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Convolution neural network (CNN)is widely used in hyperspectral image (HSI)
classification. However, the network architecture of CNNs is usually designed
manually, which requires careful fine-tuning. Recently, many technologies for
neural architecture search (NAS) have been proposed to automatically design
networks, further improving the accuracy of HSI classification to a new level. This
paper proposes a circular kernel convolution-β-decay regulation NAS-confident
learning rate (CK-βNAS-CLR) framework to automatically design the neural
network structure for HSI classification. First, this paper constructs a hybrid
search space with 12 kinds of operation, which considers the difference
between enhanced circular kernel convolution and square kernel convolution
in feature acquisition, so as to improve the sensitivity of the network to
hyperspectral information features. Then, the β-decay regulation scheme is
introduced to enhance the robustness of differential architecture search
(DARTS) and reduce the discretization differences in architecture search.
Finally, we combined the confidence learning rate strategy to alleviate the
problem of performance collapse. The experimental results on public HSI
datasets (Indian Pines, Pavia University) show that the proposed NAS method
achieves impressive classification performance and effectively improves
classification accuracy.
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1 Introduction

Hyperspectral sensing images (HSIs) collect rich spatial–spectral information in
hundreds of spectral bands, which can be used to effectively distinguish ground cover.
HSI classification is based on pixel level, and many traditional methods based on machine
learning have been used, such as the K-nearest neighbor (KNN) [1] and support vector
machine (SVM) [2]. The HSI classification method based on deep learning can effectively
extract the robust features to obtain better classification performance [3–5].

Limited by the cost of computing resources and the workload of parameter adjustment, it
is inevitable to promote the development of automatic design efficient neural network
technology [6]. The goal of NAS (neural architecture search)is to select and combine
different neural operations from predefined search spaces and to automate the construction
of high-performance neural network structures. Traditional NAS work uses the
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reinforcement learning algorithm (RL) [7], evolutionary algorithm
(EA) [8], and the gradient-based method to conduct architecture
search.

In order to reduce resource consumption, one-shot NAS
methods based on supernet are developed [9]. DARTS is a one-
shot NAS method with a distinguishable search strategy [10]. By
introducing Softmax function, it expands the discrete space into a
continuous search optimization process. Specifically, it can reduce
the workload of network architecture design and reduce the process
of a large number of verification experiments [9].

The method based on the automatic design of convolutional
neural network for hyperspectral image classification (CNAS)
introduces DARTS into the HSI classification task for the first
time. The method uses point-by-point convolution to compress
the spectral dimensions of HSI into dozens of dimensions and then
uses DARTS to search for neural network architecture suitable for
the HSI dataset [11]. Subsequently, based on the method of 3D
asymmetric neural architecture search (3D-ANAS), a classification
framework from pixel to pixel was designed, and the redundant
operation problem was solved by using the 3D asymmetric CNN,
which significantly improved the calculation speed of the
model [12].

Traditional CNN design uses square kernel to extract image
features, which brings significant challenges to the computing
system because the number of arithmetic operations increases
exponentially with the increase of network size. The features
acquired by the square kernel are usually unevenly distributed
[13] because the weights at the central intersection are usually
large. Inspired by circular kernel (CK) convolution, this paper
studies a new NAS paradigm to classify HSI data by

automatically designing hybrid search space. The main
contributions of this paper are as follows:

1) An effective framework is proposed to design the NAS, called
CK-βNAS-CLR, which is composed of a hybrid search space of
12 operations of circular convolution with different convolution
methods, different scales, and attention mechanism to effectively
improve the feature acquisition ability.

2) β-decay regularization is introduced effectively to stabilize the
search process and make the searched network architecture
transferable among multiple HSI datasets.

3) We introduced the confident learning rate strategy to focus on
the confidence level when updating the structure weight gradient
and to prevent over-parameterization.

2 Materials and methods

As shown in Figure 1, the NAS framework for HSI proposed is
described, called as CK-βNAS-CLR. Compared with other HSI
classification methods, this method aims to alleviate the
shortcomings of traditional microNAS methods from three
aspects of search space, search strategy, and architecture resource
optimization and effectively improve the classification accuracy.

