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The paper presents a framework for accelerating the phase field modeling of
compressive failure of rocks. In this study, the Drucker-Prager failure surface is
taken into account in the phase field model to characterize the tension-
compression asymmetry of fractures in rocks. The degradation function that
decouples the phase-field and physical length scales is employed, in order to
reduce the mesh density in large structures. To evaluate the proposed approach,
four numerical examples are given. The results of the numerical experiments
demonstrate the accuracy and efficiency of the proposed approach in tracking
crack propagation paths in rock materials under Drucker-Prager criterion.

KEYWORDS

phase field method, fracture, Drucker-Pluger, degradation function, large scale

1 Introduction

The phase-field fracturemodel gains great popularity in computational fracturemechanics in
recent years due to its capability of capturing complex fracture patterns including crack initiation,
propagation, bifurcation and coalescence. Because the conventional form of phase field is based
on the assumption of tension and compression symmetry, it is not applicable to rock materials
[1], whose tensile and compressive strengths show significant differences [2]. To reproduce the
fracture behaviors exhibiting asymmetric tension–compression characteristics, Zhou et al. [3]and
Wang et al. [4] developed new driving force formulations, wherebyMohr–Coulomb criterion can
be introduced to phase field fracture modeling. Navidtehrani et al [5–7] proposed a general
framework for decomposing the strain energy density under multi-axial loading, which enables
us to simulate compressive failure in rocks under Drucker-Prager criterion.

The phase-field fracture model has limitations for simulating large-scale rock models [1]. In
the traditional formulation, the phase field length scale is linked with the physical process zone
length scale for a given material strength [8–10]. In the analysis of the structures whose sizes are
orders of magnitude larger than their physical length scales, themesh density can be prohibitively
high, leading to an unaffordable computational cost in practice. To address this issue, Wu et al.
proposed a new type of degradation function which is insensitive to the length scale [11–20].
After that, Lo et al [18, 20] presented a degradation function that decouples the phase field length
scale from the physical length scale, which reduces the mesh density and thus enables one to
simulate crack propagation in large-scale rock masses with phase field methods [21–28].

In this paper, we combine the work of Navidtehrani et al. [5–7] and Lo et al [18, 20] to
accelerate the fracture phase field modeling of Drucker–Prager failure by using the degradation
functions decoupling the phase field and physical length scales. The remainder of the paper is
organized as follows. Section 2 introduces the phase field fracture model for Drucker-Prager
failure. Section 3 explains the degradation function that separates phase field length scales from
physical length scales. The numerical experiments were conducted in Section 4, followed by the
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conclusions in Section 5. To demonstrate the accuracy of thismethod in
capturing the crack patterns of rock materials.

2 Phase field fracture model

According to [29], the total potential energy of an elastic body is
composed of the elastic energy of the elastic body and the crack
surface energy

Π u, Γ( ) � ∫Ωψe ε u( )( )dΩ + ∫ΓGcdΓ (1)

where: ψe is the elastic energy density of the elastomer, ε(u) Is the
strain tensor, u is the displacement, the range of u is ∈ Rd ({1,2,3}), and
Gc is the fracture energy release rate of thematerial.We can obtain from
the variational method that at time t ∈ [0, t], crack I (x, t) has any
behavior of x ∈ Rd at any position, Once the crack is formed, it cannot
be recovered, so an irreversible condition needs to be imposed. For
energy, minimizing the total potential energy will only increase but not
decrease. This condition is Γ Γ (x, s) (x, t), (s < t).

Here we use the fracture variational criterion inherited and
developed from the traditional Griffith theory, which is still based on
the elastic strain energy and energy release rate. Griffith believes that
there are many small cracks or defects in actual materials. Under the
action of external forces, stress concentration will occur near these
cracks and defects. When the stress reaches a certain level, the cracks
will start to expand and cause fracture. However, Griffith theory [29]
has the defect that it cannot solve the problems of crack generation,
propagation angle and instability bifurcation, so the fracture of
materials is further studied by using the fracture variational
criterion.

