin Phys B (2022) 31:010304. doi:10.
1088/1674-1056/ac11cf

24. Chamberland C, Beverland ME. Flag fault-tolerant error correction with arbitrary
distance codes. Quantum (2018) 2:53. doi:10.22331/q-2018-02-08-53

25. Chao R, Reichardt BW. Flag fault-tolerant error correction for any stabilizer code.
PRX Quan (2020) 1:010302. doi:10.1103/prxquantum.1.010302

26. Lao L, Almudever CG. Fault-tolerant quantum error correction on near-term
quantum processors using flag and bridge qubits. Phys Rev A (2020) 101:032333. doi:10.
1103/physreva.101.032333

27. Gottesman D. Stabilizer codes and quantum error correction. California: California
Institute of Technology (1997).

28. Calderbank AR, Rains EM, Shor P, Sloane NJ. Quantum error correction via codes
over gf (4). IEEE Trans Inf Theor (1998) 44:1369–87. doi:10.1109/18.681315

29. Horsman C, Fowler AG, Devitt S, Van Meter R. Surface code quantum computing
by lattice surgery. New J Phys (2012) 14:123011. doi:10.1088/1367-2630/14/12/123011

30. Tomita Y, Svore KM. Low-distance surface codes under realistic quantum noise.
Phys Rev A (2014) 90:062320. doi:10.1103/physreva.90.062320

31. Kuo K-Y, Lai C-Y. Exploiting degeneracy in belief propagation decoding of
quantum codes. npj Quan Inf (2022) 8:111–9. doi:10.1038/s41534-022-00623-2

32. Qin Z-H, Wang F. An effective method for lst decomposition based on the linear
spectral mixing model. J lnfrared Millimeter Waves (2015) 34:497.

33. Varsamopoulos S, Bertels K, Almudever CG. Decoding surface code with a
distributed neural network–based decoder. Quan Machine Intelligence (2020) 2:3–12.
doi:10.1007/s42484-020-00015-9

34. Agarap AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv:
1803.08375 (2018).

35. Targ S, Almeida D, Lyman K. Resnet in resnet: Generalizing residual architectures.
arXiv preprint arXiv:1603.08029 (2016).

36. O’Shea K, Nash R. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458 (2015).

37. Lai C-Y, Kuo K-Y. Log-domain decoding of quantum ldpc codes over binary finite
fields. IEEE Trans Quan Eng (2021) 2:1–15. doi:10.1109/tqe.2021.3113936

38. Nachmani E, Marciano E, Lugosch L, Gross WJ, Burshtein D, Be’ery Y. Deep
learning methods for improved decoding of linear codes. IEEE J Selected Top Signal
Process (2018) 12:119–31. doi:10.1109/jstsp.2017.2788405

39. Liu Y-H, Poulin D. Neural belief-propagation decoders for quantum error-
correcting codes. Phys Rev Lett (2019) 122:200501. doi:10.1103/physrevlett.122.200501

40. Sheth M, Jafarzadeh SZ, Gheorghiu V. Neural ensemble decoding for topological
quantum error-correcting codes. Phys Rev A (2020) 101:032338. doi:10.1103/physreva.
101.032338

41. Wang DS, Fowler AG, Stephens AM, Hollenberg LC. Threshold error rates for the
toric and surface codes. arXiv preprint arXiv:0905.0531 (2009).

Frontiers in Physics frontiersin.org13

Ji et al. 10.3389/fphy.2023.1164567

https://doi.org/10.1063/1.1499754
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1103/physreva.90.032326
https://doi.org/10.1103/physrevlett.104.050504
https://doi.org/10.1287/ijoc.11.2.138
https://doi.org/10.1103/physrevlett.119.030501
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.22331/q-2020-08-24-310
https://doi.org/10.1088/1674-1056/ac11e3
https://doi.org/10.1155/2022/7643871
https://doi.org/10.22331/q-2018-01-29-48
https://doi.org/10.1088/1367-2630/aaf29e
https://doi.org/10.1109/jsait.2020.3011758
https://doi.org/10.1109/jsait.2020.3011758
https://doi.org/10.1088/1674-1056/ac11cf
https://doi.org/10.1088/1674-1056/ac11cf
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/prxquantum.1.010302
https://doi.org/10.1103/physreva.101.032333
https://doi.org/10.1103/physreva.101.032333
https://doi.org/10.1109/18.681315
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/physreva.90.062320
https://doi.org/10.1038/s41534-022-00623-2
https://doi.org/10.1007/s42484-020-00015-9
https://doi.org/10.1109/tqe.2021.3113936
https://doi.org/10.1109/jstsp.2017.2788405
https://doi.org/10.1103/physrevlett.122.200501
https://doi.org/10.1103/physreva.101.032338
https://doi.org/10.1103/physreva.101.032338
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1164567

	Fault-tolerant quaternary belief propagation decoding based on a neural network
	1 Introduction
	2 Background
	2.1 Surface codes
	2.2 Flag-bridge fault tolerance method
	2.3 MBP4 decoding of error codes

	3 Decoding with deep learning
	3.1 Flag-bridge decoding
	3.2 Network architecture
	3.3 Training

	4 Decoding with MBP4 as an RNN
	4.1 Models and algorithms
	4.2 Decoding surface code

	5 Numerical experiments and analysis
	5.1 Performance analysis
	5.2 The cost of a decoder

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

