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Single-photon emission computed tomography (SPECT) is a widely used diagnostic
tool, but radioactive radiation during imaging poses potential health risks to subjects.
Accurate low-dose single-photon emission computed tomography reconstruction is
crucial in clinical applications of single-photon emission computed tomography.
However, it remains a challenging problem due to the high noise and low spatial
resolution of the low-dose reconstructed single-photon emission computed
tomography images. The aim of the study is to develop a deep learning based
framework for high quality low-dose single-photon emission computed tomography
reconstruction. In the proposed framework, the conditional generative adversarial
network (CGAN) was used as backbone structure and a Residual Attention CSwin
Transformer (RACT) block was introduced as the basic building block for the
generator of conditional generative adversarial network. The proposed residual
attention CSwin transformer block has a dual-branch structure, which integrates
the local modeling capability of CNN and the global dependencymodeling capability
of Transformer to improve the quality of single-photon emission computed
tomography reconstructed images. More importantly, a novel loss term based on
the geometric tight framelet (GTF) was designed to better suppress noise for the
single-photon emission computed tomography reconstructed image while
preserving the details of image to the greatest extent. Monte Carlo simulation
software SIMIND was used to produce low-dose single-photon emission
computed tomography images dataset to evaluate the performance of the
proposed method. The simulation results showed that the proposed method can
reduce more noise and preserve more details of various situations compared to
several recentmethods. To further validate theperformanceof the proposedmethod,
we also verified the generalization ability of the proposed method, which is more
adaptable to different noise level scenarios than other methods. Our results indicated
that the proposed framework has the potential to reduce the tracer dose required for
single-photon emission computed tomography imaging without compromising the
quality of the reconstructed images.
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1 Introduction

Single-photon emission computed tomography (SPECT) is a
non-invasive projection-based imaging modality using gamma rays.
It has been widely used in clinical practice and research. However,
gamma ray from SPECT radiotracers poses a certain degree of threat
to human health and significantly increases the risk of cancer in
subjects later in life [1]. Therefore, the well-known ALARA (As Low
As Reasonably Achievable) principle is recommended in clinical
practice to minimize radiation exposure [2].

In the clinical practice of SPECT, decreasing the activity of the
administered radiotracer is a simple and cost-effective approach to
reduce the radiation dose. However, lower radioactive doses
inevitably lead to projection data with lower photon count rates.
Using conventional image reconstruction methods to reconstruct
projection data with low photon count rates usually yields images
with high Poisson noise, severe artifacts, and low spatial resolution,
which might compromise the diagnostic accuracy [3]. Therefore, it
is an important and promising research topic in SPECT
reconstruction to reduce radiation exposure while maintaining
high image quality.

To improve the quality of reconstructed images at low doses,
previous works can be mainly classified into two categories:
handcrafted and data-driven methods. The commonly-used
handcrafted methods consist of analytic reconstruction methods
[4, 5] and model-based iterative reconstruction (MBIR) methods
[6–14]. In particular, the MBIR methods tend to improve the quality
of reconstructed images by constructing a high-fidelity forward
model that contains the detailed physical acquisition process and
the mathematical formulation of measurement statistics. Therefore,
this category of methods has a solid mathematical foundation and
theoretical support. However, MBIR methods are computationally
intensive due to the huge number of operations required in the
forward- and backward-projection steps for each iteration.
Moreover, the empirically determined model parameters usually
have low generalizability to projection data at various noise levels.
These deficiencies limit their clinical application.

In recent years, with the development of deep learning
techniques in medical imaging, many data-driven based models
have been proposed to reconstruct images with convolution neural
networks (CNN) [15]. In contrast to MBIR, data-driven deep
learning methods can automatically learn discriminative features
directly from the training data without relying on hand-crafted
feature engineering. In the past few years, various deep learning-
based low-dose reconstruction methods have been proposed, which
can be roughly classified into three categories.

In the first category, end-to-end reconstruction methods take
projection data or k-space data as input and directly produce high-
quality reconstructed images. Among them, the deep learning
methods based on algorithm unrolling are one of the most
widely investigated approaches [16–18]. To be specific, each step
in the iterative reconstruction algorithm can be unrolled into one
layer/block of the network and concatenated to form a deep neural
network. These approaches combine deep networks with traditional
iterative algorithms and provide a way to design novel deep neural
network architectures. However, it usually makes the neural
networks overly complicated, which leads to high computational
costs. An alternative line of research for this category is to directly

learn the mapping from raw projection data to reconstructed images
using a neural network [19–23]. These approaches have great
potential but are limited by their critical dependency on massive
data and expensive computational costs.

The second category is the method of pre-processing sinograms
with deep neural networks [24–30]. Specifically, these methods
mainly consist of two steps. The first step uses a neural network
to reduce noise on the sinogram domain, and the second step
reconstructs the image from the high-quality sinogram using
conventional algorithms such as iterative reconstruction. These
methods restrict the denoising problem to the sinogram domain,
but they often suffer the loss of partial original information while
denoising.

The third category is post-processing methods that use the
reconstructed image under low doses as the input of a neural
network to restore high quality image. An advantage of these
methods is that they do not require access to proprietary data
from the scanning device, such as sinogram data. These methods
are more convenient to combine with current imaging systems, and
therefore more research works exist. For instance, [31] proposed the
RED-CNN model, which combined the encoder-decoder structure
with the residual mechanism, to improve the quality of low-dose
computed tomography (LDCT) images. Similarly, [32] proposed
DD-Net by combining the advantages of DenseNet and
deconvolution, which showed great potential for sparse-view CT
image reconstruction. In addition, [33] proposed a PET image
denoising method that combines residual mechanism and U-Net
[34], which effectively improves the accuracy of treatment validation
and shortens the PET measurement time. On the other hand, the
method based on generative adversarial networks (GAN) [35] has
been proposed to improve the quality of the reconstructed image.
For example, [36] presented a novel CT image denoising technique
based on the GAN with Wasserstein distance and perceptual
similarity. [37] proposed a technique for generating synthetic
digital mammography (SDM) using a deep convolutional neural
network with gradient guided cGANs, which aims to reduce the
radiation dose for breast cancer screening. [38] proposed a 3D
attention least-square (LS) GAN to generate high-quality PET
images. These methods achieved encouraging image
reconstruction performance. The advancements in deep network
architectures and algorithms have contributed to the success of the
aforementioned methods. The decisive factor behind it is mainly
attributed to the image-specific inductive bias of CNNs in dealing
with scale invariance and modeling local visual structures. These
intrinsic properties improve the effectiveness of CNN-based models.
However, since CNNs are limited by fixed receptive fields, their
ability to model global contextual information or long-range spatial
dependencies has been impaired [39].

Transformer [40] gradually emerging as the solution to the
global contextual information impairment problem in recent years
due to its excellent remote dependency modeling capability. As a
novel attention-driven building block, the transformer was initially
designed for sequence modeling and machine translation tasks. [41]
proposed the Vision Transformer Model (ViT) to demonstrate that
transformers are also appropriate for computer vision tasks and
achieve superior performance. Subsequently, Shifted Window
(Swin) Transformer [42] and Cross-Shaped Window (CSwin)
Transformer [43] were proposed, which limit the self-attention
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computation to non-overlapping local windows to reduce the
computational cost.

In medical image tasks, the global context modeling capability of
the transformer can facilitate accurate encoding for the organs
spread over a large receptive field. To this end, [44] proposed
TransUNet, which combines the advantages of transformer and
U-Net, as a solid alternative to medical image segmentation. Later,
TransMed was proposed by [45] for multi-modal medical image
classification by combining the merits of transformer and CNN. For
the low-dose reconstruction task, there has been some work based
on transformer architecture. For instance, [46] proposed TransCT,
which applied the transformer for LDCT image enhancement with
high and low frequency decomposition. In the other study, [47]
proposed the Eformer, which combines a transformer architecture
with residual learning for CT image denoising. Furthermore, [48]
proposed a convolution-free T2T vision transformer-based
Encoder-decoder Dilation Network (TED-Net) for low-dose CT
denoising. We note that most current transformer-based work in
medical imaging uses hybrid architecture of transformer and CNN.
While pure Transformer is excellent at long-range dependencies
modeling, it exhibits limitations in capturing fine-grained details
due to the lack of inductive bias inherent in modeling local visual
features.

The hybrid architecture of transformer and CNN approaches
can combine the complementary strengths of transformers and
CNNs to facilitate more accurate image generation. In this study,
we proposed a deep learning framework combining the conditional
generative adversarial network (CGAN) and CSwin transformer for
high quality low-dose SPECT reconstruction. A novel loss term
based on the geometric tight framelet (GTF) was designed for this
framework to better suppress noise for the reconstructed image
while preserving the important details of image to the greatest
extent. The main contributions of this paper are listed as follows.

(1) We proposed a Residual Attention CSwin Transformer (RACT)
block to serve as the basic building block for the generator of
CGAN network. In particular, the proposed RACT block has a
dual-branch structure, which applies residual convolution block
and CSwin Transformer block to capture the local feature and
the long-range dependencies to improve the quality of SPECT
reconstructed images. It is worth mentioning that, in contrast to
previous research work [44, 46, 49], the proposed RACT block
can be regarded as a plug-and-play building block that can be
readily inserted into various backbone networks.