2.1 Estimation of fracture surface energy
using phase field variables

B. Bourdin et al. [30] realized the fracture variational
criterion numerically for the first time by introducing phase
field variables. In this paper, we define a scalar variable that
changes in the interval of [0, 1] to be a phase field variable, and
use ϕ to represent the topology of the crack, when ϕ = 1 to
represent the crack, and when ϕ = 0 to represent the material is
intact, and then use ϕ to represent the crack surface density in
unit volume γ [31]:

γ ϕ,∇ϕ( ) � ϕ2

2l0
+ l0
2

∣∣∣∣∇ϕ∣∣∣∣2 (2)

L0∈R+ is an important model parameter to control the range of
crack diffusion fracture transition zone (0< ϕ <1), as shown in
Figure 1. l0 characterizes the crack diffusion range. In short, when l0
is small, the crack is thinner, while the larger l0 is, the fatter the crack
is. In this way, the crack surface Γ acts as a time-varying scalar field,
or phase field, in space.

From formula (2), we can express the total crack surface energy
in the elastic body with the following equation

∫ΓGcdΓ ≈ ∫ΩGc
ϕ − 1( )2
2l0

+ l0
2

∣∣∣∣∇ϕ∣∣∣∣2[ ]dΩ (3)

2.2 Elastic strain energy decomposition

According to the above fracture variational criteria, the crack
surface energy and elastic strain energy are tied closely. If the elastic
strain energy is not decomposed, the pseudo bifurcation of the crack
will occur. To solve this problem, this paper decomposes the elastic
strain energy in tension and compression based on the method
proposed by C. Miehe et al. [32], so that the tensile part of the elastic
strain energy drives the evolution of the phase field. To this end, the
strain tensor is first spectral decomposed [33]:

ε± � ∑d

i�1〈ε
i〉±ni ⊗ ni (4)

In the formula, ε+ and ε− are tensile strain tensors and
compression strain tensors respectively. εi and ni are the main
strain values and their corresponding directions. d is an
independent parameter, namely the spatial dimension. When d =
2, this is a two-dimensional problem. When d = 3, this is a three-
dimensional problem. Macaulay brackets in the formula are defined
as: < • >+ = (• + | • |)/2,< • >−= (•− | •|)/2.

The strain after spectral decomposition can decompose the
elastic strain energy density:

ψ±
e ε( ) � λ

2
〈tr ε( )〉2± + μtr ε2±( ) (5)

Here λ and μ is the Lame constant, tr (•) represents the trace
of the matrix. In the process of material failure, the stiffness will
also decrease. At this time, the material stiffness weakening is
related to the phase field variable. If we assume that only the
tensile strain energy density in the elastic body receives the
weakening of the phase field variable, the elastic strain energy at
this time is

ψe ε( ) � 1 − ϕ( )2 + κ[ ]ψ+
e ε( ) + ψ−

e ε( ) (6)

Where: κ is a parameter model parameter, 0 ≤ κ<< 1. Avoid
generating numerical singularity when ϕ = 1.

2.3 Characterization of Drucker-Prager
fracture surface

According to Navidtehrani [5–7] Drucker-Prager fracture
criterion applicable to brittle or quasi-brittle materials, such as
rock or concrete, is shown as follows�����

J2 σ( )√ � A + BI1 σ( ) (7)
I1 and J2 are the first tensor and the second partial derivative of

the invariant, respectively.
A is the equation about uniaxial tension (σt). B is the equation

about uniaxial compression (σc). The specific form is as follows

A � 2�
3

√ σcσt
σc + σt

( );B � 1�
3

√ σt − σc
σc + σt

( ) (8)

For quasi-brittle materials, the mechanical properties within the
Drucker – Prager failure range can still be regarded as linear elastic.
Only when the stress reaches the failure surface, the linear elastic
behavior will be transformed into non-linear action. At the same time,
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the failure of the material will lead to the weakening of the tensile
strength and compressive strength.We can get the relationship between
the material strength and the phase field damage by using the
degradation function g(ϕ) in the numerical calculation:

A ϕ( ) � 2�
3

√ g ϕ( )σcg ϕ( )σt
g ϕ( )σc + g ϕ( )σt( ) � g ϕ( ) 2�

3
√ σcσt

σc + σt
( ) � g ϕ( )A ϕ � 0( )

B ϕ( ) � 1�
3

√ g ϕ( )σt − g ϕ( )σc
g ϕ( )σc + g ϕ( )σt( ) � 1�

3
√ σ t − σc

σc + σt
( ) � B ϕ � 0( )

