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Introduction: Based on microfibers with sol–gel film, this study focuses on
developing an organic contaminant sensing device to monitor airborne organic
contamination in high-power laser facilities.

Methods: The device heightened the sensitivity to the external environment with
the nano-structure of sol–gel on themicrofiber surface. The relationship between
the additional laser transmission power loss caused by contaminants and the filling
rate of the porosity of the film was discussed. In addition, we obtained the
relationship between the additional loss and the refractive index of the
microstructure.

Results: The experimental results indicated that employing microfibers with
microstructure coating could significantly improve sensing sensitivity to
airborne organic contaminants. The precision of sensing surface contaminants
can reach ng/cm2. When the concentration of organic contaminants is lower than
7.5%, the adsorption process of themicrostructure coating is dominated by single-
molecule adsorption, and the additional loss increases exponentially with
increasing concentration, while the sensing limit is 70 ppm. When the
concentration of organic contaminants exceeds 7.5%, the adsorption process
of the surface microstructure coating is dominated by multimolecular adsorption.
Therefore, the additional loss is exponentially related to the concentration of
airborne organic contaminants, while the sensing limit is 10 ppm.

Discussion: The study explored the adsorption mechanism of the sol–gel film to
airborne organic contaminants at different concentrations. The Langmuir
monolayer adsorption isotherm model and the Freundlich multi-molecular
layer adsorption isotherm model was adopted to analyze and verify the
experimental results, which suggested that the experimental results agree well
with the simulation results. This work can be considered for in situ monitoring of
airborne concentration contaminants and the transmittance of optics with the
sol–gel film, and it also provides a new research method for in situ monitoring of
airborne organic contaminants in the vacuum environment.
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1 Introduction

With continuous research on high-power laser technology,
especially the development of inertial confinement fusion (ICF)
systems, the power density of each component in the optical system
is increasing, especially more than 1.9 MJ in the National Ignition
Facility (NIF) [1–3]. Since the 1980s, Lawrence Livermore National
Laboratory (LLNL) has reported a series of optical component
damage disasters caused by a large amount of contamination in
Nova and Beamlet systems. Recently, hundreds of damage spots
have been observed on optics under the irradiation of several shots at
8 J/cm2. Some of these damage spots were caused by particles and
organic contaminants, which can also be found in preprocessed
fused silica optics (the advanced mitigation process, AMP3) and the
closed vacuum environment [4–6]. Scholars have made great efforts
to control the clean environment in the high-power laser facility. In
the stage of laser design, each key unit module of lasers is designed as
a sealed system to prevent the entry of external
contaminations [7–9].

During the operation of the laser facility, there are always non-
volatile residual organic contaminants at the molecular level on the
surface of optical and mechanical components due to incomplete
cleaning or contamination introduced in the assembly process [10].
Such organic contaminants volatilize in the vacuum or stray light
and exist in the vacuum environment as molecules [11].
Unfortunately, in this vacuum environment, quarter-wave porous
silica antireflection coatings prepared by the sol–gel process have
been performed on transmissive components [11, 12]. Due to the
porous structure of the antireflection film, it tends to adsorb organic
contaminants in the vacuum environment [13]. When organic
contaminants are adsorbed on the optical surface, the refractive
index of the antireflective film will change. It can cause a decrease in
the optical surface transmittance, an increase in the total optical loss,
and even a serious reduction of the damage resistance ability of the
optical surface [14, 15]. Therefore, monitoring and controlling
molecular organic contaminants is one of the important
conditions for obtaining a stable output of the high-power laser
system. Tovena et al. [16, 17] analyzed the organic contaminants on
the optical surface of the LIL faculty by referring to the outgassing
rate of nearby materials, and the source of the contaminants on the
optical surface was obtained. Based on the experiment results, it was
found that such contaminants had a serious impact on the damage
resistance ability of the optical surface [18]. The researchers of the
LLNL proposed to adopt a surface acoustic wave sensor (SAW) to
detect organic contaminants in vacuum [19, 20]. A large surface area
(several square millimeters) and a high requirement for lithography
technology were required. A quartz crystal microbalance (QCM)
used in the aerospace field could measure micro-mass, and the range
of measurable deposited mass due to contaminants spans from ng/
cm2 to hundreds of ug/cm2 [21]. However, it was limited by
resonance frequency, and its theoretical detection accuracy could
reach the order of nanograms.