DARTS is a basic framework which adopts weight sharing and
combines hypernetwork training with the search of the best
candidate architecture to effectively reduce the waste of
computing resources. First, the hyperspectral image is clipped
into patch by sliding window as input. Then, the hybrid search
space of CK convolution and attention mechanism is constructed,

FIGURE 1
Overall framework of the proposed CK-βNAS-CLR model.
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and the operation search between nodes is carried out in the hybrid
search space to effectively improve the feature acquisition ability of
the receptive field. At the same time, the architecture parameter set
β, which represents the importance of the operator, is attenuated and
regularized, effectively strengthening the robustness of DARTS and
reducing the discretization differences in the architecture search
process. After the search is completed, the algorithm stacks multiple
normal cells and reduction cells to form the optimal neural
structure, and then the classification results are obtained through
Softmax operation. In addition, CLR is proposed to stack decay
regularization to alleviate the performance crash of DARTS,
improve memory efficiency, and reduce architecture search time.

2.1 The proposed NAS framework for HSI
classification

2.1.1 Integrating circular kernel to convolution
The circular kernel is isotropic and can be realized from all

directions. In addition, symmetric circular nuclei can ensure
rotation invariance, which uses bilinear interpolation to
approximate the traditional square convolution kernel to a
circular convolution kernel, and uses matrix transformation to
reparametrize the weight matrix, replacing the original matrix
with the changed matrix to realize the offset of receptive field
reception. Without considering the loss, the expression of
receptive field H of standard 3 × 3 square convolution kernel
with a dilation of 1 is written as follows:

H � −1, 1( ), 0, 1( ), 1, 1( ), −1, 0( ), 0, 0( ), 1, 0( ), −1,−1( ), 0,−1( ), 1,−1( ){ },
(1)

whereH represents the offset set of the neighborhood convolved
on the center pixel. By convolution, the feature map is R ∈ HS×S and
kernel is J ∈ HM×N. The output feature map U ∈ HM×N can be
obtained, and the coordinates of each position are shown in
formula (2).

Ul ∈ ∑
k∈H

RkJl+k. (2)

So, we get U � R ⊗ J, where ⊗ represents the classical
convolution operation used by the CNN. Therefore, the change
of receptive field of nucleus circularis 3 × 3 is shown in formula(3).
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For the sampling problem of circular convolution kernels, we
selected the offset ( Δb{ }) of k for different discrete kernel positions
and resampled the offset to input J to obtain circular receptive fields.
Because the sampling receptive field of circular nucleus has a
fraction, we use bilinear interpolation to approximate the
sampling value of the receptive field.

Ul ∈ ∑
k∈H

RkJ1+k+Δb, (4)

Jb � ∑
k∈H

V k, b( )Jk, (5)

where b represents the grid position in the circular receptive field
and k represents all grid positions in the square receptive field, which
is the kernel of two-dimensional bilinear interpolation. According to
the bilinear interpolation, V can be divided into two one-
dimensional cores.

V k, b( ) � g kx, bx( ) · g ky, by( ), (6)
g q, e( ) � max 0, 1 − q − e

∣∣∣∣ ∣∣∣∣( ). (7)

Therefore, V(k, b) ≠ 0 and V(k, b) � 1 only correspond to the
corresponding grid k of receptive field B with grid location b. Then,
we let ĴRF(l) ∈ BS2×1 and R̂∈ BS2×1 represent the adjusted receptive
field centered on position i and nucleus, respectively. Generally, the
standard convolution can be defined as shown in formula (8), so
after replacing the circular convolution kernel, the circular
convolution can be located as shown in formula (9).

Ul ∈ R̂
T
ĴRF l( ), (8)

Ul ∈ R̂
T
CĴRF l( )( ) � R̂

T
C( )ĴRF l( ), (9)

where C ∈ BS2×S2 is a fixed sparse coefficient matrix, so let
J ∈ BS2×S2 , U ∈ BS2×S2 , and R ∈ BS2×S2 be the input feature map,
output feature map, and kernel, respectively, so the
corresponding definition of formula (9) can be written as
formula (10).

Ul ∈ R ⊗ C*J( ) � R*C( ) ⊗ J, (10)
where C*J is the convolution process of changing the square

receptive field into a circular receptive field. Thus, we can calculate the
core weight to achieve operation C*J. This calculation method can
effectively avoid calculating the offset of multiple convolutions and
reduce the cost of core operation. Next, we summarize the analysis of
the actual effect of the transformation matrix. We let ΔR � Ra+1 − Ra,
and the value of a change on the output is shown in formula (11). The
squared value of a change on the output is shown in formula (12).

ΔU � Ua+1 − Ua, (11)
ΔU‖ ‖2 � C*J( )T ⊗ΔRTΔR ⊗ C*J( ).