(9)

The phase field parameter (? = 0) represents the integrity of the
material. (? = 1) represents the complete destruction of the material.
At this time, the Drucker – Prager parameters are as follows

A ϕ � 1( ) � 0;B ϕ � 1( ) � B ϕ � 0( ) (10)
Governing equations of phase field fracture model.
Under the condition of considering kinetic energy T at the same

time, according to the crack surface energy expressed in Eq.3 and the
elastic strain energy density expressed in Eq. 6, the following formula
can be obtained:

T _u( ) � ∫
Ω

1
2
ρ _u · _udV (11)

In the formula: ν is the material density. Thus, the expression of
Lagrange function can be written:

L � T − Π

� ∫
Ω

1
2
ρ _u · _udV − ∫

Ω
1 − ϕ( )2 + κ[ ]ψ+

e ε( ) + ψ−
e ε( ){ }dV

− ∫
Ω
Gc

ϕ2

2l0
+ l0
2

∣∣∣∣∣∣∣∣∇ϕ∣∣∣∣2[ ]dV (12)

According to Hamilton’s principle and ignoring the physical
force, the Lagrangian function L takes the variation of { _u, ϕ}, and the
control equation of the phase field fracture model can be obtained:

Div σ[ ] � ρ€u
Gc

l0
+ 2ψ+

e( )ϕ − Gcl0Δϕ � 2ψ+
e} (13)

In the formula: σ is Cauchy stress tensor. We can obtain the
stress from the partial derivative of the elastic strain energy
corresponding to the strain

σ � 1 − ϕ( )2 + κ[ ]zεψ+
e ε( ) + zεψ

−
e ε( ) �

1 − ϕ( )2 + κ[ ] λ〈tr ε( )〉+I + 2με+( ) + λ〈tr ε( )〉−I + 2με−
(14)

Where: I is the second order unit tensor. The control Eq. 13 is a set
of partial differential equations composed of the dynamic balance
equation and the phase field evolution equation. In order to make
the control equation equal to the aforementioned variational method,
the irreversible condition should be added, that is, when the elastomer is
under pressure or unloading, the crack healing should be prevented.
The simplest and most effective way to deal with the irreversibility of
variables is to introduce historical state variables:

H x, t( ) � max
s∈ 0,t[ ]

ψ+
e ε x, s( )[ ] (15)

The state variable H represents the maximum tensile elastic strain
energy. The maximum value of the H variable from loading to the

current time is also related to the relative position and time, that is,
H(x, t). The irreversibility condition can be satisfied by replacing the
value of ∈ ψ+

e in Eq. 13 with H(x, t) in the control equation. It is also
because of the previous irreversible and only increase monotonically.
Because of the irreversibility of the state variableH, ϕ also has the same
irreversibility and will only increase monotonically. At this time, the
control equation should be rewritten as:

Div σ[ ] + b � ρ€u
Gc

l0
+ 2H( )ϕ − Gcl0Δϕ � 2H} (16)

Where: b is the body force. The phase field fracture model can
describe any behavior of the fracture only by a set of partial differential
equations. The separated fracture is equivalent to the fracture field
coupled with the displacement field, and no additional tracking of the
geometric shape of the tracking crack is required. Therefore, any
propagation path of the fracture can be calculated.

2.4 Principle of virtual work. Balance of
forces

Now, we will use the principle of virtual work to derive the
equilibrium equations of the coupled deformation fracture system.
Cauchy stress is introduced σ, It is related to the strain ε Work
conjugation. In addition, the traction force T is defined as partial
zΩ on the solid boundary. We introduce scalar stress into the fracture
model ω. This stress ω And phase field ϕ and phase field micro-stress
vector ξ, which conjugate with the phase field gradient ϕ. It is assumed
that the phase field ϕ is only driven by the solution of the displacement
problem. Therefore, there is no external traction and ϕ relevant. In the
absence of external force, the principle of virtual work is as follows:

∫
Ω
{σ: δε + ωδϕ + ξ · δ∇ϕ}dV � ∫

zΩ
T · δu( )dS (17)

Among δ Represents a virtual quantity. This equation must be
applicable to any field Ω and any kinematically permissible change
of virtual quantity. Therefore, by applying the Gauss divergence
theorem, the local force balance is given by the following formula:

