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We demonstrate the transmission of a 100 MW-peak-power ultrafast laser
through a 5-m anti-resonant hollow-core fiber (AR-HCF) with a pumpable
armored tube for air exhaust. The AR-HCF consists of a 45-μm-hollow-core
and seven untouched capillaries with an attenuation of 0.11 dB/m measured at a
wavelength of 1030 nm. We investigate the effect of air-filling and vacuum
pumping on transmission efficiency and pulse distortion. The comparison
reveals the importance of controlling air concentration in hollow-core fibers
(HCFs) for achieving high transmission efficiency and pulse quality. With the
suppression of air concentration, the transmission efficiency increases from
61% to 72%, and pulse distortion is effectively controlled. The results
demonstrate the potential of AR-HCFs for high-power ultrafast laser delivery
systems for various applications. The pumpable armored tube design provides a
simple and effective solution to suppress self-phase modulation (SPM) and enable
flexible beam delivery.
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1 Introduction

Ultra-fast laser sources with picosecond or femtosecond laser pulses have shown a wide
range of application in micro-and nanofabrication [1–4]. The peak power intensity of
ultrafast lasers determines the characteristics of their free-space transport structure, which to
some extent increases the possible instability of the laser over a long period of time [5]. In
contrast to fiber-delivered nanosecond or continuous lasers, ultrafast lasers are difficult to
propagate in traditional silica fibers because the non-linear effects during fiber delivery and
the pulse peak fluence induced self-focusing might exceed the damage threshold of those
fibers [6]. Since 1999, researchers have examined the viability of employing a HCF to
transmit laser beams in an effort to address the issue of flexible delivery of short-pulse laser
beams [7]. Compared to the photonic-bandgap hollow-core fibers (PB-HCFs) [8], the AR-
HCFs feature a comparatively simple micro-structured cladding [9] and a broad
transmission bandwidth [10], which makes them suited for wide-spectrum, high peak
power beam transmission. It has been reported that the visible spectral range lasers, which
are generated by the use of second-harmonic generation (SHG) and third-harmonic
generation (THG) of fiber or Nd: YAG ultrafast laser sources, have shown the
achievement in beam flexible transmission of green [11] and ultraviolet [12, 13] lasers.
The AR-HCF with cladding-tubes-touched structure has been utilized to transmit lasers with
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transmission bands ranging from 1 μm to 4 μm [14–16]. The
0.11 dB/m transmission losses of an ice-cream-structure AR-HCF
have enabled the demonstration of a laser with a 63.1% coupling
efficiency at 1,064 nm [17]. Theoretical advancements have
indicated that AR-HCF fibers without nodes are being studied to
reduce transmission loss [18, 19]. Recent studies have demonstrated
a node-less AR-HCF for a 300 W laser guidance at 1,080 nm with a
0.05 dB/m attenuation [20]. Studies have shown a much higher
transmission power of 1.167 kW with a high efficiency of 87.5% at
the adjacent wavelength of 1,070 nm, by using an ice-cream
structure AR-HCF [21]. Although HCFs have lower non-linear
effects [22] and higher power damage thresholds [23] compared
to conventional silica solid fibers, the effect of non-linearity could
not be ignored for the laser transmission process of ultrafast lasers
with high peak power over 30 MW [24]. Ultra-fast laser pulses
transmitted along the HCFs have enough energy to interact with the
air or gas in the hollow core to introduce the pulse chirp and thus
broadening the pulse duration [25–27]. Factors found to be
influencing power transmission limitations have been explored in
several studies that show non-linear effects such as Raman scatting
and SPM have played a critical role in ultra-fast laser delivering
efficiency [28, 29]. Filling inert gas or vacuum states has been
demonstrated and mentioned in research analyses as an effective
method to modulate the non-linear effects in the beam transmission
process [29–31]. Published studies have used gas-filled HCFs for
spectral broadening and chirped mirror systems to compensate for
dispersion and to compress for a shorter pulse duration [32–34].
However, the pulse recompression process lets the flexible beam
delivery transfer to spatial transmission. Although there are
proposed theoretical models showing that light transmission in

the photonic crystal fibers of a negative refractive index
metamaterial could compensate for dispersion [35]; however, this
has not been achieved in practice. Our objective is to accomplish
ultrafast laser transmission while keeping the light source’s original
properties. In this research, a vacuum chamber is concerned with
preventing gas interactions and decreasing non-linear effects. The
flexible beam delivery utilizes a 5-m AR-HCF with an attenuation of
0.11 dB/m at 1,030 nm. Laser transmission in air-filled and vacuum-
pumped fiber is discussed separately. The pulsed laser is transmitted
through an air-filled HCF, and the SPM interferes with the
dispersion balance of the ultra-fast laser system, with a pulse
spread of 16.5 ps. With the suppression of air concentration, the
power transmission efficiency improves from 61% to 72% and the
pulse duration is observed with slightly broadening from 500 fs to
670 fs.