Based on the strong confinement ability and evanescent field
characteristics of micro-nano optical fibers (MNOFs) [22, 23], a new
method of molecular organic contaminant sensor using a micro-
nano optical fiber with surface microstructures was proposed [24].
We have developed many kinds of microstructures to improve the
sensing sensitivity of MNOFs and to realize the monitoring of

airborne organic contaminations in a vacuum environment
[25–27]. However, although the amount of molecular organic
contaminants on the surface of optics within the sol–gel film is
closely related to the amount of airborne organic contaminations in
the same environment, there are also significant differences. There is
an urgent requirement for developing sensing technology that can
directly respond to surface organic contaminants.

In this work, we preparedMNOFs with the same thickness of the
sol–gel film on the surface to ensure the consistency of the
absorption capacity of molecular organic contaminants with the
optical component. Then, the effective refractive index of the
sensing waveguide was changed, resulting in a change in its
output characteristics. The physical model of the sensor unit was
established and demonstrated by experiments. The sensitivity to
organic contaminants absorbed by the sol–gel film of MNOFs in
vacuum is obtained as the transmittance of an optical component in
the same environment. Therefore, the additional loss change of
surface organic contaminant concentration was obtained in this
study.

2 Theoretical model

The surface microstructures of MNOFs are obtained by coating
sol–gel films, which have a porous structure, as shown in Figure 1.
When molecular organic contaminants exist in the surrounding
environment, they are adsorbed in the sol–gel film on the MNOF
surface in an embedded manner. The change in the refractive index
of the coated film is caused by the absorption of contaminants.
When the refractive index changes from the surface microstructure
adsorbing contaminants on the surface of optical fibers, light will
begin to leak out to the outside of the optical fibers, resulting in the
attenuation of the transmission power of MNOFs [22]. The
concentration of organic contaminants can be obtained by
monitoring the change in the optical power of MNOFs.

According to the large evanescent wave characteristics of
MNOFs, the main factor affecting the sensitivity of MNOFs is
the adsorption of contaminants on the surface of sol–gel thin
films when the size of MNOFs is fixed. The refractive index of
sol–gel films is mainly determined by the porosity of the films.
Therefore, the refractive index of sol–gel films after adsorbing
contaminants is studied using the mixed-medium correlation
model [27–30]. Sol–gel films are regarded as a mixed medium of
silicon dioxide and air. In the mixed medium, the dielectric constant
of the film satisfies the following relationship, as shown in Eq. 1
[27, 28]:

εequiv � ε1 × V1 + ε2 × V2, (1)
where ε1, ε2, V1, V2, and εequiv are relative dielectric constants of the
two media, the volume ratios of the two media, and the equivalent
relative dielectric constant of the mixed media, respectively. The
relationship between the equivalent refractive index nequiv and the
relative dielectric constant of the films is given as follows in Eq. 2:

nequiv �
�������������
n2
1 1 − p( ) + n2

2p
√

, (2)

where p, nequiv, n1, and n2 are the porosity, the effective refractive
index of the sol–gel film, the refractive index of silica particles, and
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the pores in the film, respectively. The pores are generally filled by air
when the thin films are exposed to atmospheric environments
n2 � 1. When the thin film adsorbs organic contaminants, the
pores in the thin film are occupied by organic molecules, and
then the refractive index of the thin film is changed. Based on
Eq. 2, the thickness of the films applied to the surface of MNOFs is
351 nm, and the initial refractive index is about 1.2. The thickness of
the film, 73.12 nm, is about one-quarter of the optical path [11, 28].
Based on the analysis of the laser faculty, the refractive index of
organic contaminants in the laser faculty is approximately 1.5.
When the thin film adsorbs organic contaminants, the pores in
the film are occupied by organic molecules, and the refractive index
of the film also changes. Relying on the three-dimensional finite-
difference time-domain (3D-FDTD) method, the additional loss
caused by organic contaminants adsorbed on the surface of the
micro-nano optical fiber thin film is simulated and analyzed. The
relationship between the refractive index and the additional loss
caused by organic contaminants at different sizes of micro-nano
fibers can be obtained, as shown in Figure 2.We choose the diameter
of MNOFs commonly used for sensing. The refractive index of
MNOFs is about 1.47. The refractive index of the thin film before