∇ · σ � 0
∇ · ξ − ω � 0

in zΩ (18)

boundary conditions:

σ · n � T
ξ · n � 0

on zΩ (19)

2.5 Constitutive theory

Based on the phase field crack modeling and theoretical
framework, we first discuss the relationship between the change
of phase field variables around the crack and the length scale by
modifying the degradation function. It is feasible to modify the
degradation function under our phase-field model to affect the peak
stress of the phase-field model. The following is our equilibrium
equation, free energy and related constitutive equation. The balance
equation is as follows:
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σji,j + bi � 0 inV and ti � σjinj on S (20)
V is the volume of the object, S is its boundary surface, ni is the unit
component (perpendicular to the surface), bi is the physical strength
per unit volume, ti is the traction vector, σji is the component of
Cauchy stress tensor. Assuming small deformation and deformation
gradient, make infinitesimal strain tensor εij can be determined by
the deformation gradient of the displacement vector ui is
expressed as,

εij � 1
2

ui,j + uj,i( ) (21)

Phase field parameters usually introduced by phase field
method ϕ .It is used to describe the degradation of materials,
and is generally set ϕ When the boundary changes from 1 to 0,
1 indicates that the material is intact without cracks ϕ =
0 indicates that the material has been completely destroyed.
According to Gurtin’s [34] research, the micro-forces cited at
the same time are: a group of micro-forces on the outer surface λ
and body micro-force γ, the micro force on the inner surface is π
and ξi, The following is the point direction balance equation of
these micro forces:

ξi,i + γ + π � 0 inV and ξ ini � λ on S (22)
It can be seen from the second law of thermodynamics in

isothermal form that for the system, the sum of the work done
by mechanical traction and body force and the work done by
external surface and body force is greater than or equal to
Helmholtz free energy ψ Total change of. The integral form of
the second law is

∫
V

_ψdV≤∫
V
b1 _ui + γ _ϕ( )dV + ∫

S
ti _ui + λ _ϕ( )dS (23)

Assume that for any volume ψ depends on _εij, ϕ, and _ϕ. Under
the condition of applying divergence theory, we can determine that
Eq. 23 is bound to hold.

zψ

zεij
_εij + zψ

zϕ
_ϕ + zψ

zϕ,i

_ϕ,i +
zψ

z _ϕ
€ϕ≤ σji _εij − π _ϕ + ξi _ϕ,i (24)

According to the standard Coleman and Noll procedure [35], if,

σji � zψ

zεij
, ξi � zψ

zϕ,i

, and
zψ

zϕ
� 0 (25)

The remaining items lead to unequal reduced dissipation,

π + zψ

zϕ
( ) _ϕ≤ 0. (26)

The attenuation of this dissipative inequality always satisfies the
following conditions

π � −zψ
zϕ

− β ϕ _ϕ, ϕ, i, εij( ) _ϕ (27)

In the fracture phase field method of brittle materials similar to
rock, the value of the β is zero.

The following formula introduces a form of Helmholtz free
energy to apply the frame to brittle fracture

ψ � g ϕ( )ψ+
e + ψ−

e[ ] + Gc
3
80

1 − ϕ( ) + 3
8
0ϕ,iϕ,i[ ] (28)

Among ψ+
e represents the effect of tensile stress on elasticity, ψ−

e

represents the effect of compression on elastic strain energy. The study
of strain energy decomposition by Borden et al is very profound. For the
numerical simulation of brittle fracture, we usually introduce the
physical quantity representing the tensile or compressive strength of
the material within the elastic limit, namely the elastic modulus E, into
the linear elastic isotropic material, as well as the elastic constant
Poisson’s ratio ν reflecting the transverse deformation of the
material. For our phase-field simulation, we also need to introduce
physical quantities such as the effective fracture surface energy Gc per
unit area, and the length scale parameter 0. For phase-field fracture
simulation, we have mentioned that the variation range of phase-field

FIGURE 1
Fissures described with a phase-field model.

FIGURE 2
The curvature of the degradation function is controlled by the
parameter s, corresponding to different change rates. For large s
values, the change of degradation function is similar to that of
traditional AT2 model.
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parameters is between 0 and 1, and the length scale affects the influence
range of phase-field parameters.

