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As a powerful method for time-varying problems solving, the zeroing neural
network (ZNN) is widely applied in many practical applications that can be
modeled as time-varying linear matrix equations (TVLME). Generally, existing
ZNN models solve these TVLME problems in the ideal no noise situation
without inequality constraints, but the TVLME with noises and inequality
constraints are rarely considered. Therefore, a non-linear activation function is
designed, and based on the non-linear activation function, a non-linearly activated
ZNN (NAZNN) model is proposed for solving constrained TVLME (CTVLME)
problems. The convergence and robustness of the proposed NAZNN model
are verified theoretically, and simulation results further demonstrate the
effectiveness and superiority of the NAZNN model in dealing with CTVLME and
the constrained robot manipulator trajectory tracking problems. In addition, the
wheeled robot trajectory tracking fault problems with physical constraints are also
analyzed theoretically, and the proposed NAZNN model is also applied to the
manipulator trajectory tracking fault problem, and the experimental results prove
that the NAZNN model also deal with the manipulator trajectory tracking fault
problem effectively.
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1 Introduction

With the acceleration of industrialization, manipulator has been widely used in
industrial production. However, it is important to realize accurate control of robotic
manipulators because as there are various disturbances and constraints in the
production environment. In general, the behavioural control of a robot manipulator can
be modelled as a TVLME problem [1–3]. When designing behavioural controllers for robot
manipulators, there are necessary to consider robot dynamics [4,5], torque saturation [6] and
obstacle avoidance [7,8] of the problem. For example, wheeled robots are non-linear systems
and their controllers do not consider sliding, so it is difficult for these controllers to have
good control when wheeled robots work with some complex environments, such as wet and
icy, uneven surfaces. Moreover, the problems of dynamic coupling, dynamic limitations
caused by the environments, and delay problems of the controller are also should be
considered, and they complicate the control process of manipulator trajectory tracking.
Therefore, researchers have proposed the PID control [9,10], feedback control [11], finite-
time control [12–14], fuzzy control [15–18] and neural network control [19–25] to solve the
above problems.
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In recent years, with the continuous improvement and
development of deep learning [26–30], neural networks [31–36]
have become an efficient solution for various time-varying
problems. For example, Jin et al. build the interference-tolerant
fast convergence zeroing neural network (ITFCZNN) model [37]
based on a new activation function, which exhibit excellent time-
varying Robustness and convergence. One of the things that must be
mentioned is that the activation function heavily influences the
performance of the model. Therefore, the researchers have proposed
a corresponding novel activation function in order to achieve the
desired experimental results. For example [38], proposed zero-tuned
neural networks (ZTNN) to solve the Stein matrix equation based on
several new activation functions. In [39], it is proposed that the
PSAF-based ZNN model is applied to the secondary programming
problem. A ZNN model based on the activation function (HSAF) is
designed in [40] to solve the time-varying square root of the matrix.
In [41,42], it is proposed to apply the SBPAF-based ZNN model to
solve the time-varying Sylvester equation. In [43,44], a ZNN model
with adjustable convergence rate is designed based on the new
activation function and applied to the control process of a robotic
arm. However, most practical problems can be modelled as time-
varying non-linear systems of equations with constraints. In
contrast, the ZNN model described above only considers the
unconstrained ideal environment and may not work as well as
expected in practical applications, especially for the control of robot
behaviour.

The physical constraints of industrial robots must be taken into
account in the actual control process, otherwise specific tasks cannot
be performed and even the hardware of the industrial robot is
damaged. Considering the physical constraints of industrial robots
are less studied. In [45], the motion process of an industrial robot is
modelled as a multilayer time-varying problem in order to solve the
problem of joint angle constraints in the control process [46].
proposed a physical limit constrained minimum velocity
parametric coordination scheme to solve the constraints of a
wheeled robot. In [47], the analytical solution of the robot
controller is solved based on a parametric approach, which in
turn yields the joint angle range of the industrial robot. However,
the above methods only consider the angle overrun fault of the
robotic manipulator, and they ignore other faults, such as speed
overrun, noises, and the robotic manipulator does not stop in the
case of angle overrun, which is possible in practical situations.