and after adsorbing molecular contaminants ranges from 1.23 to
1.41. In Figure 2, it can be seen that when the refractive index of the
thin film is 1.3, the additional losses are 1.42 dB and 0.69 dB,
corresponding to the diameter of 1.5 μm and 2 μm, respectively.
It illustrates that the thinner the diameter of MNOFs, the larger the
additional loss caused by the change in the refractive index of the
thin film because thinner diameter fibers lead to more energy
distribution in the air, which increases the energy of the
perturbed light field, and the additional loss increases finally. To
improve the sensitivity, MNOFs should be selected with as small a
diameter as possible. At the same time, the factors such as the
stability of sensing units and the coating process of the chemical film
on its surfaces should be taken into account. Therefore, we choose
MNOFs with a diameter of 1.5 μm and a waist length of 10 mm as
organic sensor units in the experiment. The organic contaminant
adsorption mechanism of MNOFs is different at various
concentration stages, which affects the sensitivity of the whole
sensing unit. Therefore, studying the adsorption mechanism of
various contamination degrees is necessary.

3 Experiment

Fabrication of MNOFs: the MNOF fabrication setup was built
using an electric heater and step motor translations with
programming functions [31]. The common single-mode
communication fiber (SMF-28, Corning) was heated to the
melting point at high temperatures. At the same time, a program
was written to control the coordinated movement of motors to pull
the fiber into MNOFs with diameter of a micron and length of a
centimeter. The diameter, shape, and length of MNOFs can be
controlled accurately under the condition of parameters such as
heating temperature, drawing speed, and heating area.

A high-precision measurement platform for contaminant
sensors was built using amplification and phase-locked
technology. The light source was a DFB laser with a center
wavelength of 1,550 nm. To further improve the measurement
accuracy, the source light was divided into two paths by a fiber
coupler. One was used as signal light, and the other was selected as
reference light, as shown in Figure 3. It eliminated the measurement
error caused by the power disturbance of the light source. In the
experiment, the sensing unit was transferred into an environment

FIGURE 1
Structure of the microfiber and the principle of contaminants adhered to the microfiber with the sol–gel film.

FIGURE 2
Relationship between the additional loss and the refractive index
of the thin film on MNOFs.
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with organic contaminants, and the measured signal data were
transmitted to a computer. A software package monitored the
change of additional loss of the sensing unit, and the
corresponding relationship between the concentration of organic
contaminants and the additional loss was obtained.

4 Results and discussion

4.1 Sample fabrication

MNOFs with different diameters were fabricated using an
MNOF fabrication setup. The morphology of the fabricated
MNOFs is shown in Figure 4. The fabricated MNOFs have
smooth waist surfaces and good diameter uniformity, which can
meet the requirements of the sensing unit.

A porous chemical film with microstructure is formed on the
surface of the fabricated MNOFs by dip-coating in the silica sol–gel
synthesized by hydrolysis and condensation of tetraethyl
orthosilicate (TEOS) in the ethanol solvents with a base catalyst.
The MNOFs were dipped into the sol–gel solution with a 3%
concentration for at least 1 min and permeated totally. The
thickness of the microstructure can be controlled by the pulling
rate and the concentration of the sol–gel solution [32]. To enhance

the mechanical properties of the microstructure film, the ammonia
treatment method was adopted to post-treat the samples. The
morphologies of the sol–gel film on the MNOFs and the optics
surfaces with the same thickness are shown in Figure 5. The surface
roughness of the optical components is the same as that of the
optical fiber surface, which is about 20 nm. This ensures that both
surfaces have the same adsorption properties. The porous film
adhered to the surface of MNOFs in a uniform state possesses
good mechanical properties.

4.2 Adsorption performance analysis

To verify the different responses of bare MNOFs and MNOFs
with the microstructure film to molecular organic contaminants,
various sensing units with the same diameter placed in a vacuum
chamber were connected to two independent channels of the high-
precisionmeasuring platform. The vacuum chamber was placed into
an ISO 5 clean environment, with a temperature of 20°C ± 0.3 and
humidity of 40% ± 3. The source of organic contaminants was placed
in the chamber, and the response of the sensing unit was monitored
in situ by the written program. The experimental results are shown
in Figure 6. It can be seen that the additional loss of bare MNOFs is
0.01 dB, while that of MNOFs with the sol–gel film is about 0.14 dB.