(2) We proposed a novel loss term based on a geometric tight
framelet, namely, GTF loss. The GTF loss constrains the output
of generator by minimizing the high-order and multi-
orientational feature differences between the low-dose SPECT
reconstructed image and the corresponding normal-dose
reconstructed image. With the effect of GTF loss, the
generated reconstruction is able to preserve image details
while the noise is suppressed.

The remainder of this paper is organized as follows. In Section 2,
we describe in detail the SPECT reconstruction framework including
the design of the proposed RACT block and GTF loss. In Section 3,
we present training details and evaluation results, along with the
ablation studies to demonstrate the effectiveness of the proposed

RACT block and GTF loss. Furthermore, we investigate the
robustness and convergence speed of proposed reconstruction
framework. Finally, Section 4 and Section 5 conclude this paper
with discussions and a brief summary.

2 Materials and methods

The proposed SPECT reconstruction framework consists of two
stages, as the flowchart illustrated in Figure 1A. In stage one, we
reconstruct the low-dose SPECT sinogram by the preconditioned
alternating projection algorithms (PAPA) [50], obtaining the initial
reconstructed image and restricting the image reconstruction
problem to the image domain. The PAPA algorithm can
preliminarily suppress the sinogram’s noise during the SPECT
reconstruction to improve the quality of initial reconstructed
image, which contributes to reducing the difficulty of post-
processing. In addition, the PAPA algorithm has the advantage
of lower computational effort than other traditional iterative
algorithms.

In this study, we focus on post-processing stage two. In this
stage, we design a deep learning based on CGAN model to improve
the quality of the low-dose SPECT reconstructed image by learning
the mapping between the low-dose and normal-dose reconstructed
image, as shown in Figure 1B. In particular, the proposed RACT
block and GTF loss served as the building block and loss function of
the CGAN model’s generator. The details of the proposed
reconstruction framework are described in the next section.

2.1 Adversarial training

In this study, the proposed model is based on the CGAN
architecture to improve the quality of low-dose reconstructed
images. The proposed model consists of an U-Net with proposed
RACT block as generator to generate candidate reconstructed
images and a PatchGAN [51] classifier as the discriminator to
evaluate the authenticity of the generated images.

The training procedure of the proposed model is illustrated in
Figure 1B. To be specific, given a low-dose reconstructed image x, a
generated image G(x) is obtained by putting x through the generator
G. Next, x and G(x) are concatenated and sent to the discriminatorD
in order to learn the characteristics of generated reconstructed image.
Meanwhile, the normal-dose reconstructed image y and the image x
are concatenated and sent into the discriminator D to learn the
characteristics of normal-dose reconstructed image. In this
procedure, the prior information in image x serves as conditional
information to indirectly compel the generator to produce an image that
is consistent with the prior information. As training continues, the
performances of the generator and discriminator networks have been
improved until equilibrium is reached. Finally, the trained generator
learned the mapping from the low-dose reconstructed image to the
normal-dose image, which can be used to generate high-quality
reconstructed images alone.

2.1.1 Generator
In this study, the generator network of CGAN follows the U-Net

[34] architecture, as shown in Figure 2A. In the encoder path, we
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replaced the convolution block in the original U-Net with the
proposed RACT block in order to enhance the modeling
capability of the encoder for long- and short-range dependencies,
which facilitated high-quality SPECT image generation. Moreover,
in order to mitigate the loss of spatial feature information due to the
downsampling of the original U-Net, we employed the mixed-
pooling [52] operation instead of the maximum pooling.

The decoder path subsequently restores the spatial resolution of
the feature maps output by the encoder path. To compensate for the
lack of spatial information in the decoding operation, we retained
the skip connections of the original U-Net. The feature maps in the
encoder path were directly copied to the corresponding layer in the

decoder path. The decoder path in the original U-Net consists of a
series of stacked convolution blocks. We consider that the
convolution block of original U-Net might not be adequate for
fusing high-level semantic information with low-level spatial feature
information. To this end, we continued using RACT blocks instead
of the convolution blocks in the decoder path. It improves the
performance of feature fusion and extraction, which ultimately
facilitates more accurate SPECT reconstructed image generation.
Finally, the feature maps from the previous layer were added to the
generated feature maps by residual and upsampling operations to
improve the stability of the training and speed up the network
convergence.

FIGURE 1
Schematic diagram of the SPECT reconstruction framework. (A) The flowchart of SPECT reconstruction framework. (B) The architecture of the
proposed CGAN-based network.
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2.1.2 Discriminator
We adopt the PatchGAN [51] classifier as the discriminator of the

proposed model since the PatchGAN can achieve comparable
performance to full-image discriminative networks while containing
fewer parameters. As depicted in Figure 2B, the adopted PatchGAN in
this study consists of five convolution layers. The convolution layer with
the stride of 2 is utilized to downsample the featuremaps. Except for the
first and last convolution layers, the other convolution layers are
followed by a batch normalization layer and a LeakyReLU layer.

In our numerical simulations, the generated or normal-dose
reconstructed image was respectively concatenated with the
corresponding low-dose reconstructed image along the channel
dimension and served as the input of PatchGAN. The output of

PatchGAN is a probability matrix of size 12 × 12. Each value in the
probability matrix represents the discriminative result for the
corresponding patches in the input images. Finally, the global
classification decision for the entire input image is obtained by
averaging over all patches.

2.2 RACT block

To improve the quality of low dose SPECT reconstructed images,
we design a residual attention CSwin Transformer (RACT) block that is
able to better capture the local feature and the long-range dependencies
simultaneously. As seen in Figure 3A, the RACT block consists of two

FIGURE 2
The architecture of the proposed (A) generator and (B) discriminator networks.
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1 × 1 convolution layers, split and concatenation operations, and two
parallel feature extraction branches (i.e., global and local branches). The
local branch consists of two stacked Residual Convolution (RConv)
blocks and a Convolutional Block AttentionModule (CBAM) [53]. The
global branch consists of CSwin Transformer (CSwinT) block [43]. To
be specific, suppose an arbitrary input feature maps F, it first passes
through a 1 × 1 convolution layer that changes the number of channels
to enhance the representation ability. Afterward, it is evenly divided into

two groups of feature maps along the channel dimension, the first half
denoted as F1 and the second half denoted as F2, respectively. The first
two processes can be described as follow:

F[ 1, F2] � Split Conv1 × 1 F( )( ). (1)
After that, F1 and F2 are fed into two feature extraction

branches, respectively. For the local branch, F1 is passed through
two RConv blocks in sequence for feature extraction. Following the

FIGURE 3
(A) The overall architecture of the proposed RACT block, which has a structure of dual branches to extract global and local features in parallel. (B)
The architecture of RConv block. (C) The architecture of CBAM.
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residual operation, a CBAM block is applied for feature refinement.
The local branch process can be described as follow:

F1
′ � CBAM RConv2 RConv1 F1( )( ) + F1( ). (2)

On the other hand, F2 passes through the global branch to
model long-range dependencies. The global branch can be described
as follow:

F2
′ � CSwinT F2( ). (3)

Finally, the feature maps F1
′ and F2

′ from two branches are
concatenated along the channel dimension, followed by a 1 ×
1 convolution layer to fuse them. In this way, the concatenation
operation stacks two feature maps into a double-sized feature map,
and is abbreviated as Concat in Eq. 4. The final output of the RACT
block is given by:

Output � Conv1 × 1 Concat F1
′, F2

′( )( ). (4)

2.2.1 Local feature extraction branch
The local feature extraction branch consists of two residual

convolution blocks with the same structure, a residual operation,
and a CBAM [53] module. The residual convolution blocks were
used for feature extraction of the low-dose reconstructed images.
However, as a functional imaging modality, SPECT suffers from
the inherent problems of low resolution and sensitivity to noise.
The utilization of residual convolution blocks in local branches
alone might still not be achieved to extract critical feature
information from a large amount of noisy data. Inspired by
the attention mechanism, we attempted to mitigate this
problem by introducing the attention module by emphasizing
important feature information and suppressing irrelevant
information. In this study, we choose a lightweight CBAM
module and insert it into the end of the local branch to
improve the local feature extraction capability with negligible
computational overheads.

The design of residual structure can deepen the network while
simplifying the training difficulty of the network. As depicted in
Figure 3B, the residual convolution block in this study is
composed of the batch normalization layer, the activation
layer, and the convolution layer. In addition, the order of
different layers in the residual block leads to different results,
whereas the pre-activated arrangement enables the inputs to the
weight layers to constantly be normalized, thereby allowing the
residual blocks to achieve optimal performance [54]. Therefore,
we followed the pre-activation method to obtain better results
than the original residual blocks.