� JT ⊗ CT*ΔRTΔR*C( ) ⊗ J
(12)

In contrast, ΔU of the traditional convolution layer is defined by
ΔRTΔR . Therefore, it can be concluded that the transformation
matrix C caused by the circular core can provide a better choice for
the gradient descent path of DARTS.

2.1.2 β-decay regularization scheme
In order to alleviate unfair competition in DARTS, we

introduced the β-decay regulation scheme [14] so as to improve
its robustness and generalization ability and effectively reduce the
search memory and the search cost to find the best architecture as
shown in Figure 2.

α(m,n)
o converts the discretization operation of the optional

operation set O in the search space into an operable continuous
set. After implementing Softmax operation, the architecture
parameter set β(m,n)

l is obtained, which is attenuated and regularized.

β m,n( )
l � ∑

o∈O

exp α m,n( )
o( )∑l′�1 exp α m,n( )

o′( ), (13)
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where β(m,n)
l is the combination of architecture parameters

between node m and node n and l is the number of optional
operations. Each cell can have up to N nodes, and α(m,n)

o

represents the architecture parameters. A special coefficient for
each candidate operation β(m,n)

o is defined.

β m,n( )
o � exp α m,n( )

o( )∑o′∈O exp α m,n( )
o′( ). (14)

Starting from the default setting of regularization, consider the
one-step update of architecture parameter α, where ςα represents the
learning rate a of architecture parameters.

αt+1l ← αtl − ηα.∇αLvalid. (15)
For the special gradient descent algorithm of DARTS, these

regularized gradients need to be normalized (NL) through the sum
size and to realize the average distribution of the total gradient
without normalization.

αt+1l ← αtl − ηα.∇αLvalid − ςαδNL αtl( ), (16)
αt+1l ← αtl − ηα.∇αLvalid − ςαδ αyk( ). (17)

In the DARTS search process, the architecture parameter set, β,
is used to express the importance of all operators. The research on
explicit regularization of β can more clearly standardize the
optimization of architecture parameters so as to improve the
robustness and architecture universality of DARTS. We use the χ

function with α as the independent variable to express the total
impact of attenuation regularization.

�β
t+1
l � χt+1l αtl( )βt+1l , (18)

αt+1
l ← αtl − ηα.∇αLvalid − ςαδR αtk( ), (19)

where the χ function (R is the independent variable) represents
the overall influence of β attenuation regularization and R is the

mapping function. We can iterate for dividing the single-step update
parameter value βt+1l and parameter value weighted sum �β

t+1
l of β.

�β
t+1
l

βt+1l

� ∑ O| |
l′�1 exp αt+1l′( )

∑ O| |
l′�1 exp R αtl( ) − R αtl′( )( )[ ]δςα exp αt+1l′( ). (20)

It can be found that mapping function R determines the impact
of α on β. To avoid excessive regularization and optimization
difficulties, Softmax is used to normalize α.

R αl( ) � exp αl( )∑ O| |
l′�1 exp αl′( ). (21)

We can obtain the impact and effect of our method.

χt+1l αtl( ) � ∑ O| |
l′�1 exp αt+1l′( )

∑ O| |
l′�1 exp

exp αt
l( )−exp αt

l′( )∑ O| |
l″�1 exp αt

l″( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦δςα exp αt+1l′( )
χt+1l αtl( ). (22)

2.1.3 Confident learning rate strategy
When the NAS method is used to classify hyperspectral datasets,

a large number of parameters will be generated. When the training
samples are limited, the performance of the network may be reduced
due to the over-fitting phenomenon, which will lead to low memory
utilization during the training process. CLR is used to alleviate these
two problems [15].

After applying the Softmax operation, the structure is relaxed.
The gradient descent algorithm is used to optimize the α � α(m,n){ }
matrix, and the original weight of the network is called w. Then, the
cross-entropy formula is used to calculate the loss value in the
training stage and the parameters Ltrain and Lvalid are updated.

In order to enable both to achieve the optimization strategy at
the same time, it is necessary to fix the value of α � α(m,n){ } matrix
on the training set, update w using the gradient descent algorithm,

FIGURE 2
β-decay regularization scheme.
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fix the w value on the verification set, update the α � α(m,n){ } value
using the gradient descent algorithm, and obtain the best parameter
value repeatedly. Stop the optimization after finding the best
architecture neural architecture α*o and minimize the verification
loss Lvalid(w*, α*).

min
α

Lvalid w* α( ), α( ), (23)
s.t.w* α( ) � argmin

w
Ltrain w, α( ). (24)

NAS architecture parameters will be over-parameterized with
the increase of training time. Therefore, the gradient confidence
obtained from the parameterized DARTS should increase with the
training time of the architecture weight update.