FIGURE 3
Schematic diagram of the experimental setup for contaminant sensor.

FIGURE 4
SEM images of MNOF diameter with (A) 2.5 μm and (B) 1.5 μm.
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The sensitivity of MNOFs with the microstructure film is far higher
than that of bare MNOFs. The additional loss of MNOFs with the
sol–gel film adsorbing molecular contaminants shows a linear
upward trend. Therefore, the enrichment ability of MNOFs with
the microstructure film for organic contaminants is much higher
than that of bare MNOFs. Fabrication of the microstructure on the
surface of MNOFs is one of the important means to improve the
sensitivity of the sensing units.

4.3 Sensing performance

The sensing units were placed into certain concentrations of
airborne organic contaminants, and the experimental data were
collected every second by the software to monitor the additional
losses and changes caused by increasing concentrations of airborne
organic contaminants. Different concentrations of airborne organic

contaminants were obtained by heating dibutyl phthalate (DBP) [27].
After the sensing process, the sensing units were placed into the
alcohol solution to clean organic contaminants adhered to the sol–gel
film of MNOFs, and the measurement results were saved, as shown in
Figure 7. The experimental results are divided into four stages. For the
first stage, as shown in Figure 7A, the sensing unit is placed into the
same ISO 5 clean environment, which only installed the particle filters,
but no AMC filters. With the internal static condition, the particle
number of 0.3 um is approximately 0. The additional loss with 0.67 dB
does not increase significantly, indicating fewer airborne organic
contaminants. When the sensing unit is placed into a certain
concentration of airborne organic contaminants, the sol–gel film
on the surface of MNOFs begins to adsorb a number of organic
contaminants in the environment, and the additional loss increases
sharply, showing the exponential trend, as shown in the second stage.
At the initial stage of adsorption, the additional loss increases rapidly
by 1.3 dB, as shown in Figure 7B. The trend of change shows that
Langmuir monolayer adsorption occurred on the surface of MNOFs
[33, 34]. With the adsorption of organic contaminants by the first
monolayer of the thin film approaching equilibrium, the rate of the
additional loss changes decreases gradually, as shown in the third
stage. Figure 7C illustrates the BET multi-molecular layer adsorption
on the surface, which conforms to the IV isotherm, indicating the
existence of mesoporous adsorption in the sol–gel film [35]. The
additional loss changes from 0.67 dB to 1.63 dB during the process of
adsorption. Subsequently, the sensing units are put into an alcohol
solution, and the contaminants adhered to the sol–gel film are
desorbed. The additional loss decreases sharply and restores to
about 1.0 dB. When the rate of the additional loss decrease slows
down, the sensing units are disturbed slightly in an alcohol solution,
and the desorption rate of the sensing units increases significantly.
Finally, the additional loss recovers to the initial loss of about 0.67 dB,
as shown in the fourth stage (Figure 7D). The experimental results
reveal that the number of organic contaminants can be obtained based
on the simulation results and the additional loss of continuous
monitoring. Figure 7D shows that the sensing units can be
restored to the initial state by alcohol cleaning, which proves that

FIGURE 5
AFM patterns of the surface morphologies of (A) sol–gel film on the optics surface; (B) MNOFs with the sol–gel film.

FIGURE 6
Experimental results of MNOFs and MNOFs with sol–gel film
sensing units.
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FIGURE 7
Evolution of the additional loss of the sensing units during the process of contaminant sensing; (A) all process of contaminant sensing; (B) step 2: the
initial stage of adsorption; (C) step 3: the second stage of adsorption; (D) step 4: the sensing unit dipped into the alcohol solution.

FIGURE 8
Sensing results at different concentrations of contaminants; (A) the concentration less than 7.5%; (B) the concentration more than 7.5%.
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the microstructure film has good reusability. However, after 20 times
of cleaning, the additional losses increase sharply, and the
microstructure film is seriously damaged [23].