It is clear that the usage of neural networks to solve constrained
manipulator trajectory tracking is still far from being investigated,
and the potential of neural networks in this area remains to be
exploited. Therefore, this paper develops the NAZNN for
manipulator trajectory tracking with joint angle and joint velocity
constraints in noisy environments.

The remainder of the paper is organized as follows. The
modeling process and theoretical proof of the NAZNN model are
analyzed in Section 2. Examples of the NAZNN model for solving
CTVLME problems are presented in Section 3. Modeling of a
wheeled robot is provided in Section 4, and simulation
experiments of the NAZNN model for failure case of
manipulator trajectory tracking with physical constraints are
provided in Section 4. Finally, The conclusions of the paper are
given in Section 5.

2 CTVLMA problem description and
NAZNN model

2.1 The CTVLMA problem

In mathematics, a constrained time-varying linear matrix
equation (CTVLMA) can be expressed as

A t( )X t( ) � C t( )
B t( )X t( )≤D t( ){ (1)

where A(t) ∈ Rm×n and B(t) ∈ Rp×n are smoothed full rank
matrices, and m < n. C(t) ∈ Rm and D(t) ∈ Rp are smooth vectors.
And X(t) ∈ Rn is the unknown vector to be solved. The time-varying
solution X(t) of A(t)X(t) = C(t) exists only if it satisfies the
restriction B(t)X(t) ≤ D(t).

For CTVLMA (1), the following equation is obtained by
introducing a non-negative variable v.2 ∈ Rp.

A t( )X t( ) � C t( )
B t( )X t( ) + v.2 t( ) � D t( ){ (2)

Here v.2(t) is also a unknown vector, and the superscript
.2 denotes the square operation of each element of v(t) ∈ Rp.
Defining the logarithmic matrix R(t) �
diag[v1(t), v2(t),/vp(t)] ∈ Rp×p leads to v.2(t) � R(t)v(t).
Thus, Equation 2 can be represented in a matrix form below.

A t( ) 0
B t( ) R t( )[ ] X t( )

v t( )[ ] � C t( )
D t( )[ ] (3)

Then, we define V(t) � A(t) 0
B(t) R(t)[ ] ∈ R(m+p)(n+p), w(t) �

[C(t) D(t) ]T ∈ Rm+p and u(t) ∈ [X(t)T, v(t)T]T ∈ Rn+p where
the upper label T denotes permutation.

Then, the following equation is obtained based on the above
equivalent substitution.

V t( )u t( ) � w t( ) (4)
Obviously, Eq. 4 is equivalent to Eq. 2, and solving CTVLMA (1)

is transformed into solving the matrix-vector Equation 4.

2.2 NAZNN model for CTVLMA problem
solving

In ordered to find the solution of Eq. 4, the NAZNN is designed
according to the following steps.

Firstly, denote the following error function E(t).

E t( ) � V t( )u t( ) − w t( ) (5)
Then, the time derivatives of E(t) are deduced below.

_E t( ) � λF E t( )( ) (6)
where λ > 0 is the convergence factor, and F(•) is an activation

function. In order to construct our model for solving Eq. 4, the
following theorem 1 is introduced in advance.
Lemma 1: The time derivatives of v.2(t) can be written as

_v.2 t( ) � dv.2 t( )
dt

� 2R t( ) _v t( ) (7)
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where _v(t) is the time derivatives of v(t).
Proof: Let _R(t) represent the temporal derivatives of R(t), and we
can obtain the following equation.

_v.2 t( ) � _R t( )v t( ) +R t( ) _v t( ) (8)

Then,

_R t( )v t( ) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

_v1 t( ) 0 / 0

..

.
_v2 t( ) / 0

..

. ..
.

1 ..
.