2 Fiber structure and experimental
setup

2.1 Fiber characteristic

The cross section of the fabricated AR-HCF fiber is shown in
Figure 1C, which consists of seven untouched capillaries with an
inscribed core diameter of 45 μm and a mode field diameter of
35 μm, the outer diameter of the capillaries of 22.6 μm and the
jacked diameter of 314 μm. For multi-capillary anti-resonant fibers,
the suppression of higher order modes (HOMs) is achieved with the
increasing number of cladding holes, which is confirmed in Refs. [19,
36]. Moreover, bending loss of the AR-HCF could be suppressed by
designing a smaller-core size [37]. The wall thickness of the capillaries
and the gap distance between the capillaries also affect the transmission
loss [19]. However, the increasing number of cladding capillaries and
small core size are accompanied by a reduction in the fundamental
mode field area, necessitating careful laser coupling to the AR-HCF
[38]. The fundamental mode loss, bending loss and coupling efficiency
are comprehensively considered for the future application, and the AR-
HCF with mentioned parameters are designed and fabricated. The
theoretical fundamental mode attenuation is calculated to be 0.89 dB/
km at 1,030 nm by the expression discussed in Ref. [39].

The transmission spectra of the AR-HCF is measured by using a
broadband light source (NKT Photonics) and a YOKOGAWA
spectrometer, as shown in Figure 1A. The attenuation curve of
wavelength from 600 nm to 1700 nm, as measured by the cut-back
method (cut the 90 m fiber to 2 m). Figure 1B depicts the detailed
decay curves covering the laser range from 1,000 nm to 1,350 nm.
The positioning and deformation of the capillaries during fiber
drawing, as well as the beam quality of the laser source, might result
in variations between the theoretical and measured values. The
calculated mode loss of LP01, LP11, and LP21 are 0.89 dB/km,
3.17 dB/km and 1.24 dB/km, respectively.

The low transmission loss is the combined result of the control of
capillary and inter-capillary spacing consistency during the fiber
drawing process as shown in Figure 1C. Measured transmit loss is
0.11 dB/m at 1,030 nm, which is much higher than the theoretical
value, despite this, it shows an improvement comparison with a
similar-structure seven capillaries AR- HCF in the most recent
published article [40]. It is worth mentioning that the measured

FIGURE 1
(A) Measured transmission spectra of the 2 m (solid blue curve)
and the 90 m (solid green curve) AR-HCF and attenuation spectrum
(solid yellow curve) in the range of 600 nm–1700 nm. (B) Detailed
attenuation spectrum measured in the near-infrared range of
1,000 nm–1,350 nm (solid yellow curve). (C) Cross setion of seven
capillaries AR-HCF with 45-µm-core diameter.
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transmission loss of HCFs is related to fiber parameters such as core
size, capillary diameter, and wall thickness; fiber drawing quality such
as roughness; attenuationmeasurementmethods such as fiber length,
light source quality, etc. Table 1 summarizes the relevant parameters
of seven capillaries AR- HCF published in recent years and their
measured attenuation at certain wavelengths for reference.

2.2 Simulated and measured beam profiles

The finite element software COMSOL is used for simulating
mode profiles AR-HCF as shown in Figures 2A–C. In the
experiment, the focus lens is relocated away from the input side
of the AR-HCF to misalign the focus point and stimulate HOMs.

Figure 2D depicts the variation of the diameter mode field
distribution of LP01 to LP11 obtained by adjusting the focusing
mirror shown in Figure 3 to eccentricate the spot, with a fiber
coiling diameter of 45 cm. It could be observed from the figure that
no HOMs, such as LP21 and LP31, were observed after
propagating 5 m. The reason is that the manufactured AR-HCF
structure is not homogeneous, resulting in actual attenuation
values for HOMs that are greater than their theoretical values.
Moreover, the incident beam profile approaches the fundamental
mode (M2 = 1.167), and the contrast of the excited higher-order
modes is rather low, so that only the LP01 and LP11 modes with
reduced transmit loss could be examined. This result preliminarily
shows that transmission in the AR-HCF has the effect of
optimizing the beam quality.

TABLE 1 Performance comparison of recently reported attenuation of seven capillaries AR- HCFs.

Core diameter (μm) Capillary thickness (μm) Capillary diameter (μm) Measured min. loss (dB/m at nm) Time

28 0.78 18 0.11–1.2 at1,065 2022 [40]

35 0.355 17 0.05 at1,080 2021 [20]

31 0.78 23.6 0.07 at1,064 2021 [41]

28.3 0.43 10.6 0.7 at1,100 2021 [42]

17 0.132 7.3 0.26 at355 2018 [12]

35.8 0.775 7.67 0.028 at1,030 2018 [29]

30 0.83 17 0.03 at1,090 2016 [36]

The bold values are the core diameter of the AR-HCF.