4.4 Physical sensing mechanism

The sensing unit with a diameter of 1.5 μm and a waist length of
10 mm is placed into airborne contaminants of different concentrations.
The evolution of additional loss is monitored in situ, and the relationship
between the change of additional loss and the concentration of organic
contaminants is discussed, as shown in Figure 8. At the same time, the
whole sensing process is divided into two stages according to the growth
rate.When the sensing unit is immersed in 2.4% airborne contaminants,
the additional loss is 0.0003 dB. The additional loss shows an exponential
growth trend with increased organic contaminant concentration, and
the fitting function is y = 0.001*exp (x/0.03)-0.0022. When the
concentration of contaminants exceeds 7.5%, the relationship
between the additional loss and the concentration of contaminants
shows a faster exponential growth trend. Its growth trend is slightly
different from that of low concentration.

Based on verification and analysis of the results, the additional
loss increases exponentially with the concentration of airborne
contaminants at a low concentration, and the detecting limit is
about 10 ppm. However, the additional loss has a fast exponential
relationship with the concentration of airborne contaminants at
high concentrations, and the detecting limit is about 70 ppm.

The adsorption of themicrostructure film on theMNOF surface is
dominated by single-molecule adsorption at a concentration of less
than 7.5% [33]. The additional loss is approximately low exponential
with the concentration of contaminants. Thus, the concentration of
contaminants can be deduced by the change of the additional loss
monitored. The adsorption of the microstructure film on the surface
of MNOFs is dominated by multi-molecular adsorption at a
concentration of more than 7.5% [34]. Because of the difference in
the adsorption mechanism in the microstructure film on the MNOF
surface at the lower (<7.5%) and the higher (>7.5%) concentration of
contaminants, the additional loss caused by the unit refractive index

change is nonlinear according to the calculation results in Figure 2.
Thus, the detection limit is about 10 ppm at a concentration of less
than 7.5% and about 70 ppm at a concentration of more than 7.5%.
Figure 9 illustrates the relationship between airborne organic
concentration, refractive index, and transmittance of large-aperture
optical components. The refractive index of the chemical film on the
surface of the optical component directly affects the transmittance,
and there is a linear relationship between the refractive index and the
transmittance [28]. The concentration of airborne organic
contamination affects the refractive index of the MNOFs’ surface
sol–gel film. The thickness and microstructure of the MNOFs’ surface
sol–gel film and the sol–gel film on the surface of the optical
components are the same. Thus, the evolution of optical
component transmittance can be reflected by the MNOFs through
the change of the refractive index, manifested as the loss increase.
However, MNOFs have an ultra-small sensitive area compared to
other sensors (such as QCM) and is suitable for measuring spatially
uniformly distributed organic contaminants. In another case, it can be
solved by increasing the number of MNOFs. Due to their ultra-thin
diameter, MNOFs are susceptible to external environmental factors
(e.g., strong air flow and vibration) during preparation, packaging,
and sensing processes. However, MNOF sensors can also be extended
to monitor organic contaminants in laser faculties due to the high-
quality environment.

5 Conclusion

Based on the fabrication of MNOF sensors, 70-nm sol–gel films
were prepared on the surface of MNOFs by the dip-coating process
to enhance the sensitivity of the sensing units. The change of
additional loss caused by contaminants adhered to the sol–gel
film on the surface of MNOFs was analyzed by the FDTD
method. The results illustrated that the evanescent field of the
sensing units changed when airborne organic contaminants were
adsorbed on the surface of MNOFs. In the experiments, the MNOFs
with 1.5 μm diameter were selected, and the experimental setup was
established to measure the concentration of airborne organic
contaminants. The experimental results revealed that the
sensitivity of the sensing units increased by 14 times by
fabricating the microstructure film on the surface of MNOFs.
The adsorption of the sol–gel film on the surface of MNOFs was
dominated by single-molecule adsorption at a concentration of less
than 7.5%. The additional loss shows exponential growth trend with
the increasing concentration of contaminants. The relationship
between the additional loss and the concentration of organic
contaminants can be obtained by the modification function. The
experimental results agree with the theoretical calculation. The
contaminant sensors can be considered for monitoring the
concentration of airborne contaminants and the transmittance of
large-aperture optics with sol–gel in high-power laser faculties.
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FIGURE 9
Response of the refractive index and the transmittance under
different concentrations.
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