The CBAM consists of a sequentially combined channel and
spatial attention modules, as depicted in Figure 3C. In order to
compute channel attention, the spatial dimension of each feature
map is first compressed by the average-pooling and max-pooling
operations. The results are delivered to a multi-layer perceptron
(MLP) in order to model the correlation between channels and
obtain the channel attention maps. After element-wise addition for
two groups of channel attention maps, a sigmoid operation is
performed to produce the final channel attention map. The input
feature map is multiplied channel-by-channel with the computed
channel attention map to implement recalibration in the channel

dimension. In a similar fashion, the spatial attention module uses
global average-pooling and global max-pooling operations to
aggregate the channel information of feature maps and obtain
two spatial feature maps. After the spatial feature maps have
been fused using the convolution layer, an activation function
(sigmoid) operation is performed to obtain the spatial attention
map. In the final step, the per channel component of the input
feature map is multiplied by the spatial attention map via element-
wise multiplication to obtain a spatially recalibrated feature
map. The CBAM block refines the input features in both channel
and spatial dimensions, emphasizing critical features while
suppressing unnecessary ones, enabling the network to restore
more precise SPECT image details.

2.2.2 Global feature extraction branch
In the global branch, we employed the CSwin Transformer block

[43] to extract global contextual information. The CSwin
Transformer can be used to capture potential long-range
dependencies in feature maps for enhancing the quality of low-
dose SPECT reconstruction while achieving a trade-off between
computational loads and modeling capability. As shown in
Figure 4A, the CSwin Transformer block consists of layer
normalization (LN), multi-layer perceptron (MLP), skip
connection operations, and cross-shaped window self-attention
(CSWA). The LN normalizes the features to accelerate model
convergence and stabilize the training procedure. The MLP is
composed of two neural layers with non-linearity Gaussian Error
Linear Units (GELU) [55] to record the learned relation coefficient.
In addition, the CSWA is utilized to compute the attention
relationships between pixels.

It is well known that the full-attention mechanism of the
original vision transformer [41] has powerful long-distance pixel
modeling capability, but it incurs a high computational cost.
Figure 4B depicts a specific instance of full-attention mechanism.
To obtain the contextual relationship of the red pixel in
Figure 4B, the full-attention mechanism must calculate its
attention relationship with the pixels of the whole image,
hence the computational complexity is square related to the
size of the feature map [42].

To solve the problem of high computational complexity, CSWA
splits a cross area of the feature map into two strip-shaped areas in
the horizontal and vertical directions and limits the calculation of
self-attention to these horizontal or vertical strip areas, as shown in
Figure 4C. To be specific, according to the multi-head attention
mechanism [40], a given feature map X ∈ R(H×W)×C will be first
linearly projected to K heads. In the design of CSWA, the K heads
were divided equally into two groups (each containing K/2 heads)
along channel dimension, and they were partitioned into non-
overlapping horizontal or vertical stripes of equal stripe width
sw. One group performs self-attention within horizontal stripes
areas, while the other group performs self-attention within vertical
stripes areas. Finally, the results of these two groups are
concatenated back together to generate cross-shaped attention
features. This process can be expressed as follows:

headk � H−Attentionk X( ) k � 1, . . . , K/2
V−Attentionk X( ) k � K/2 + 1, . . . , K

{
CSwin − Attention X( ) � Concat head1, . . . , headK( ).

(5)
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Here, H − Attention(·) and V − Attention(·) represent the
window self-attention calculation along the horizontal and
vertical directions for a given feature map X, respectively. The
strip width SW was set to 8 in this study to balance model
learning ability and computational cost.

2.3 Loss function

The loss function of our proposed model consists of two parts:
adversarial loss and GTF loss. In particular, the adversarial loss
forces the generator network to produce images closer to the training
data distribution. The GTF loss facilitates the generated images to
preserve more high frequency details while the noise is suppressed.
We employ a simple additive form for the joint loss function, which
is described as follows:

Ltotal � argmin
G

max
D

Ladv G, D( ) + λ · LGTF G( ), (6)

where Ladv(G,D) and LGTF(G) represent the adversarial loss and
the GTF loss, respectively. Notation λ is the hyper-parameter term,
which is used to control the balance between adversarial loss and
GTF loss. In our numerical simulation, the best performance was
achieved when the value of λ was set to 100.

2.3.1 Adversarial loss
In image-to-image translation tasks, the objective of the

adversarial loss is to force the generator network to learn a
mapping between images in the source domain and those in the
target domain. In this study, we employed cross-entropy as the
adversarial loss function. It can be described as follows:

Ladv G, D( ) � Ex,y logD x, y( )[ ] + Ex log 1 −D x,G x( )( )( )[ ]. (7)
Here, x and y denote the low-dose and the normal-dose

reconstructed image, respectively. The symbols G(·) and D(·)
denote the generator and discriminator networks, respectively. In the
adversarial training process, the generator converts the image x toG(x)
and attempts to make it as similar to the corresponding image y as
possible. Meanwhile, the discriminator as a binary classifier aims to
distinguish the real image y and the generated image G(x). The
adversarial loss term penalizes the discriminator when the
determination is incorrect and penalizes the generator when the
determination is correct. Therefore, the generator strives to improve
its generated images by minimizing the classification accuracy of the
discriminator, while the discriminator strives to maximize its
classification accuracy. In the training process, the generator and
discriminator networks compete and facilitate corresponding
improvements in the other until the equilibrium is reached.

FIGURE 4
(A) The architecture of CSwin transformer block. (B) Full attention. (C) Cross-shaped window self-attention with SW representing the width of strip.
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2.3.2 GTF loss
The edges and boundaries are the important high frequency

features of SPECT images, which play a vital role in
distinguishing anatomical structures. [56] applied the
geometric tight framelet (GTF) system [57] as an effective
noise suppression regularizer to SPECT image denoising task
and showed that the GTF system could well preserve the edges
and boundaries of SPECT images. The GTF system has
significant advantages in detecting multi- orientational and
high-order variations of the images and thus can be used to
extract the edges and boundaries of SPECT images. Inspired by
the above works, we developed a loss function (the GTF loss) that
imposes similarity constraints on the edges and boundaries
features between generated and normal dose reconstructed
images while noise suppression. The GTF loss can be
described as follows:

LGTF G( ) � 1
n
∑n
i�1

GTF G xi( )( ) − GTF yi( )∣∣∣∣|1���� , (8)

where xi, yi ∈ RN×N represent the i-th input low-dose SPECT
reconstructed slice and the i-th input normal-dose reconstructed
slice in the training set, respectively. The notations GTF(·)
represents the GTF transform operator and G(·) represents the
generator network. n is the batch size. ‖ · ||1 represents the L1-norm
regularization, which is used to ensure the data sparsity in the
transform domain.

In this study, we utilized the GTF loss to measure the multi-
orientational and high-order differences between the generated and
normal dose reconstructed images in a high-level feature space
instead of the pixel space for better feature comparison. The
details of the GTF system are provided as follows.

The GTF transform Ψ that we constructed is a matrix with
18 row blocks Ψj, j � 0, 1, . . . , 17, as described in Eq. 9.

Ψ ≔ Ψt
0Ψt

1/Ψt
17[ ]t. (9)

The matrices Ψk are represented in terms of the matrices
Wi ∈ RN×N for i � 0, 1, 2 (Wi has the same dimension as the
reconstructed SPECT slice)
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Then, we define Wi,j: � Wi ⊗ Wj with i, j � 0, 1, 2, where ⊗
denotes the Kronecker product. We note the Wi,j{ }2
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3 Performance evaluation and results

3.1 Datasets

The simulation data in this study were obtained by the SIMIND
Monte Carlo simulation program [58], which is well established for
SPECT with low-energy photons. It simulates a SIEMENS E.CAM
gamma camera with a low energy high resolution (LEHR) collimated
beam collimator based on a Monte Carlo simulation method.

To generate the dataset for this study, we simulated three digital
phantoms using SIMIND, including an anatomical whole-body model
from XCAT [59] library (WB), an anatomical head and torso model for
ECT bone imaging (ECT), and a digital geometric phantom (geometric).
The ECT andWB phantoms consist mainly of bones, and the geometric
phantom consists of activity gradients and uniform cylinders. Figure 5
shows projection data for three phantoms at two specific view angles.

For each phantom, we simulated the normal dose projection data
with 1.61 × 109 photon histories in each projection view. The total
number of detected photon counts in the projection data of ECT, WB,
and geometric phantoms is 1.3 × 108, 4.3 × 107, and 2.1 × 107,
respectively. The detector orbit was set to be circular and covers 360°,
with a radius of rotation of 15 cm. The simulation used 120 projection
views from a 128-dimensional detector array with 2.2-mm detector
elements to generate parallel-collimated SPECT projection data. In
addition, we applied an 18% main energy window centered at
141 keV. The gamma photons that fall within this energy window
were regarded as primary or first-order scattered photons.

Low dose projection data for each phantom used in this study
contained two levels, which were simulated with 1/50 and 1/100
photon number histories of the normal dose, respectively. We
reconstructed a total of 1,294 valid images from the projection
data of all the three phantoms using the PAPA algorithm. The
reconstructed images were partitioned into the training set and the
testing set with a ratio of 4:1. Indeed, the training set consists of
1,035 reconstructed images, while the testing set consists of
259 reconstructed images. To enlarge the training set and avoid
overfitting, three data augmentation methods were utilized,
including horizontal flip, vertical flip, and rotation (45 degrees).
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For a fair comparison, we applied a 5-fold cross-validation scheme
for all the competing learning-based methods. It is noticed that any
pair of neighboring slices exhibit obvious disparity. Based on this
observation, we found that the above training and testing sets exhibit
different data distributions, which makes the training process
reasonable.