0 0 / _vp t( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 t( )
v2 t( )
..
.

vp t( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 t( ) 0 / 0

..

.
v2 t( ) / 0

..

. ..
.

1 ..
.

0 0 / vp t( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
_v1 t( )
_v2 t( )
..
.

_vp t( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� R t( ) _v t( )

(9)

Then, Eq. 8 can be expressed in the following form.

v.2 t( ) � dv.2 t( )/dt � 2R t( ) _v t( ) (10)
The proof is completed.
Based on Eq. 5, Eq. 6 and Lemma 1, the following NAZNN

model is obtained.

A t( ) 0
B t( ) 2R t( )[ ] _X t( )

_v t( )[ ]�− _A t( ) 0
_B t( ) 0[ ] X t( )

v t( )[ ]+ _C t( )
_D t( )[ ]

−λ A t( ) 0
B t( )R t( )[ ] X t( )

v t( )[ ]− C t( )
D t( )[ ]( )

(11)

where _X(t), _A(t), _B(t), _C(t) and _D(t) are the time-derivatives
of X(t), A(t), B(t), C(t) and D(t).

Let us set N(t) � A(t) 0
B(t) 2R(t)[ ], _N(t) � _A(t) 0

_B(t) 0
[ ],

_u(t) � [ _X(t) _v(t) ]T, _M(t) � [ _C(t) _D(t) ]T, and Eq. 11 can be
transformed to the following simplified NAZNN (12).

N t( ) _u t( ) � − _N t( )u t( ) + _M t( ) − λF N t( )u t( ) −M t( )( ) (12)
The NAZNN model with noise Y(t) can be expressed in the

following form.

N t( ) _u t( ) � − _N t( )u t( ) + _M t( ) − λF N t( )u t( ) −M t( )( ) + Y t( )
(13)

where λ > 0 and F(•) are the same definitions above.
Actually, the performances of the ZNN models are closely

related with the activation functions F(•), and the existing
activation functions are listed in Table 1. Additionally, f(•)
denotes the element of F(•).

In order to enhance the performances of the NAZNN (13), the
following non-linear activation function (14) is designed.

f x( ) � k1 x| |p + k2 x| |q( )m + k3x + k4e
x| |z x| |1|z[ ]sgn x( ) (14)

where m > 0, p > 0, q > 0, k1 > 0, k2 > 0, k3 > 0, k4 > 0, 0 < z < 1 and
sgn(x) denotes the signum function.

2.3 Convergence and robustness analysis of
the NAZNN model

2.3.1 Convergence analysis
The following Lemma 2 is provided in advance for the

convergence analysis of the proposed NAZNN model.
Lemma 2: [48,49] Considering a non-linear dynamic system as
follows.

G � f G t( ), t( ) (15)
where f(•) is a continuously non-linear function. Assumed that there
is a continuous function L(b) satisfying both of the following
conditions.

(1) L(b) is a radial unconstrained function intersecting
with L(ξ) = 0.

(2) L ≤ −(pLa(ξ(t))) + qLb(ξ(t)))l, where p > 0, q > 0, a > 0, b > 0, l > 0
and al > 1, bl < 1.

Then, the above dynamic system (15) is fixed time stable, and
the upper bound of its stable time is Tmax ≤ 1/(pl(al − 1)) + 1/
(ql(1 − bl)).

The following Theorem 1 and 2 guarantee the convergence and
robustness of the proposed NAZNN model (12), respectively.

Theorem 1: If the NAZNN model (12) is not polluted by noise,
and Eq. 1 is smooth at all times. For any initial system state X(t), the
state solution of model (12) converges to the theoretical solution of
Eq. 1 at a predetermined time ts.

ts � 1/ λk1
m pm − 1( )( ) + 1/ λk2

m 1 − qm( )( ) (16)
where k1 > 0, k2 > 0, λ > 0, q > 0, m > 0, mp > 1, qm < 1.
Proof: If the error function E(t) in Eq. 5 converges to 0, the neural
state solution of NAZNN (12) will be equal to the theoretical
solution of Eq. 1, and the evolutionary formulation (6) assures
the convergence of the error function E(t). Furthermore, Eq. 6
consists of n2 independent subsystems. Therefore, we only need
to show these subsystems are stable at a fixed time.