Rooted in the variational principle of linear elastic fracture energy
proposed by Francfort and Marigo [30], and referring to the elliptic
regularizationmethod ofMumford-Shah functional in computer image

segmentation, it is called AT2 model [36–42], and its manifestation in
the phase-field fracture model is (1 − ϕ)2. With the failure of the
material, the physical properties of thematerial itself will also change. At
this time, we need to use the degradation function, namely g, to
determine the weakening of the physical properties of the material.

FIGURE 3
(A) Square plate under tension/m. (B) Meshing diagram (Tight zone dimensions = 0.2, other = 1) (C) Crack propagation path (S = 5). (D) Crack
propagation path (S = 200). (E) Crack propagation path (traditional degradation).
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Obviously, our degradation function is related to the phase field
parameters. Just as the phase field parameters ϕ only change from
0 to 1, so is our degradation functiong.When thematerial is completely
destroyed, the degradation function g(ϕ) = 0, we can easily realize the
weakening of the elastic property by multiplying it by the elastic energy.
The following is the function of the degradation function and the elastic
energy equation:

g ϕ( ) � 1 − ϕ( )2 (29)
According to our degradation function, it is easy to obtain the

peak stress:

σc �
�����
3GcE

80

√
(30)

The final governing equation is as follows:

ϕ2zψ
+
e

zεij
+ zψ−

e

zεij
( ) + bi � β _ϕ in V ϕ2zψ

+
e

zεij
+ zψ−

e

zεij
( )nj � ti on S (31)

And

3
8
Gc0ϕ,ii +

3Gc

80
− 2ϕψ+

e + γ � 0 in V,
3
8
Gc0ϕ,ini � λ on S (32)

3 The degradation function

For the sake of completeness, we introduce the degradation
function proposed by Lo et al [18, 20]. In this section. Eq. 30 shows
that the peak stress is not only related to the properties of the
material itself, such as material strength σc. Breaking energy Gc is
related to Young’s modulus E, and also to the phase field length
scale 0. Because of our need for numerical simulation of large-
scale rock phase field fracture, the phase field length scale is
usually a very small physical quantity. This has brought a great
burden to our actual calculation. We can easily associate whether
we can decouple the peak stress and the phase field length scale if
we adopt a new degradation function to ensure more efficient
calculation results. Therefore, we adopt the following degradation
function:

g ϕ( ) � s 1 − s − 1
s

( )ϕ2[ ] (33)

As shown in Figure 2, the function curve under different s
values. The characteristic of this degradation function is that a
parameter s is introduced to control the specific peak stress through
different values of s. We can easily calculate the peak stress of
different s values by the following formula.

σ*c �
���
3GcE
80

√������������
s − 1( ) ln s

s−1( )√ (34)

we separate the phase field length scale 0 and the physical
length scale p. In the traditional phase field simulation, 0 � p,
and we choose different s values, the corresponding phase field
length scale 0 and the physical length scale lp ratio are also
different, and the corresponding physical length scale p formula is

p � s − 1( ) ln s

s − 1
( )0 (35)

At this time, the ratio of peak stress is also different. We use the
new peak stress symbol σ*c to distinguish,

σ*c �
�����
3GcE

8p
.

√
(36)

For the value of s, we can find that when s ≈ 1.0148, 0 increase by
16 times with the peak stress unchanged. This has increased by an order
ofmagnitude, and if we want to increase 0 100 times while maintaining
the same peak stress, when s≈ 1.00155.With different values of s, we can
easily simulate a larger scale model, which has many advantages for the
phase field modeling of our large-scale rock mass model.

4 Numerical examples

4.1 Tension square plate with unilateral
crack

Consider the tension square plate containing initial cracks as shown
in Figure 3Awith a side length of 50mm, which is divided into

FIGURE 4
(A) Meshing diagram = 0.4. (B) Crack propagation path (S = 1.107). (C) Crack propagation path (S = 1.01).
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46118 quadrilateral elements as shown in Figure 3B, and locally densified
at the predicted crack growth path, where the grid size is about 0.1 mm.
Let the problem be a plane strain problem, with an elastic modulus of
250 kN/mm2, a Poisson’s ratio of 0.2, and a fracture toughness of Gc =
2.5 × 10−3 kN/mm2. Using displacement loading method, t = 1s, ΔU =
0.15mm until complete failure. During the calculation, l0 = 0.2 mm is

taken. First, the geometric discontinuitymethod is used to preset the initial
crack, that is, the upper and lower elements are geometrically separated at
the crack. The calculated crack growth process is shown in Figure 3.