Furthermore, to investigate the robustness of the proposed
reconstruction framework, we simulated the viscera of the heart,
kidney, liver, and small bowel in ECT phantom under different noise
levels using SIMIND. The projection data were simulated using the
aforementioned SIMIND configuration, and the total number of
detected photon counts in the normal dose projection data is
1.5 × 108. The low dose projection data employed photon
number histories with 1/500, 1/50, 1/25, 1/10, and 1/5 of the
normal dose. We designated 243 low-dose reconstructed images
with 1/500 photon number history of the normal dose for testing
and the remaining 972 reconstructed images were used for training.
This dataset was referred to as ECT-viscera for distinction. Similarly,
the data augmentation strategy mentioned above was adopted to
enlarge the training set.

3.2 Implementation details

3.2.1 Training parameters
In this study, the weights of all deep learning-based models were

optimized using the Adam algorithm [60]. For the proposed model,
the momentum parameters of Adam were set to β1 � 0.5 and
β2 � 0.999. The learning rate of the discriminator was set to
4 × 10−3, while the learning rate of the generator was set to
4 × 10−5, following two time-scale update rules (TTUR) [61] to
improve training stability and facilitate the model convergence. We
applied a learning rate decay strategy, where the learning rate

linearly decayed from its initial value to 0 after half of the
training epochs. This strategy avoids excessive oscillation during
training and facilitates the convergence of the objective function to
the saddle point. The total number of training epochs was 1500, and
the mini-batch size was 16. During training, we followed the typical
approach for GAN training, where the generator and discriminator
were optimized alternately. The proposed model was implemented
using the PyTorch library and computationally accelerated using an
NVIDIA 3090 TI GPU. The training time was nearly 7.5 hours.

3.2.2 Baseline methods
We compared the proposed method to the other four

reconstruction methods, including TV-PAPA, RED-CNN, U-Net,
CGAN and SPECTnet. All methods were well-tuned to achieve the
best performance and they are described in detail as follows.

(1) TV-PAPA is a traditional iterative reconstruction method with
TV regularization [50]. In this study, TV-PAPA achieved the
best noise suppression performance for ECT,WB and geometric
phantom when the TV regularization term was set to 1.2,
0.2 and 0.15, respectively. The number of iterations of TV-
PAPA was set to 100 in order to balance performance and
computation.

(2) The RED-CNN is a method based on the residual encoder-decoder
structure proposed by [31]. and applied for low-dose CT denoising.
We consider that the SPECT reconstructed images have a lower
resolution compared to CT, and the original RED-CNN model
might not be adequate for the SPECT image denoising task.
Therefore, we modified the original RED-CNN model to
enhance its denoising capability. These modifications mainly
include increasing the codec depth from 11 to 22 layers and
increasing the number of channels in each convolution and
deconvolution layer from 96 to 128.

FIGURE 5
The projection data at coronal (left panel) and sagittal (right panel) view angles of (A) ECT, (B) WB, and (C) geometric phantoms, respectively.

Frontiers in Physics frontiersin.org10

Liang et al. 10.3389/fphy.2023.1162456

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1162456


(3) The U-Net was implemented with reference to the article [34].
Compared to the original U-Net, we employed two
convolutional layers with batch normalization and rectified
linear unit activation function as the basic building block of
the U-Net model to improve the performance of network. In
addition, all convolutional layers have padding operations that
equalize the size of the feature maps on the encoder and decoder
of the corresponding layers, which facilitates feature fusion
more than the original U-Net. The U-Net was trained with
Adam optimizer and L1 loss function.

(4) The implementation of CGAN refers to the work of Isola et al.
[51], and its generator adopts the same structure and parameters
as U-Net and uses PatchGAN as the discriminator.

(5) The implementation of SPECTnet is based on the work of [23].
The SPECTnet is an end-to-end SPECT reconstruction method
that utilizes a two-step network training strategy.

3.3 Evaluation metrics

To evaluate the global reconstruction performance of the
reconstructed images, three global image quality metrics were
employed, including peak signal to noise ratio (PSNR), structural
similarity index measure (SSIM), root mean square error (RMSE). In
addition, two local image quality metrics were used to assess the
quality of local recovery of the reconstructed images, including
coefficient of variation (CV) and mean lesion contrast (MLC).
These performance evaluation metrics are described in detail as
follows.

In this study, reconstructed images of ECT and WB phantoms
were used for the evaluation of global image quality. For the local
image quality evaluation, the geometric phantom was used because
it has a good geometric structure and can be conveniently used for
evaluating the local image quality metrics.

3.3.1 Global image quality metrics
PSNR is a traditional image quality metric for evaluating image

restoration, and its formula is shown in Eq. 10. The reconstructed
image has higher quality if higher PSNR values are obtained.

PSNR ≔ 20 · log10

MAX Xg( )
‖ Xr −Xg ‖2

⎛⎝ ⎞⎠, (10)

where Xr and Xg represent the reconstructed image and ground-
truth, respectively.MAX(Xg) is the maximum pixel intensity of the
ground-truth.

SSIM is an index that evaluates the similarity of two images
based on brightness, contrast, and structure. It can be formulated as
Eq. 11. As a similarity measure, a higher value of SSIM means a
better match of structural information.

SSIM ≔
2μrμg + C1( ) 2σrg + C2( )

μ2r + μ2g + C1( ) σ2r + σ2g + C2( ), (11)

where μr and μg denotes pixel sample mean of reconstructed image
and ground-truth, respectively. Notation σr and σg are the standard
deviation of all pixels in two windows, and their covariance is
denoted as σrg. C1 � (K1 × L)2 and C2 � (K2 × L)2 are two

coefficients to stabilize the division with a weak denominator. L
is the dynamic range of pixel values, typically set to 255. In addition,
the values ofK1 andK2 are small constants, which are set to 0.01 and
0.03, respectively.

As a global image metric, RMSE is used to measure the error
between images. It is defined as follows:

RMSE ≔

������������∑N
i�1 fi − gi( )2

N

√
, (12)

where fi and gi denotes the pixel intensity of generated image and
the ground-truth respectively, N is the number of all pixels in the
image.

3.3.2 Local image quality metrics
Coefficient of variation (CV) is used as a noise indicator,

reflecting the pixel-to-pixel variability in the image. It is defined
as follows:

CV ≔
σ

μ
, (13)

where σ and μ in Eq. 13 denote the standard deviation and mean of
ROI region for the reconstructed image, respectively.

Mean lesion contrast (MLC) is a local quality metric used to
evaluate the quality of contrast restoration in lesions. It is calculated
by means of the 2D ROI on the largest cross-section through the
center of the hot sphere. The background ROIs are maintained at the
same shape and size as the target. The MLC is then defined as:

Ca ≔< T − B| |> , (14)
where T in Eq. 14 is the mean radioactivity in the target ROI of
reconstructed image, B is the mean radioactivity over 5 surrounding
circular background ROIs for the same realization, notation < · >
represents the average of multiple independent sampling results.

3.4 Visual results

To visually evaluate the performance of the proposed method, a
representative chest slice from the ECT phantom was chosen. The
results with different methods are shown in Figures 6A–F and
Figures 7A–F. It can be observed that TV-PAPA roughly
restored the overall contour of the bone but lost many image
details. In contrast, the deep learning-based methods both
restored the overall structure of the image while recovering the
image details. As a reference, we present the PSNR (the first value in
the bracket) and SSIM (the second value in the bracket) metrics of
the slice obtained with different methods in the caption of Figure 6.

To further examine the performance of image detail
reconstruction with different methods, we chose two ROIs for
comparison. Comparing the results with different methods in
ROI I marked in Figure 6F, it can be observed that the proposed
method outperforms other methods in maintaining the bone
structure and restoring image contrast. The ROI II for different
methods is zoomed in and displayed in Figure 7. As indicated by
the red and blue arrows in Figure 7, the proposed method gave
more accurate image reconstruction results than the other
methods.
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To provide a more quantitative comparison, we draw the line
profile along the straight red line in Figure 6F. The comparison
results are shown in Figure 8. It was observed that the proposed
method has a smallest deviation from the normal-dose
reconstructed image than the other methods.

3.5 Quantitative results

3.5.1 Global metrics
Table 1 shows the global metrics quantitative results of different

methods on the 5-fold cross-validation in terms of means ± SDs
(average scores ± standard deviations). It can be seen that the

traditional iteration-based TV-PAPA performs worse than the deep
learning-based methods. The proposed method achieves the best
performance among competing methods and increases PSNR by
2.94 dB compared to CGAN. The evaluation results demonstrated
the proposed method achieves better reconstruction performance
compared to other methods in this study.