_eij t( ) � −λF eij t( )( ); i, j ∈ 1, 2,/n{ } (17)

where the scalars _eij(t) and eij(t) mean the elements of the ith row
and jth column of _E(t) and E(t) respectively. The flowing Lyapunov
function is adopted for the convergence validation.

h t( ) � eij t( )∣∣∣∣ ∣∣∣∣ (18)

Derive for h(t):

_h t( ) � _eijsgn _eij t( )( ) � −λF eij t( )( )sgn _eij t( )( ) (19)

Then, substituting the non-linear activation function (14) into
the above formula yields

_h t( )�−λ k1 eij t( )∣∣∣∣ ∣∣∣∣p+k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m[ +k3 exp eij t( )∣∣∣∣ ∣∣∣∣z( ) eij t( )∣∣∣∣ ∣∣∣∣1−z t( )/z+k4]
≤−λ k1 eij t( )∣∣∣∣ ∣∣∣∣p+k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m �− λ1/mk1h

p+λ1/qk2hq( )m
(20)

Based on Lemma 2, the upper bound of convergence time tij for
the subsystem in row i and column j of E(t) is obtained.
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ts � max tij( )≤ 1/ λk1
m mp − 1( )( ) + 1/ λk2

m 1 − qm( )( ) (21)

On basis of the above analysis, it can be drawn the conclusion
that the state solution of the ZNN model (12) converges to the
theory solutions of Eq. 1 in a predetermined time.

2.3.2 Robustness analysis
The robustness of NAZNN model (13) in noisy environment is

discussed in this subsection. In order not to lose generality, the noise
in Eq.13 is chosen to be Y(t) = 0.1exp(0.5t), and the following
Theorem 2 guarantees the robustness of NAZNN model (13).

Theorem 2: Assume the theoretical solution of Eq. 1 exists, and
each element of Y(t) satisfies the conditions |yij(t)|≤ δ|eij(t)| and
0 < δ < λk3e/z. The NAZNN model (13) has the following fixed
convergence time ts with noise Y(t).

ts � 1/ λk1
m pm − 1( )( ) + 1/λk2m 1 − qm( ) (22)

Proof: Similar with the analysis of Theorem 1, Eq. 6 also contains n2

mutually independent subsystems with noise Y(t).

_eij � −λF eij t( )( ) + yij t( ) (23)

The following Lyapunov function is selected for the stable
validation of E(t).

h t( ) � eij t( )∣∣∣∣ ∣∣∣∣2 (24)

The derived of h(t) is obtained below.

_h t( ) � 2eij t( ) _eij t( ) � 2eij t( ) −λF eij t( )( ) + yij t( )( )
� 2eij t( ) −λ( k1 eij t( )∣∣∣∣ ∣∣∣∣p + k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m

+ k3 exp eij t( )∣∣∣∣ ∣∣∣∣z( ) eij t( )∣∣∣∣ ∣∣∣∣1−z t( )/z + k4 _sgn eij t( )( ) + yij t( )
(25)

According to the conditions |yij(t)|≤ δ|eij(t)|, we can obtain the
following inequalities.