LRConfident a( ) � a

A
( )τ

× LRα, (25)

where α represents the number of epochs currently trained, A
represents the preset total epochs, and τ is the confidence factor of
CLR. Through the update of the confidence learning rate, the
network obtains Lvalid and uses it for gradient update.

gradα � ∇αLvalid w − ξ∇wLtrain ω, α( ), α( ). (26)
The confidence learning rate is established in the process of

architecture gradient update.

gradα � LRconfident*∇αLvalid w − ξ∇wLtrain w, α( ), α( ). (27)

3 Results

Our experiments are conducted using Intel (R) Xeon (R)
4208 CPU@2.10GHz Processor and Nvidia GeForce RTX 2080Ti
graphics card.We selected the average of 10 experiments to compute
the overall accuracy (OA), average accuracy (AA), and Kappa
coefficient (K).

3.1 Comparison with state-of-the-art
methods

In this section, we select some advanced methods to make
comparison so as to evaluate the classification performance,
which include extended morphological profile combined with
support vector machine (EMP-SVM) [16], spectral spatial
residual network (SSRN) [17], residual network (ResNet) [18],
pyramid residual network (PyResNet) [19], multi-layer
perceptron mixer (MLP Mixer) [20], CNAS [11], and efficient
convolutional neural architecture search (ANAS-CPA-LS) [21].
All experimental results are shown in Tables 1, 2. The sample is
clipped by using the sliding window strategy size of 32 × 32, and the
overlap rate is set to 50%. We randomly selected 30 samples as the
training dataset and 20 samples as the validation dataset. The
training time is set to 200, and the learning rate of the three data
sets is set to 0.001.

TABLE 1 Performance comparison of different methods of the Indian Pines dataset.

Method EMP-SVM SSRN ResNet PyResNet CNAS MLP-Mixer ANAS-CPA-LS CK-βNAS-CLR

Alfalfa 51.16 ± 17.51 100 ± 0.00 95.36 ± 0.28 97.43 ± 0.36 95.14 ± 4.27 100 ± 0.00 99.39 ± 0.32 100.0 ± 0.75

Corn-no till 66.26 ± 3.37 88.95 ± 1.19 93.36 ± 3.76 98.87 ± 1.04 96.19 ± 1.21 96.56 ± 0.09 96.43 ± 0.79 96.93 ± 0.31

Corn-min till 70.40 ± 3.74 92.87 ± 0.54 95.64 ± 0.37 89.44 ± 0.34 92.86 ± 2.64 92.10 ± 0.03 94.25 ± 0.97 96.10 ± 0.34

Corn 56.63 ± 6.68 96.56 ± 0.91 94.99 ± 4.32 97.47 ± 0.57 96.56 ± 3.94 98.15 ± 0.68 99.07 ± 0.74 99.95 ± 0.00

Grass-pasture 87.04 ± 3.52 90.52 ± 7.56 97.69 ± 2.30 97.38 ± 0.95 97.13 ± 0.27 97.87 ± 1.16 99.56 ± 0.55 94.59 ± 1.16

Grass-trees 87.30 ± 1.82 96.91 ± 1.16 97.27 ± 1.80 98.40 ± 0.12 94.02 ± 0.22 96.98 ± 0.86 96.44 ± 0.97 98.39 ± 0.79

Grass-pasture-mowed 82.78 ± 8.11 86.60 ± 0.89 99.01 ± 0.00 100 ± 0.00 92.31 ± 0.88 100 ± 0.00 90.68 ± 2.66 95.21 ± 0.05

Hay-windrowed 89.45 ± 1.75 96.28 ± 3.71 93.64 ± 1.17 95.81 ± 1.68 99.44 ± 4.66 95.80 ± 0.60 97.91 ± 0.67 95.73 ± 1.95

Oats 64.83 ± 16.3 84.37 ± 0.06 96.66 ± 1.66 94.67 ± 1.11 98.96 ± 0.56 100 ± 0.00 99.51 ± 2.02 93.15 ± 2.87

Soybean-not till 71.90 ± 2.12 92.46 ± 0.07 92.88 ± 1.90 88.20 ± 7.13 92.00 ± 0.56 93.38 ± 0.34 95.02 ± 0.43 98.69 ± 1.04