FIGURE 2
(A–C). Simulatedmode field distribution of LP01, LP11 and LP31, respectively. (D)Measuredmode profiles by themisalignment of the incident beam.

Frontiers in Physics frontiersin.org03

Cai et al. 10.3389/fphy.2023.1160287

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1160287


2.3 Experimental setup

The experimental setup is shown as Figure 3. A self-built
1,030 nm ultra-fast laser source with an average power of 10 W,
a pulse duration of 500 fs, and a maximum single pulse energy of
50 µJ is used as the seed laser. The beam quality M2 = 1.167, which is
measured by a camera-based beam propagation analyzer
(BeamSquared XC130). The output beam diameter is expanded

from 1 mm to 2 mm by a beam expander. The two reflectors,
RM1 and RM2, are crucial in adjusting the parallelism and
perpendicularity of the laser beam. The RM1 and RM2 mirrors
have a low group delay dispersion (GDD<30 fs2) and a coating that
ensures reflectance greater than 99.5% from 970 nm to 1,150 nm.
The divergence angle of the AR-HCF is 0.035 mrad and the
aspherical lens with a collimation distance of 30 mm focuses the
beam into the AR-HCF with a focused spot diameter of 23.6 µm. An
industrial high-precision optical fiber cleaver (Fujikura CT104 +) is
used to cleave AR-HCF, and the cutting angle of the fiber is less than
0.5°. The length of 5 m of AR-HCF is placed inside an evacuable
vacuum chamber to reduce gas interactions and minimize non-
linear effects. The vacuum chamber is designed as an armored tube
that could be coiled with a diameter ranging from 25 cm to 45 cm for
flexible beam transmission. The air pressure is regulated by
regulating the air flow through the valves, and the barometer is
utilized to read the actual air pressure. A spectrum analyzer
(YOKOGAWA AQ6370D) is used to record the laser’s output
spectrum, and an autocorrelator (APE Pulsecheck) is used to
measure the pulse duration.

3 Results and discussion

Figure 4A shows the comparison between the measured
spectrum of the ultra-fast laser source and the transmitted laser
spectra at different laser powers. The spectral range of the
femtosecond laser source is over 1,025 nm–1,040 nm, and after
propagating through the AR-HCF, the spectral spread covers the
range from 1,000 nm to 1,350 nm due to the non-linear effects. The
spreading of the laser spectra in AR-HCF and the generation of
deformation phenomena of the pulses is a complex non-linear
process. Numerous theoretical and practical investigations on the
transmission characteristics of ultrafast pulses in AR-HCF have been
conducted [29, 30, 39, 43]. However, the mechanism behind their
generation is still not fully comprehended. Many non-linear
processes, including SPM, stimulated Raman scattering (SRS),
four wave mixing, and higher-order soliton splitting, could be

FIGURE 3
Experiment setup of the laser beam transmission system. BE: Beam expander; RM: Reflect mirror; FM: Focus mirror; VC: Vacuum chamber; PG:
Pressure gauge; VP: Vacuum pump.

FIGURE 4
(A) Spectrumof the ultra-fast laser source (LS, green curve); Laser
transmitted spectra measured after the air-filled AR-HCF: After
transmissions, the input laser power drops from 2.5 W to 1.8 W (blue
curve), 5 W–3.5 W (orange curve), 7.5 W–4.65 W (yellow curve)
and 10 W–6.1 W (purple curve), respectively. (B) Transmitted laser
power and transmission efficiency versus ultra-fast laser source
power.
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involved in optical pulse transmission [44]. As demonstrated in
Figure 4A, the spectrum broadening is mostly caused by the SPM
and SRS after laser beam propagation down the air-filled AR-HCF.
The SPM phenomena may be detected more clearly if the associated
laser power was increased. Since the femtosecond laser source is a
broadband source with a measured spectral width of 9.56 nm at full
width half maximum, it is going to be difficult to distinguish between
the spectral frequency oscillation caused by the SPM and the Raman
scattering peaks in the spectral range of 1,020 nm–1,040 nm; non-
etheless, the Raman scattering peaks that could be observed in the
range of 1,100 nm–1,450 nm at an incident optical power of 10 W.
The Raman frequency shift around 1,140 nm, 1,220 nm and
1,350 nm is in agreement with the simulation results in Ref. [29].
The transmitted laser power, and transmission efficiency calculated
by the ratio of input power/output power, versus laser source power
are shown in Figure 4B. When the peak power of the light source
exceeds 50 MW, a significant decrease drops to around 61% in
transmission efficiency could be observed. The spectral range of the
femtosecond laser source is over 1,025 nm–1,040 nm, and after
propagating through the AR-HCF, the spectral spread covers the

range from 1,000 nm to 1,350 nm. As the laser power increases, the
non-linear effects that cause the spectrum to broaden intensify. This
causes laser energy to be shifted to frequencies with higher losses,
which leads to a decrease in transmission efficiency.