_h t( )≤ − 2λ eij t( )∣∣∣∣ ∣∣∣∣ k1 eij t( )∣∣∣∣ ∣∣∣∣p + k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m(
+ 2δ eij t( )∣∣∣∣ ∣∣∣∣2 + 2λk3/z exp eij t( )∣∣∣∣ ∣∣∣∣z( ) eij t( )∣∣∣∣ ∣∣∣∣2−z t( )/z (26)

In order to simplify the approach, setting up the following equation

R t( ) � 2δ eij t( )∣∣∣∣ ∣∣∣∣2 + 2λk3/z exp eij t( )∣∣∣∣ ∣∣∣∣z( ) eij t( )∣∣∣∣ ∣∣∣∣2−z (27)

Then,

R t( ) � 2δ eij t( )∣∣∣∣ ∣∣∣∣2 + 2λk3/z exp eij t( )∣∣∣∣ ∣∣∣∣z( ) eij t( )∣∣∣∣ ∣∣∣∣2−z
� 2 eij t( )∣∣∣∣ ∣∣∣∣2 δ − λk3 exp eij t( )∣∣∣∣ ∣∣∣∣z( )/ z eij t( )∣∣∣∣ ∣∣∣∣z( )[ ] (28)

Let u1(t) � δ − λk3 exp(|eij(t)|z)/(z|eij(t)|z), f(t) �
λk3 exp(|eij(t)|z)/(z|eij(t)|z) and ϖ � |eij(t)|z, f(t) can be
simplified to the following form.

f ϖ( ) � λk3e
ϖ/ zϖ( ) (29)

The derivative of (29) is provided in Eq. 30.

_f ϖ( ) � eϖ ϖ − 1( )/ϖ2 (30)

According to the above formula, it is clear that when 0 < ϖ <
1, the derivative of f(ϖ) is less than 0, and f(ϖ) decreases
monotonically; when ϖ > 1, f(ϖ) > 0 and the derivative of
f(ϖ) rises monotonically. Obviously, on basis of the above
monotonic analysis, ϖ = 1 is equivalent to z being close to
0 and f(ϖ) achieving a minimum, which indicates f(t) reaches
its minimum value.

f t( )min � λk3e/z (31)
Since δ ≤ λk3e/z, δ is less than the minimum value of f(t), and

u1(t) is always less than 0. In summary, inequality (26) can be further
simplified to the following form.

_h t( )≤ − 2λ eij t( )∣∣∣∣ ∣∣∣∣ k1 eij t( )∣∣∣∣ ∣∣∣∣p + k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m + R t( )
≤ − 2λ eij t( )∣∣∣∣ ∣∣∣∣ a1 eij t( )∣∣∣∣ ∣∣∣∣p + k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m
� −2λ eij t( )∣∣∣∣ ∣∣∣∣1/m k1 eij t( )∣∣∣∣ ∣∣∣∣p + k2 eij t( )∣∣∣∣ ∣∣∣∣q( )m
� − 2λ( )1/m k1 eij t( )∣∣∣∣ ∣∣∣∣ p+1/m( ) + k2 eij t( )∣∣∣∣ ∣∣∣∣ q+1/m( )( )[ ]m
� − 2λ( )1/m(k1h 1+pm( )/2m + 2λ( )1/m k2h

1+pm( )/2m( )[ ]m

(32)

Then, based on Lemma 2, the convergence time of the ijth
element of E(t) is obtained.

tij≤1/ 2λk1
m m pm+1( )/2m−1( )( )+1/2λk2m 1−m m pm+1( )( )( )

�1/2λk1m pm+1( )/2−1( )+1/2λk2m 1− qm+1( )/2( )
�1/ λk1

m qm−1( )( )+1/ λk2
m 1−qm( )( )

(33)
The maximal convergence time ts of the ZNN model (13) is

ts � max tij( )≤ 1/ λk1
m pm − 1( )( ) + 1/ λk2

m 1 − qm( )( ) (34)

TABLE 1 Classical activation function and ZNN model.

AFs Expressions ZNN model

LAF f(x) = x IZNN-1

LAF f(x) = kx, k ≠ 1 IZNN-2

HSAF f(x) = (e(kx) − e(−kx))/2 with k ≥ 1 IZNN-3

PSAF f(x) � kxv; k> 0, v � 1, 3, 5 . . . IZNN-4

SBPAF f(x) � (k1|x|p + k2|x|1q)sgn(x);p> 0, q> 0 IZNN-5

Frontiers in Physics frontiersin.org04

Lan et al. 10.3389/fphy.2023.1159212

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1159212


From the above analyses, we can draw the conclusion that the
proposed NAZNN model has the fixed convergence time ts in
noiseless and noisy environments.