3.5.2 Local metrics
The average coefficient of variation (CV) was used to evaluate the

local image performance of the proposed method. As marked by the
yellow box in Figure 9, the ROIs with the same position and size were
chosen for calculating the average CV in the geometric phantom images
reconstructed with different methods. The results (mean ± SDs) are

FIGURE 6
The comparison of chest image in ECT phantom reconstructed by different methods: (A) TV-PAPA (24.2632,0.8310), (B) RED-CNN (31.5704,
0.9561), (C) U-Net (36.8849, 0.9826), (D) CGAN (37.7868, 0.9824), (E) Ours (40.9380, 0.9927), and (F) the normal-dose reconstructed image.

FIGURE 7
The zoomed-in images of ROI II in Figure 6: (A) TV-PAPA, (B) RED-CNN, (C) U-Net, (D) CGAN, (E) Ours, and (F) the normal-dose reconstructed
image.
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listed in Table 2 and indicated that the proposed method has better
noise suppression performance than competing methods.

In addition, we calculated themean lesion contrast (MLC), which is
obtained by calculating and averaging the given ROIs over different
reconstructed images. The MLC metric was used to evaluate the
contrast recovery quality at lesions in reconstructed images. In this
study, we selected four 2D ROIs on the thermosphere cross-section of
the geometric phantom, as highlighted in Figure 9 by the red circles.We

FIGURE 8
The line profiles indicated by the red line in Figure 6F for different methods: (A) RED-CNN, (B) U-Net, (C) CGAN, and (D) Ours.

TABLE 1 The global metrics quantitative results (mean ± std) of different
methods.

Method Evaluation metrics

PSNR SSIM RMSE

TV-PAPA 29.1996 ± 2.5919 0.9125 ± 0.0352 10.4150 ± 3.1253

RED-CNN 37.5136 ± 3.4859 0.9733 ± 0.0153 4.5377 ± 1.7249

SPECTnet 42.1567 ± 3.6007 0.9893 ± 0.0082 2.5906 ± 1.2170

U-Net 42.5387 ± 3.7279 0.9925 ± 0.0066 2.3905 ± 1.0965

CGAN 43.0136 ± 3.5791 0.9895 ± 0.0078 2.3193 ± 1.1535

Ours 46.0077 ± 4.3462 0.9946 ± 0.0080 1.8567 ± 1.3325

FIGURE 9
Schematic illustration of a reconstructed slice of the geometric
phantom under normal-dose acquisition. The yellow rectangular ROI
was used for CV calculation and the four red circular ROIs were used
for MLC calculation.
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plotted the MLC results of different deep-learning methods in
Figure 10 to evaluate their local restoration ability. It can be
observed that the proposed method provides the optimal mean
lesion contrast across the four ROIs compared to other methods.
The evaluation results imply that the proposed method can
effectively improve the lesion contrast in reconstructed images
compared to other methods in this study.

3.6 Noise suppression capacity of different
methods

In addition, a representative reconstructed image of the
geometric phantom was chosen to further evaluate the noise
suppression capacity of the different methods. The images
reconstructed with different methods are shown in the first
column of Figure 11. The surface and contour plots of the red
rectangle ROI are displayed in the second and third columns of
Figure 11, respectively. In general, the surface map is smoother and

the contour map has fewer closed loops, corresponding to less noise
and artifacts in the reconstructed image.

It can be observed that the surface plots of all the methods exhibit
approximately linear variation. In regions of high intensity, the result of
the RED-CNN exhibited a degree of oscillation, while the contour plots
display a degree of distortion. In contrast, the surfacemapwith U-Net is
smoother and slightly better than the one of RED-CNN. The surface
plot of the reconstructed image with CGAN has some degree of tiny
oscillations, but it has fewer closed loops in the contour plot than the
U-Net. The proposedmethod outperforms the others in the sense that it
can better preserve the linearly varying contours along the vertical
direction while avoiding closed contour lines that indicate local
oscillations. The evaluation results suggest that the proposed method
may have superior noise suppression capacity.

3.7 Robustness of proposed method

In our numerical simulations, the Poisson noise of the reconstructed
images in both the training and testing sets was maintained at an
equivalent level. However, different noise levels exist in clinical
applications of SPECT. A clinically meaningful SPECT reconstruction
method should have strong robustness to adapt to situations where the
actual data may have a higher noise level than the training data.
Therefore, we evaluated the robustness of the proposed method on
the ECT-viscera dataset. The three competing methods based on deep
learning were applied to the same dataset for comparison.

Two representative reconstructed images of the chest (the
first row) and abdomen (the second row) in the testing set were
chosen to visually compare the performance of different
methods, as shown in Figure 12. Comparing the first row in
Figure 12, it can be observed that the proposed method provides a

TABLE 2 The CV values (mean ± std) of different reconstruction methods.

Method CV

TV-PAPA 12.14% ± 1.63%

RED-CNN 5.91% ± 0.26%

U-Net 3.89% ± 0.20%

CGAN 3.82% ± 0.33%

SPECTnet 3.78% ± 0.67%

Ours 3.37% ± 0.10%

FIGURE 10
The MLC results of four circular ROIs for different methods. The x-axis represents the ROI number, and the y-axis represents the value of the MLC.
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clearer and more accurate structure of the heart wall, as pointed
out by the red arrows in zoomed box. Comparing the second row
in Figure 12, it can be observed that the proposed method better
maintains the cross-sectional shape of the kidney, as exhibited by
the green zoomed box.

We further used the PSNR, SSIM and RMSE to evaluate
different methods quantitatively. The results are reported in
Table 3. It can be observed that the proposed method achieved
the best performance. The evaluation showed that the proposed
method has better robustness than other methods.

3.8 Ablation study

3.8.1 Effectiveness of RACT block and GTF loss
In this section, we conducted an ablation study to investigate the

effectiveness of the proposed RACT block and GTF loss. For
comparison purposes, we applied CGAN as the baseline network.
To ensure the results are valid, we performed the 5-fold cross-
validation to evaluate the performance of each model.

The results (mean) are presented in the module ablation section
in Table 4, which indicates the proposed model obtains the best

FIGURE 11
The reconstructed images (the first column), the surface plots (the second column), and the contour plots (the third column) of the red rectangular
ROI for different methods: (A) RED-CNN, (B) U-Net, (C) CGAN, and (D) Ours.
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performance and verify the effectiveness of the proposed RACT
block and GTF loss. For the convenience of discussion, we focus
mainly on the PSNR metric. It is seen that after adding the GTF loss
to the baseline network, the PSNR increased by 0.66 dB compared to
the baseline. Additionally, when the standard convolution block of
the baseline network was replaced with the RACT block, the PSNR
increased by 1.67 dB compared to the baseline. When the GTF and
RACT blocks were applied at the same time, the PSNR increased by
2.99 dB compared to the baseline. The evaluation results
demonstrate that both the GTF loss and the RACT block can
effectively contribute to the network performance and hence
enhance image quality.

3.8.2 Effectiveness of sub-modules in RACT block
As described in Section 2, the dual branch of the RACT block is

specifically composed of the residual convolution block (RConv), the
feature refinement module (CBAM), and the CSwin Transformer block
(CSTB). We further conducted an ablation study to investigate the
performance and necessity of these components. The CGANwith GTF
loss was applied to as baseline network, referred to as G-CGAN (Model
A) for short.

The results (mean) are listed in the sub-module ablation section in
Table 4, which proves the effectiveness of the RACT block we proposed.
To verify the effectiveness of local branch in RACT block, we replaced
the building blocks of model A with RACT blocks that have only local
branches and referred to asmodel B. Compared withmodel A, the result
of model B increases the PSNR by 0.39 dB and demonstrates the
effectiveness of local branch in RACT block. Model D was designed
to verify the effectiveness of the global branch, and model D further
enabled the global branch in the RACT block based on model B.
Compared with model B, the result of model D increases the PSNR
by 1.94 dB and demonstrates the effectiveness of global branch in RACT
block. In addition, we designed model C to verify the effectiveness of
CBAM in RACT block. In model C, the CBAM module of the RACT
block was removed while retaining the other sub-modules. It can be
observed that the result of model C decreases the PSNR by 0.68 dB
compared tomodel D. The evaluation results verified the effectiveness of
the sub-modules in the RACT block.

3.9 Convergence of different models

In this section, we investigated the convergence speed of the
proposed model. Several different deep learning-based models were
trained and tested on the same datasets in different epochs for
performance comparison. To ensure the validity of results, we
conducted 5-fold cross-validation for each model. The average
PSNR, SSIM, and RMSE results obtained during the network
testing were recorded and plotted as the convergence curves
shown in Figures 13A–C. It can be seen that the proposed model
reaches the convergence state within 400 training epochs, as shown
in Figure 13A. Furthermore, it is worth noting that in the early stages
of model training (e.g., 200 epochs), the PSNR value of the proposed
model is higher than the PSNR value of other models at the final
convergence state, as indicated by the black dashed line in
Figure 13A. The evaluation results indicated that the proposed

FIGURE 12
The comparison of the chest (first row) and abdominal (second row) images in ECT-viscera phantom reconstructed by different methods: (A) RED-
CNN, (B) U-Net, (C) CGAN, (D) Ours, and (E) the nomal-dose reconstructed images.