To reduce the Kerr effect of laser propagation in AR-HCF, we
pumped out the air and measure the laser spectra at various air
pressures, as shown in Figure 5A. Notably, at a pressure of 0.2 atm,
the transmitted laser power increases from 6.1 W to 7.2 W when the
input laser power is 10 W. The SPM is alleviated as the air
concentration in the chamber decreases. As seen from the
autocorrelation results in Figure 5B, the 500-fs laser pulse
broadens to 16.5 ps (FWHM, Gaussian fit) after propagating
through the 5-m length, air-filled fiber, which indicates that the
pulse experiences a large non-linear phase shift in the fiber,
enhanced by the SPM, and in agreement with the effect of SPM
on pulses discussed in Ref [34]. This indicates that as the air is filled,
the pulse waveform is broadened symmetrically, and oscillatory
structures appear on both wings of the pulse. This demonstrates that
the SPM effect is at work, and that the dispersion-induced non-
linear effects are weaker. This is demonstrated by the later analysis:

FIGURE 5
(A) Measured 6.1 W-output laser (input laser 10 W) transmission spectra after the vacuum-pumped AR-HCF. The curves from bottom to top show
the spectral profiles that obtained under chamber pressure from p = 0.2 atm (blue curve), 0.4 atm (orange curve), 0.6 atm (yellow curve), and 1 atm
(purple curve), respectively. (B) Autocorrelation curves under different pressures.

FIGURE 6
(A) Bending loss and M2 versus bending diameter in the vacuum-pumped AR-HCF. (B)Measured laser source beam quality as a function of coiling
diameter at 45 cm.
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when the pulse is transmitted in the fiber, both GVD and SPM cause
the pulse to produce a frequency chirp, and while the pulse chirp
introduced by GVD is linear, the pulse chirp introduced by SPM is
far from linear within the whole pulse. Various portions of the pulse
transmit at different speeds due to the non-linear character of the
post-composite chirp. Especially in the situation of normal
dispersion, the redshifted light near the leading edge of the pulse
transmits faster than the non-redshifted light at the trailing end of
the pulse’s front; the opposite is true for the blue shifted light near
the following edge. In both instances, the area of the front and rear
edges of the pulse contains two different frequencies of light that
interfere with one another, and the oscillations around the edge of
the pulse are the result of this interference. As the air concentration
decreases, the symmetrical oscillation structure of the pulse
gradually weakens, which also indicates a gradual decrease of the
phenomenon of SPM. The anti-resonant seven-core-touchless
capillary hollow fiber is less sensitive to bending loss relative to
other mechanisms that have been compared [29].

In our experiment, we investigate the laser propagation bending
loss versus fiber coil diameters from 20 cm to 45 cm in the vacuum
pumped AR-HCF, as shown in Figure 6A. In this configuration, the
coiling diameter is greater than 35 cm, the bending loss is less than
1.5 dB, and the critical coiling value of the fiber is reached when the
bending diameter is less than 30 cm. At this point, the fiber bending
causes the fiber base mode to higher order mode transition, which
causes most of the light to leak from the core, resulting in an increase
in power loss. We also determined the relationship between beam
quality and bending diameter. Figure 6B shows the measured
transmitted laser source beam quality of M2X = 1.198, M2Y =
1.141 at the bending diameter of 45 cm. Although the beam
quality factors vary only by 0.122 (1.182–1.06) when the fiber
coiling diameter is varied in the range of 25 cm–45 cm, the
dashed orange curve shows the decrease in the coiling diameter
of the fiber is accompanied by a decreasing trend in M2. The results
indicate that the optimal coiling of the AR-HCF fibers could
optimize transmission mode distribution.

4 Conclusion

In summary, we have achieved the conversion of space-
transmitted ultrafast lasers into optical fiber transmission by
focusing the laser into a core of AR-HCF. This provides the
potential for subsequent application simplicity in industrial
settings. We compared the ultrafast laser transmission between air-
filled and vacuum-pumped seven-capillary AR-HCF. The transmit
efficiency and the pulse shape that are affected by the SPM were
discussed, and the method of extracting air could provide a simple
solution. Results showed an improvement in laser transmission

efficiency in vacuum-pumped fiber, and the efficiency improved
from 61% to 72% with the suppression of air concentration, and
the pulse distortion phenomenon could also be suppressed. The pulse
broadening from 500 fs to 670 fs was recorded andmight be improved
in the future by using a more powerful pump at a lower atmospheric
pressure. In addition, by modifying the fiber’s structure so that it
could support SHG or THG lasers, the experimental results could
serve as a guide for other flexible beam transmission projects.
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