Based on the numerical simulation results presented in Figures 3, 4,
it can be observed that the model employing our proposed phase-field
fracture method generates a crack propagation path that is more

FIGURE 5
(A) Sheared square plates. (B)Meshing diagram (Tight zone dimensions = 0.2, other = 1) (C)Crack propagation path (S = 200). (D)Crack propagation
path (traditional degradation).

Frontiers in Physics frontiersin.org07

Liu et al. 10.3389/fphy.2023.1159566

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1159566


complex and closely resembles a rock fracture section during the
simulation of the tensile square plate. Conversely, the crack growth
path generated by the traditional degradation function appears more
linear. These findings indicate that our proposed phase-field fracture
model possesses distinctive characteristics in accurately capturing crack

propagation under complex stress-displacement boundary conditions,
which enables it to fit large-scale rock models while maintaining crack
tracking precision. Consequently, further numerical simulations will be
conducted to comprehensively investigate, analyze and compare the
performance of our proposed model.

FIGURE 6
(A) Meshing diagram (Tight zone dimensions = 0.4). (B) Crack propagation path (S = 1.107). (C) Crack propagation path (S = 1.01).
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4.2 Shear square plate with unilateral crack

The samematerial parameters as in Example 4.1 are used to study
the crack growth process of square plates under shear. The calculation
model is shown in Figure 5A, and the vertical displacement on all
boundaries is constrained to zero. The displacement loading method
is adopted, and the displacement increment of each loading step is Δ
U= 2.5mm, the non-uniform grid is adopted, and the grid is densified
at the position where the crack growth is expected. Theminimum grid
size is about 0.2 mm. The grid model is shown in Figure 5B.

In the experiment involving a shear square plate with a unilateral
crack, numerical simulations were conducted by varying the S value (S =
200), and the results obtained are shown in Figures 5D, E. Comparison of
these results with those obtained by the traditional degradation function,

such as Figure 5C, reveals that the tracked crack propagation path
remains the same. This observation is consistent with our theoretical
calculations of the relationship between S value and peak stress.

For the following research, we plan to investigate the effect of
varying the S value on the physical and phase field scales. Specifically,
we will choose values of S = 1.01 and 1.1 to expand the physical scale
and the multiple of the phase field scale. The choice of S = 1.01 will
result in a phase field scale that is 16 times the physical scale, while S =
1.107 will yield a phase field scale that is 4 times the physical scale. The
model cell mesh size will be set to 0.4 mm. Through this verification
process, we aim to demonstrate that our phase-field model has lower
demands for mesh accuracy than the traditional phase-field model.

Based on the results presented in Figure 6, it can be observed that a
gradual decrease of parameter S leads to an increase in the proportion of

FIGURE 7
(A) Direct shear test (DST). (B) Meshing diagram (Tight zone dimensions = 0.1, other = 1) and the calculated crack growth process. (C) Crack
propagation path (S = 200). (D) Crack propagation path (traditional degradation).
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phase field length to physical length. This results in the phase field
length being several times or even ten times greater than the physical
length. As the proportional relationship between the mesh density and
phase field length is a key factor affecting fracture tracking accuracy in
the phase-fieldmethod, it is possible to reduce themesh density without
compromising the accuracy of crack tracking, as long as the proportion
of mesh density and phase field length is maintained. This outcome is
highly valuable for large-scale rock numerical simulations, as it results in
significant computational resource savings and enhances the efficacy of
the phase-field method for such applications.

4.3 Direct shear test of cracked plates

Next, direct shear tests are simulated to evaluate the
degradation function changes in the test configuration. The
geometry and boundary conditions of the model are shown in
Figure 7A. Apply a lateral displacement on the top edge, which is
equal to 0.15 mm. The boundary conditions are vertical
constraints at the top and fixed constraints at the bottom.
Modulus of elasticity E = 25 GPa and Poisson’s ratio ] = 0.2,

fracture parameters are given by Gc = 0.15 kJ/m2 and l = 0.2 mm.
In order to save computing resources, the predicted crack
propagation area is encrypted, and the cell size of the encrypted
part is at least half of the phase field scale, so as to save computer
resources without affecting the computing accuracy.