Soybean-mint till 73.01 ± 1.62 95.33 ± 0.06 94.27 ± 0.11 95.26 ± 1.87 93.90 ± 0.92 95.34 ± 0.37 98.36 ± 0.65 99.04 ± 0.79

Soybean
-clean

66.49 ± 4.56 94.69 ± 2.77 96.13 ± 1.43 95.42 ± 1.79 94.88 ± 0.19 94.34 ± 1.32 99.07 ± 0.83 98.38 ± 3.19

Wheat 88.62 ± 4.35 97.84 ± 1.14 99.02 ± 0.01 99.55 ± 0.62 94.65 ± 0.45 100 ± 0.00 95.28 ± 0.57 99.41 ± 0.12

Woods 90.44 ± 1.19 94.82 ± 2.31 93.97 ± 1.67 96.84 ± 1.14 98.33 ± 0.29 95.64 ± 0.06 95.57 ± 0.99 98.77 ± 0.62

Buildings-grass-trees-drivers 71.35 ± 7.39 91.29 ± 2.52 93.66 ± 0.11 93.56 ± 3.90 94.99 ± 0.45 95.55 ± 0.15 95.14 ± 1.66 98.65 ± 1.24

Stone-steel-towers 98.10 ± 1.82 86.70 ± 1.22 94.47 ± 1.43 96.34 ± 1.72 89.57 ± 2.66 88.12 ± 2.12 88.28 ± 0.96 85.30 ± 0.85

OA/% 81.64 ± 0.02 93.58 ± 1.12 94.53 ± 0.59 94.95 ± 1.07 95.00 ± 0.56 95.95 ± 0.17 96.57 ± 0.56 97.90 ± 0.31

AA/% 75.98 ± 5.36 92.88 ± 1.64 95.50 ± 1.39 95.91 ± 1.52 95.05 ± 1.51 96.23 ± 0.48 96.24 ± 0.98 96.76 ± 1.00

100 K 71.92 ± 2.82 92.67 ± 1.29 93.74 ± 0.67 94.31 ± 0.19 94.88 ± 0.87 95.38 ± 0.20 95.69 ± 0.39 96.97 ± 0.90
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In Table 1, compared with EMP-SVM, SSRN, ResNet,
PyResNet, CNAS, MLP Mixer, and ANAS-CPA-LS, OA obtained
by our proposed method is increased by 16.26%, 4.32%, 3.37%,
2.95%, 2.9%, 1.95%, and 1.33%, respectively, on the Indian Pines
dataset. Figures 3, 4 shows the classification diagram obtained from a
visual perspective. By comparing the classification diagrams
obtained, we can draw a conclusion that our algorithm achieves
better performance. Compared with CNAS, our method uses a
hybrid search space, which can effectively expand the receptive
field acquired by pixels, improve the flexibility of different
convolution kernel operations to process spectrum and space,
and achieve higher classification accuracy.

4 Discussion

The ablation study results are provided in Table 3. When
CNAS is combined with hybrid search space, OA increases by
0.70%, 0.35%, and 0.54%, which proves that the hybrid search
space can improve the sensitivity of the network to hyperspectral
information features and slightly improve the classification
performance of the model. Compared with CNAS, CK-NAS
has no time change in the search time on the three datasets
but has achieved better classification accuracy. CK-βNAS-CLR
search gets better results with fewer parameters and involves less
computational complexity.

TABLE 2 Performance comparison of different methods of the Pavia University dataset.

Method EMP-SVM SSRN ResNet PyResNet CNAS MLP-Mixer ANAS-CPA-LS CK-βNAS-CLR

Asphalt 89.06 ± 1.33 90.59 ± 0.62 95.59 ± 3.43 94.01 ± 0.54 95.55 ± 0.25 95.56 ± 1.26 97.56 ± 1.34 98.75 ± 0.69

Meadows 88.12 ± 0.23 89.26 ± 1.05 97.10 ± 2.06 99.40 ± 0.70 98.91 ± 0.71 99.45 ± 0.15 100 ± 0.00 100 ± 0.00

Gravel 78.65 ± 3.05 78.89 ± 2.65 87.53 ± 5.27 98.26 ± 1.69 93.81 ± 4.60 93.83 ± 1.03 99.78 ± 0.03 98.73 ± 0.28

Trees 88.95 ± 0.53 89.05 ± 1.45 99.03 ± 0.33 98.73 ± 0.61 99.35 ± 0.28 98.78 ± 0.45 93.73 ± 1.64 97.12 ± 0.02