TABLE 3 The quantitative results (mean ± std) of different methods on the ECT-
viscera dataset.

Method Evaluation metrics

PSNR SSIM RMSE

RED-CNN 27.0066 ± 2.4197 0.8887 ± 0.0425 11.7941 ± 2.9240

U-Net 30.6860 ± 3.4683 0.9367 ± 0.0347 7.9998 ± 2.7939

CGAN 32.9589 ± 3.4130 0.9565 ± 0.0257 6.1590 ± 2.2466

SPECTnet 33.8563 ± 3.5963 0.9589 ± 0.0275 5.6217 ± 2.2954

Ours 34.3368 ± 3.3884 0.9685 ± 0.0254 5.2855 ± 2.2362
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model has a faster convergence speed and achieves better
performance compared to competing models.

4 Discussion

Lowering the radioactive dose during SPECT imaging is significant,
but it will compromise the quality of reconstructed images. In this paper,
we propose a SPECT reconstruction framework aimed at providing high
quality reconstructed images from low-dose projection data. The
proposed framework uses the CGAN as backbone, which combines
the U-Net with proposed RACT blocks as the generator and PatchGAN
as the discriminator. The RACT block consists of a local feature
extraction branch and a global feature extraction branch to model
and fuses the potential short-range and long-range dependencies in
the feature maps. In addition, we design a novel GTF loss function based
on a geometric tight framelet to suppress the noise while preserving the
image details to the maximum. The evaluations show that the proposed
SPECT reconstruction framework has advantages over some existing
deep learning methods.

We selected representative reconstructed slices from the ECT
dataset for visual comparison. It can be observed that the results of
the proposed reconstruction framework are closer to the normal-dose
reconstructed image than othermethods, whether it is the restoration of
contrast or the preservation of bone structure. We attribute that some
organs (e.g., bones) cover a large receptive field in the reconstructed
images, and therefore image reconstruction using the Transformer that
is excellent at modeling remote dependencies is superior to traditional
CNNs. Meanwhile, we performed cross-validation and calculated
PNSR, SSIM, and RMSE for reconstructed images from ECT and
WB phantoms. The proposed framework achieved the best
performance in the metrics relative to other methods, which is
consistent with the performance of visual effects.

A slice from the geometric phantomwas used to compare the noise
suppression performance of different methods. The proposed
framework exhibits fewer closed loops and oscillations for processing

linearly smooth slopes, which shows that the proposed framework has
superior noise suppression capacity. We further used the CV and MLC
metrics to verify the local image reconstruction quality with different
methods using the geometric phantom. The evaluation results show
that the proposed framework achieve the best performance compared
to competing methods. We consider that the long-range dependence
might still be useful to improve the quality of reconstruction in regions
with smaller receptive fields.

The ablation study results showed that the proposed GTF loss
function and the RACT block contribute to improving the
reconstructed performance. Furthermore, we verified the
effectiveness of the submodules of the RACT block. We found that
the refinement of local features is still essential even after the long-range
dependent modeling was introduced. Specifically, when the feature
refinement module (CBAM) in the local branch was removed, the
quality of the reconstruction decreased. We consider that the best
reconstruction performance is achieved when meaningful local features
and global features are combined.

Furthermore, we utilized the ECT-viscera phantom to generate
datasets with more details in reconstruction image and multiple noise
levels. The evaluation results showed that the proposed reconstruction
framework has better robust performance compared to other methods.
Due to radiation dose limitations, patients cannot be scanned repeatedly
in the hospital to acquire data on multiple noise levels. We believe that
the stronger robustness allows the model to retain a degree of image
reconstruction capability, despite the lack of training for specific noise
levels. It has great significance for clinical application. Finally, we
investigated the convergence speed of the proposed framework and
found that the proposed framework had achieved high reconstruction
quality in the early stage of training compared to other methods.

Although the proposed framework can effectively improve the
quality of low-dose reconstructed images, it still needs improvement
in our future work. In the future, we intend to conduct more in-
depth studies of the proposed SPECT reconstruction framework
using clinical data while applying the reconstruction framework to
more medical imaging modalities.

TABLE 4 The ablation study for the proposed modules and sub-modules in the proposed RACT block.

Model Modules Evaluation metrics (mean)

GTF loss RACT PSNR SSIM RMSE

CGAN 43.0136 0.9895 2.3193

CGAN + GTF ✓ 43.6762 0.9922 2.2987

CGAN + RACT ✓ 44.6855 0.9926 1.8689

CGAN + GTF + RACT ✓ ✓ 46.0077 0.9946 1.8567

Sub-modules

RConv CBAM CSTB

A: G-CGAN 43.6762 0.9922 2.2987

B: G-CGAN + RConv + CBAM ✓ ✓ 44.0667 0.9937 2.1666

C: G-CGAN + RConv + CSTB ✓ ✓ 45.3221 0.9939 2.0190

D: G-CGAN + RConv + CBAM + CSTB ✓ ✓ ✓ 46.0077 0.9946 1.8567
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5 Conclusion

In this paper, we proposed SPECT reconstruction framework to
improve the quality of low-dose reconstructed image. The proposed
framework effectively extracts and models the long-range and short-
range dependencies in the feature map by the proposed RACT block,
while utilizing the proposed GTF loss function to constrain the
generator network to preserve image details maximum while
denoising. The evaluation results showed that the proposed
framework has the potential to reduce the tracer dose required
for SPECT imaging without compromising the quality of the
reconstructed images.

Data availability statement

The original contribution presented in the study is included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

ZL and SL designed the research and ZL also wrote the
manuscript. SL and XM supervised the study and revised the
manuscript. FL and LP performed the data analysis. All authors
contributed to the article and approved the submitted version.

Funding

This work is supported in part by the Natural Science
Foundation of Guangdong Province under grant
2022A1515012379, and by the Opening Project of Guangdong
Province Key Laboratory of Computational Science at Sun
Yat-sen University under grant 2021007, and by the Science and
Technology Program of Guangzhou under grant 201804020053.
This work is also supported by Shantou University (STU Scientific
Research Foundation for Talents: NTF21004).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Brenner DJ, Sachs RK, Estimating radiation-induced cancer risks at very low doses:
Rationale for using a linear no-threshold approach. Radiat Environ Biophys (2006) 44:
253–6. doi:10.1007/s00411-006-0029-4

2. Bevelacqua JJ, Practical and effective ALARA. Health Phys (2010) 98:39–47. doi:10.
1097/HP.0b013e3181d18d63

3. Wells RG, Dose reduction is good but it is image quality that matters. J Nucl Cardiol
(2020) 27:238–40. doi:10.1007/s12350-018-1378-5

4. Bruyant PP, Sau J, Mallet JJ. Streak artifact reduction in filtered
backprojection using a level line–based interpolation method. J Nucl Med
(2000) 41:1913–9. Available at: https://jnm.snmjournals.org/content/41/11/
1913 (Accessed April 25, 2023).

5. Bruyant PP, Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med
(2002) 43:1343–58. Available at: https://jnm.snmjournals.org/content/43/10/1343
(Accessed April 25, 2023).

6. Lehovich A, Bruyant PP, Gifford HS, Schneider PB, Squires S, Licho R, et al. Impact on
reader performance for lesion-detection/localization tasks of anatomical priors in SPECT
reconstruction. IEEE TransMed Imaging (2009) 28:1459–67. doi:10.1109/TMI.2009.2017741

7. Fessler JA, Model-based image reconstruction for MRI. IEEE Signal Process Mag
(2010) 27:81–9. doi:10.1109/msp.2010.936726

8. Lougovski A, Hofheinz F, Maus J, Schramm G,Will E, Van den Hoff J. A volume of
intersection approach for on-the-fly system matrix calculation in 3D PET image
reconstruction. Phys Med Biol (2014) 59:561–77. doi:10.1088/0031-9155/59/3/561

FIGURE 13
The curves of convergence speed in terms of (A) PSNR, (B) SSIM and (C) RMSE for different models.

Frontiers in Physics frontiersin.org18

Liang et al. 10.3389/fphy.2023.1162456

https://doi.org/10.1007/s00411-006-0029-4
https://doi.org/10.1097/HP.0b013e3181d18d63
https://doi.org/10.1097/HP.0b013e3181d18d63
https://doi.org/10.1007/s12350-018-1378-5
https://jnm.snmjournals.org/content/41/11/1913
https://jnm.snmjournals.org/content/41/11/1913
https://jnm.snmjournals.org/content/43/10/1343
https://doi.org/10.1109/TMI.2009.2017741
https://doi.org/10.1109/msp.2010.936726
https://doi.org/10.1088/0031-9155/59/3/561
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1162456


9. Iriarte A, Marabini R, Matej S, Sorzano COS, Lewitt RM. System models for PET
statistical iterative reconstruction: A review. Comput Med Imaging Graph (2016) 48:
30–48. doi:10.1016/j.compmedimag.2015.12.003

10. Jiang Y, Li S, Xu Y. A higher-order polynomial method for SPECT reconstruction.
IEEE Trans Med Imaging (2019) 38:1271–83. doi:10.1109/tmi.2018.2881919

11. Chen Y, Huang J, Li S, Lu Y, Xu Y. A content-adaptive unstructured grid based
integral equation method with the TV regularization for SPECT reconstruction. Inverse
Probl Imaging (2020) 14:27–52. doi:10.3934/ipi.2019062

12. Tang X, Schmidtlein CR, Li S, Xu Y. An integral equation model for PET imaging.
Int J Numer Anal Model (2021) 18:834–64.