The crack initiation and propagation mode observed in the
simulation is in line with the rock shear fracture experiment, where
the crack initiates from the edge and progresses towards the center.
The simulation results presented in the figure above compare the
crack growth path obtained using the specific degradation function
with S = 200 and the traditional degradation function. The result
display that the crack propagation paths traced by the traditional
degradation function are similar when S = 200.

As the value of S approaches 1, the phase field characteristic length
and the physical characteristic length become decoupled, resulting in a
change in the quantitative relationship between the phase field length
and physical scale. This leads to a significant increase in the phase field
scale, which can become several times or even dozens of times larger
than the physical scale. For instance, when S = 1.107, the phase field
scale is observed to be four times larger than the physical scale. To
accurately track the crack propagation path using the phase field

FIGURE 8
(A) Meshing diagram (Tight zone dimensions = 0.5, other = 2). (B) Crack propagation path (S = 1.107).
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method, a smaller mesh size than the phase field scale is required.
Therefore, with the increase in phase field scale, excessively dense grids
can be discarded. By maintaining the proportion between the phase
field scale and mesh size, a mesh size of 0.4 mm can be set to achieve
equally accurate crack propagation path tracking.

As shown in Figure 8, when using a smaller S value, increase the
cell size of the model and use a 0.04 mmmesh size. At this time, very
accurate crack tracking curve of rock direct shear test can still be

obtained. It is verified that this phase field model can more
effectively simulate large-scale rock fracture.

4.4 Notched plate with eccentric holes

In this case, we model the rock plate with holes, as shown in the
figure. This is an eccentric plate with three holes with a length of 120mm

FIGURE 9
(A) Boundary conditions and geometric parameters (B) actual experimental results (C) Meshing diagram (Tight zone dimensions=0.1, other=1) (D)
Crack propogation path (S=5) (E) Crack propogation path (S=200) (F) Crack propogation path (traditional degradation).
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and awidth of 70 mm. The size and distribution of the holes are indicated
in the Figure 9 below. The boundary condition is that the bottom is fixed
vertically and horizontally, and 0.15mm vertical displacement is applied
to the top. The material property parameter in this simulation is Young’s
modulus E = 25 GPa, Poisson’s ratio ] = 0.20, Phase field scale 0 =
0.25 mm and energy release rate Gc = 0.15 kJ/m2. At the same time, we
compare the different degradation functions affected by multiple S and
the cracks tracked by the traditional degradation functions, and use the
same division ratio for the element, that is, the mesh size is equal to
0.1 mm. See the figure below for the specific numerical simulation results.

In notched rock slabs with eccentric holes, obtaining accurate crack
information is crucial, as multiple factors affect the crack propagation
process. In this simulation, we employed the traditional phase field
model of Drucker-Prager fracture criterion and the traditional
degradation function for numerical simulation, and the simulation
results are depicted in Figures 9, 10. Comparing Figures 10 B, C, if we
exaggerate the phase field length while maintaining the original set
mesh density, our crack path will shift. At this time, we can alleviate this
problem by keeping the proportion of the enlarged grid density and the
phase field length the same, that is, the grid density is less than half of
the phase field scale. Even so, the mesh density after densification is still
much smaller than the initially given mesh density, which is more
conducive to obtaining the correct crack path and more efficient
numerical simulation. However, we can overcome this issue by
densifying the mesh. Through multiple sets of experimental
simulations, we determined that a phase field scale with a grid
density less than half can accurately track the crack propagation path.

5 Conclusion

This study effectively accelerates the fracture phase field
modeling for compressive failure of rocks materials. By splitting
the strain energy using the approach introduced by [18, 20], the
asymmetric tension-compression behaviors in rock fracture
processes can be characterized. To decouple the phase-field
length with the physical length scale, the degradation function
proposed by [18, 20] were adopted and thus the mesh density is
reduced for the structures much larger than the physical process

zone. In the future, we will extend the present approach to the
applications of hydraulic fracturing in quasi-brittle materials [43]. In
addition, the combination of isogeometric analysis will be
considered to solve high-order problems [44].
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