Metal 93.23 ± 1.29 94.55 ± 0.67 98.56 ± 1.36 99.64 ± 0.27 99.67 ± 0.17 99.81 ± 0.81 99.24 ± 0.01 98.93 ± 0.36

Bare soil 90.13 ± 0.54 90.23 ± 1.23 98.35 ± 1.06 99.28 ± 0.04 98.39 ± 0.18 98.97 ± 0.97 100 ± 0.00 100 ± 0.00

Bitumen 81.66 ± 3.31 83.69 ± 2.82 99.29 ± 0.51 96.35 ± 0.19 92.31 ± 0.88 99.22 ± 0.19 94.63 ± 0.24 97.61 ± 0.48

Bricks 83.05 ± 1.61 83.57 ± 2.91 94.61 ± 0.50 84.58 ± 1.34 89.44 ± 4.66 88.88 ± 1.92 92.89 ± 0.42 98.23 ± 0.69

Shadows 95.26 ± 0.56 94.68 ± 0.46 99.39 ± 0.58 99.74 ± 0.05 98.96 ± 0.56 98.92 ± 1.46 96.33 ± 0.32 97.16 ± 0.91

OA/% 91.07 ± 0.85 91.32 ± 1.22 96.49 ± 1.78 96.97 ± 1.32 97.05 ± 0.45 97.55 ± 0.13 97.61 ± 0.87 98.46 ± 0.57

AA/% 87.57 ± 1.38 88.28 ± 1.54 96.61 ± 1.68 96.67 ± 0.13 96.27 ± 1.36 97.05 ± 0.91 97.12 ± 0.44 98.50 ± 0.34

100 K 88.72 ± 1.44 89.43 ± 1.09 95.31 ± 2.41 96.07 ± 0.41 96.22 ± 0.11 96.76 ± 0.18 96.86 ± 0.74 98.06 ± 0.67

FIGURE 3
Classification results of the Indian pines dataset. (A) Ground-truth map, (B) EMP-SVM, (C) SSRN, (D)ResNet, (E) PyResNet, (F) CNAS, (G)MLP-Mixer,
(H) ANAS-CPA-LS, and (I) (I) CK-βNAS-CLR.
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5 Conclusion

In this paper, the neural network structure CK-βNAS-CLR is
proposed. First of all, we introduce a hybrid search space with
circular kernel convolution, which can not only enhance the
robustness of the model and the ability of receptive field
acquisition but also achieve a better role in optimizing the path.
Second, we quoted the β-decay regulation scheme, which reduced
the discretization difference and the search time. Finally, the

confidence learning rate strategy is introduced to improve the
accuracy of model classification and reduce computational
complexity. The experiment was conducted on two HSI datasets,
and CK-βNAS-CLR is compared with seven methods, and the
experimental results show that our method achieves the most
advanced performance while using less computing resources. In
future, we will use an adaptive subset of the data even when training
the final architecture, which may lead to faster runtime and lower
regularization term.

FIGURE 4
Classification results of the Pavia University dataset. (A) Ground-truth map, (B) EMP-SVM, (C) SSRN, (D)ResNet, (E) PyResNet, (F) CNAS, (G) MLP-
Mixer, (H) ANAS-CPA-LS, and (I) CK-βNAS-CLR.

TABLE 3 Ablation results on the two datasets.

Dataset Index CNAS CK + NAS CK+β+NAS CK+β+NAS + CLR

Indian Pines OA (%) 95.00 ± 0.56 95.70 ± 0.87 96.80 ± 0.31 97.82 ± 0.31

AA (%) 95.05 ± 1.51 93.12 ± 0.42 94.60 ± 0.42 96.76 ± 1.00

100 K 94.88 ± 0.87 95.11 ± 0.17 96.95 ± 0.17 96.87 ± 0.90

Search cost (h) 2.702 2.687 2.562 2.473

Params (M) 0.082 0.075 0.075 0.070

Pavia University OA (%) 97.05 ± 0.45 97.40 ± 0.29 97.82 ± 0.20 98.46 ± 0.57

AA (%) 96.27 ± 1.36 97.14 ± 1.36 97.51 ± 1.83 98.50 ± 0.86

100 K 96.22 ± 0.11 96.65 ± 0.79 97.25 ± 2.51 98.06 ± 0.67

Search cost (h) 3.054 3.013 2.867 2.733

Params (M) 0.176 0.172 0.172 0.168
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