13. Chen Y, Lu Y, Ma X, Xu Y. A content-adaptive unstructured grid based
regularized CT reconstruction method with a SART-type preconditioned fixed-
point proximity algorithm. Inverse Probl (2022) 38:035005. doi:10.1088/1361-
6420/ac490f

14. Luo Y, Wei M, Li S, Ling J, Xie G, Yao S. An effective co-support guided analysis
model for multi-contrast MRI reconstruction. IEEE J Biomed Health (2023) 27:2477–88.
doi:10.1109/JBHI.2023.3244669

15. Wang G, Ye JC, De Man B. Deep learning for tomographic image reconstruction.
Nat Mach Intell (2020) 2:737–48. doi:10.1038/s42256-020-00273-z

16. Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In:
Proceeding of the 30th International Conference on Neural Information Processing
Systems (NIPS); 5-10 December 2016; Barcelona, Spain. New York: Curran Associates
Inc. (2016). p. 10–8. doi:10.5555/3157096.3157098

17. Adler J, Öktem O. Learned primal-dual reconstruction. IEEE Trans Med Imaging
(2018) 37:1322–32. doi:10.1109/TMI.2018.2799231

18. Zhang H, Dong B, Liu B. JSR-Net: A deep network for joint spatial-radon domain
CT reconstruction from incomplete data. In: Proceeding of the 44th IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP); 12-17 May 2019;
Brighton, United kingdom. New York: IEEE (2019). p. 3657–61. doi:10.1109/ICASSP.
2019.8682178

19. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by
domain-transform manifold learning. Nature (2018) 555:487–92. doi:10.1038/
nature25988

20. Fu L, De Man B, A hierarchical approach to deep learning and its application
to tomographic reconstruction. In: Proceeding of the 15th International Meeting
on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine; 2-6 June 2019; Philadelphia, PA, USA (2019). 1107202. doi:10.1117/
12.2534615

21. Häggström I, Schmidtlein CR, Campanella G, DeepPET FTJ, DeepPET: A deep
encoder–decoder network for directly solving the PET image reconstruction inverse
problem. Med Image Anal (2019) 54:253–62. doi:10.1016/j.media.2019.03.013

22. Shao W, Pomper MG, Du Y. A learned reconstruction network for SPECT
imaging. IEEE Trans Radiat Plasma Med Sci (2020) 5:26–34. doi:10.1109/TRPMS.2020.
2994041

23. Shao W, Rowe SP, Du Y. SPECTnet: A deep learning neural network for SPECT
image reconstruction. Ann Transl Med (2021) 9:819. doi:10.21037/atm-20-3345

24. Li Z, Zhang W, Wang L, Cai A, Liang N, Yan B, et al. A sinogram inpainting
method based on generative adversarial network for limited-angle computed
tomography. In: Proceeding of the 15th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine; 2-6 June
2019; Philadelphia, PA, USA (2019). doi:10.1117/12.2533757

25. Chrysostomou C, Koutsantonis L, Lemesios C, Papanicolas CN. SPECT angle
interpolation based on deep learning methodologies. In: Proceeding of the IEEE
Nuclear Science Symposium and Medical Imaging Conference; October 31-
November 7 2020; Boston, MA, USA. New York: IEEE (2020). doi:10.1109/
NSS/MIC42677.2020.9507966

26. Tang C, Zhang W, Wang L, Cai A, Liang N, Li L, et al. Generative adversarial
network-based sinogram super-resolution for computed tomography imaging. Phys
Med Biol (2020) 65:235006. doi:10.1088/1361-6560/abc12f

27. Wang YZ, Zhang WK, Cai AL, Wang LY, Tang C, Feng ZW, et al. An effective
sinogram inpainting for complementary limited-angle dual-energy computed
tomography imaging using generative adversarial networks. J X-ray Sci Technol
(2021) 29:37–61. doi:10.3233/xst-200736

28. Li S, Ye W, Li F. LU-Net: Combining LSTM and U-Net for sinogram synthesis in
sparse-view SPECT reconstruction. Math Biosci Eng (2022) 19:4320–40. doi:10.3934/mbe.
2022200

29. Chen X, Zhou B, Xie H, Miao T, Liu H, Holler W, et al. DuDoSS: Deep-learning-
based dual-domain sinogram synthesis from sparsely sampled projections of cardiac
SPECT. Med Phys (2023) 50:89–103. doi:10.1002/mp.15958

30. Li S, Peng L, Li F, Liang Z. Low-dose sinogram restoration enabled by conditional
GAN with cross-domain regularization in SPECT imaging. Math Biosci Eng (2023) 20:
9728–58. doi:10.3934/mbe.2023427

31. Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, et al. Low-Dose CT with a
residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging
(2017) 36:2524–35. doi:10.1109/TMI.2017.2715284

32. Zhang Z, Liang X, Dong X, Xie Y, Cao G. A sparse-view CT reconstruction
method based on combination of DenseNet and deconvolution. IEEE Trans Med
Imaging (2018) 37:1407–17. doi:10.1109/TMI.2018.2823338

33. Sano A, Nishio T,Masuda T, Karasawa K. Denoising PET images for proton therapy
using a residual U-net. Biomed Phys Eng Express (2021) 7:025014. doi:10.1088/2057-1976/
abe33c

34. Ronneberger O, Fischer P, Brox T, U-net: Convolutional networks for biomedical
image segmentation, In Proceeding of the 18th International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI); 5-9 October 2015;
Munich, Germany (2015) 234–41. doi:10.1007/978-3-319-24574-4_28

35. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative adversarial nets. In: Proceeding of the 27th Conference on Neural
Information Processing Systems (NIPS); 8-13 December 2014; Montreal, QC,
Canada. Cambridge: MIT Press (2014). p. 2672–80. doi:10.1145/3422622

36. Yang QS, Yan PK, Zhang YB, Yu HY, Shi YY, Mou XQ, et al. Low-dose CT image
denoising using a generative adversarial network with Wasserstein distance and
perceptual loss. IEEE Trans Med Imaging (2018) 37:1348–57. doi:10.1109/tmi.2018.
2827462

37. Jiang G,Wei J, Xu Y, He Z, Zeng H,Wu J, et al. Synthesis of mammogram from digital
breast tomosynthesis using deep convolutional neural network with gradient guided cGANs.
IEEE Trans Med Imaging (2021) 40:2080–91. doi:10.1109/TMI.2021.3071544

38. Xue HZ, Teng YY, Tie CJ, Wan Q, Wu J, Li M, et al. A 3D attention residual
encoder-decoder least-square GAN for low-count PET denoising. Nucl Instrum
Methods Phys Res Sect A-accel Spectrom Dect Assoc Equip (2020) 983:164638.
doi:10.1016/j.nima.2020.164638

39. Shamshad F, Khan S, Zamir SW, Khan MH, Hayat M, Khan FS, et al.
Transformers in medical imaging: A survey. Med Image Anal (2023):102802.doi:10.
1016/j.media.2023.102802

40. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention
is all you need. In: Proceeding of the 31st International Conference on Neural
Information Processing Systems (NIPS); 4-9 December 2017; Long Beach, CA, USA.
New York: Curran Associates Inc. (2017). p. 5999–6009. doi:10.5555/3295222.3295349

41. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In:
Proceeding of the 9th International Conference on Learning Representations (ICLR);
3–7 May 2021; Virtual Event, Austria. OpenReview.net (2021). Available at: https://
dblp.org/rec/conf/iclr/DosovitskiyB0WZ21 (Accessed August 31, 2022).

42. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: Hierarchical
vision transformer using shifted windows. In: Proceeding of the 18th IEEE/CVF
International Conference on Computer Vision (ICCV); 11-17 October 2021; Virtual,
Online, Canada. New York: IEEE (2021). p. 9992–10002. doi:10.1109/ICCV48922.2021.
00986

43. Dong X, Bao J, Chen D, Zhang W, Yu N, Yuan L, et al. CSWin transformer: A
general vision transformer backbone with cross-shaped windows. In: Proceeding of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 19-
24 June 2022; New Orleans, LA, USA (2022). p. 12114–24. doi:10.1109/CVPR52688.
2022.01181

44. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. (2021), TransUNet:
Transformers make strong encoders for medical image segmentation. arXiv
preprint. doi:10.48550/arXiv.2102.04306

45. Dai Y, Gao YF, Liu FY. TransMed: Transformers advance multi-modal medical
image classification. Diagnostics (2021) 11:1384. doi:10.3390/diagnostics11081384

46. Zhang Z, Yu L, Liang X, Zhao W, TransCT XL, Dual-path transformer for low
dose computed tomography. In: Proceeding of the International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI);
September 27-October 1 2021 (2021). p. 55–64. Virtual, Online. doi:10.1007/
978-3-030-87231-1_6

47. Luthra A, Sulakhe H, Mittal T, Iyer A, Yadav S. Eformer: Edge enhancement based
transformer for medical image denoising (2021). arXiv preprint. Available at:https://
arxiv.org/abs/2109.08044 (Accessed August 31, 2022). doi:10.48550/arXiv.2109.08044

48.Wang D,Wu Z, Yu H. TED-Net: Convolution-Free T2T vision transformer-based
encoder-decoder dilation network for low-dose CT denoising. In: Proceeding of the
12th International Workshop on Machine Learning in Medical Imaging (MLMI);
27 September 2021 (2021). p. 416–25. Virtual, Online. doi:10.1007/978-3-030-87589-
3_43

49. Zhang Y, Liu H, Hu Q. TransFuse: Fusing transformers and CNNs for medical
image segmentation. In: Proceeding of the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI); September 27-October
1 2021 (2021). p. 14–24. Virtual, Online. doi:10.1007/978-3-030-87193-2_2

50. Krol A, Li S, Shen L, Xu Y. Preconditioned alternating projection algorithms for
maximum a posteriori ECT reconstruction. Inverse Probl (2012) 28:115005. doi:10.
1088/0266-5611/28/11/115005

51. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional
adversarial networks. In: Proceeding of the 30th IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR); 21-26 July 2017; Honolulu, HI, USA (2017).
p. 5967–76. doi:10.1109/CVPR.2017.632

Frontiers in Physics frontiersin.org19

Liang et al. 10.3389/fphy.2023.1162456

https://doi.org/10.1016/j.compmedimag.2015.12.003
https://doi.org/10.1109/tmi.2018.2881919
https://doi.org/10.3934/ipi.2019062
https://doi.org/10.1088/1361-6420/ac490f
https://doi.org/10.1088/1361-6420/ac490f
https://doi.org/10.1109/JBHI.2023.3244669
https://doi.org/10.1038/s42256-020-00273-z
https://doi.org/10.5555/3157096.3157098
https://doi.org/10.1109/TMI.2018.2799231
https://doi.org/10.1109/ICASSP.2019.8682178
https://doi.org/10.1109/ICASSP.2019.8682178
https://doi.org/10.1038/nature25988
https://doi.org/10.1038/nature25988
https://doi.org/10.1117/12.2534615
https://doi.org/10.1117/12.2534615
https://doi.org/10.1016/j.media.2019.03.013
https://doi.org/10.1109/TRPMS.2020.2994041
https://doi.org/10.1109/TRPMS.2020.2994041
https://doi.org/10.21037/atm-20-3345
https://doi.org/10.1117/12.2533757
https://doi.org/10.1109/NSS/MIC42677.2020.9507966
https://doi.org/10.1109/NSS/MIC42677.2020.9507966
https://doi.org/10.1088/1361-6560/abc12f
https://doi.org/10.3233/xst-200736
https://doi.org/10.3934/mbe.2022200
https://doi.org/10.3934/mbe.2022200
https://doi.org/10.1002/mp.15958
https://doi.org/10.3934/mbe.2023427
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1109/TMI.2018.2823338
https://doi.org/10.1088/2057-1976/abe33c
https://doi.org/10.1088/2057-1976/abe33c
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1145/3422622
https://doi.org/10.1109/tmi.2018.2827462
https://doi.org/10.1109/tmi.2018.2827462
https://doi.org/10.1109/TMI.2021.3071544
https://doi.org/10.1016/j.nima.2020.164638
https://doi.org/10.1016/j.media.2023.102802
https://doi.org/10.1016/j.media.2023.102802
https://doi.org/10.5555/3295222.3295349
https://dblp.org/rec/conf/iclr/DosovitskiyB0WZ21
https://dblp.org/rec/conf/iclr/DosovitskiyB0WZ21
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/CVPR52688.2022.01181
https://doi.org/10.1109/CVPR52688.2022.01181
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.3390/diagnostics11081384
https://doi.org/10.1007/978-3-030-87231-1_6
https://doi.org/10.1007/978-3-030-87231-1_6
https://arxiv.org/abs/2109.08044
https://arxiv.org/abs/2109.08044
https://doi.org/10.48550/arXiv.2109.08044
https://doi.org/10.1007/978-3-030-87589-3_43
https://doi.org/10.1007/978-3-030-87589-3_43
https://doi.org/10.1007/978-3-030-87193-2_2
https://doi.org/10.1088/0266-5611/28/11/115005
https://doi.org/10.1088/0266-5611/28/11/115005
https://doi.org/10.1109/CVPR.2017.632
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1162456


52. Yu D, Wang H, Chen P, Wei Z. Mixed pooling for convolutional neural networks.
In: Proceeding of the 9th International Conference on Rough Sets and Knowledge
Technology (RSKT); 24-26 October 2014; Shanghai, China (2014). p. 364–75. doi:10.
1007/978-3-319-11740-9_34

53. Woo S, Park J, Lee J-Y, Kweon IS. Cbam: Convolutional block attention module.
In: Proceeding of the 15th European Conference on Computer Vision (ECCV); 8-
14 September 2018; Munich, Germany (2018). p. 3–19. doi:10.1007/978-3-030-01234-
2_1

54. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: 14th
European Conference on Computer Vision (ECCV); 3-7 November 2014; Scottsdale,
AZ, USA (2016). p. 630–45. doi:10.1007/978-3-319-46493-0_38

55. Hendrycks D, Gimpel K. Gaussian error linear units (GELUs). arXiv preprint
(2020). Available at: https://arxiv.org/abs/1606.08415 (Accessed August 31, 2022).
doi:10.48550/arXiv.1606.08415

56. Zheng W, Li S, Krol A, Schmidtlein CR, Zeng XY, Xu YS. Sparsity promoting
regularization for effective noise suppression in SPECT image reconstruction. Inverse
Probl (2019) 35:115011. doi:10.1088/1361-6420/ab23da

57. Li Y-R, Dai D-Q, Shen L. Multiframe super-resolution reconstruction using sparse
directional regularization. IEEE Trans Circuits Syst Video Technol (2010) 20:945–56.
doi:10.1109/TCSVT.2010.2045908

58. Ljungberg M, Strand S-E, King MA. Monte Carlo calculations in nuclear
medicine. In: Applications in diagnostic imaging. Boca Raton: CRC Press (2013).
doi:10.1118/1.4869177

59. Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BM. 4D XCAT phantom for
multimodality imaging research. Med Phys (2010) 37:4902–15. doi:10.1118/1.3480985

60. KingmaDP, Ba JL. Adam: Amethod for stochastic optimization. In: Proceeding of
the 3rd International Conference on Learning Representations (ICLR); 7-9 May 2015;
San Diego, CA, USA (2015). Available at: https://dblp.org/rec/journals/corr/
KingmaB14 (Accessed August 31, 2022).

61. Hensel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs trained
by a two time-scale update rule converge to a local nash equilibrium. In:
Proceeding of the 31st International Conference on Neural Information
Processing Systems (NIPS); 4-9 December 2017; Long Beach, CA, US. New
York: Curran Associates Inc. (2017). p. 6627–38. doi:10.5555/3295222.3295408

Frontiers in Physics frontiersin.org20

Liang et al. 10.3389/fphy.2023.1162456

https://doi.org/10.1007/978-3-319-11740-9_34
https://doi.org/10.1007/978-3-319-11740-9_34
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-319-46493-0_38
https://arxiv.org/abs/1606.08415
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.1088/1361-6420/ab23da
https://doi.org/10.1109/TCSVT.2010.2045908
https://doi.org/10.1118/1.4869177
https://doi.org/10.1118/1.3480985
https://dblp.org/rec/journals/corr/KingmaB14
https://dblp.org/rec/journals/corr/KingmaB14
https://doi.org/10.5555/3295222.3295408
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1162456

	High quality low-dose SPECT reconstruction using CGAN-based transformer network with geometric tight framelet
	1 Introduction
	2 Materials and methods
	2.1 Adversarial training
	2.1.1 Generator
	2.1.2 Discriminator

	2.2 RACT block
	2.2.1 Local feature extraction branch
	2.2.2 Global feature extraction branch

	2.3 Loss function
	2.3.1 Adversarial loss
	2.3.2 GTF loss


	3 Performance evaluation and results
	3.1 Datasets
	3.2 Implementation details
	3.2.1 Training parameters
	3.2.2 Baseline methods

	3.3 Evaluation metrics
	3.3.1 Global image quality metrics
	3.3.2 Local image quality metrics

	3.4 Visual results
	3.5 Quantitative results
	3.5.1 Global metrics
	3.5.2 Local metrics

	3.6 Noise suppression capacity of different methods
	3.7 Robustness of proposed method
	3.8 Ablation study
	3.8.1 Effectiveness of RACT block and GTF loss
	3.8.2 Effectiveness of sub-modules in RACT block

	3.9 Convergence of different models

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