3 Numerical simulations for CTVLME
solving

In this section, an illustrative example of the NAZNN model for
solving CTVLME (1) is introduced to demonstrate its efficiency and
accuracy.

Consider CTVLME (1) with the following coefficients.

A t( )X t( ) � C t( )
B t( )X t( )≤D t( ){ (35)

where A(t) � [ sin(t) + 2 cos(t) + 3 −sin(t) + 5 ],

B(t) �
sin(2t) −cos(3t)
cos(3t) sin(3t)
−sin(3t) cos(3t)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
T

, C(t) � sin(2t) + cos(2t),D(t) �

sin(4t)
cos(4t)[ ].
Here, we set all the parametersm, p, q, z, k1, k2, k3, k4 in the non-

linear activation function (14) to 5, and the state solutions generated
by the proposed NAZNN model are shown in Figure 1.

According to Figure 1, it can be observed that the black curves
quickly coincide with the red curves, which indicate that the state
solutions generated by the NAZNN model converge to the
theoretical solutions of Eq. 1 in a very brief period of time.

In addition, the residual errors of the NAZNN model (12) and the
IZNNmodel activated by LAF, PSAF, HSAF and SBPAF for solving the
above same equation are compared in Figure 2. Figure 2A shows only the
residual error of the NAZNN model (12) converges rapidly to 0, while
the IZNN model activated by the activation functions converges slowly.

Furthermore, it can be observed that the convergence speed becomes
faster as the value of m increases in Figure 2B. This phenomenon
indicates that the time required for the NAZNN model (12) to solve
inequality (1) becomes shorter as m increases. Finally, from Figure 2C,
we can see that the convergence time of the NAZNN model becomes
smaller as the convergence coefficient λ increases, which indicates that
the convergence speed of the NAZNNmodel is also closely related to its
convergence coefficient. Therefore, we can set these parameter values
according to the accuracy requirements.

It is worth mentioning that the system environment in reality is
complex and variable. Therefore, the NAZNN model (13) is used to
solve inequality (1) with the different noises to highlight its
robustness, and the simulation result are shown in Figure 3.

As can be seen from Figure 3A-D, even under various noise
conditions, all the black curves still coincide exactly with the red
dashed curves, while the other curves do not coincide quickly and
accurately with the red dashed line. This indicates that only the
transient solution of the NAZNN model quickly tracks the
theoretical solution of inequality (1), while the transient
solutions of other models cannot. Therefore, it can be
concluded that the NAZNN model solves the time-varying
linear Equation 1 perfectly in a predetermined time, and it has
better convergence and greater robustness than the existing ZNN
models. To further compare the errors of the NAZNN model (13)
with the IZNN model for solving the inequality system (1) under
different noise conditions, the residual errors of all the model are
shown in Figure 4.

FIGURE 1
Neural state solution of the NAZNNmodel whenm = 5 and λ = 1.

FIGURE 2
Comparative experiments of the ZNNmodels for solving Eq. 1. (A)
is the residual errors of all the models, (B) is the residual errors of the
NAZNNmodel with different parameter m, (C) is the residual errors of
the NAZNN model with different parameter λ.
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As can be seen in Figure 4A-D, the residual errors of the
NAZNN model (13) drops to 0 in a very short time in the
presence of four noises. However, the residual errors of the
IZNN model fluctuate greatly or converge very slowly, or even
fail to converge to 0 due to noises.

4 Applications on wheeled robots

In this section, the NAZNNmodel is applied to solve the wheeled
robot trajectory tracking problems [50,54].

4.1 The construction of NAZNN model for
wheeled robot trajectory tracking with
physical constrains

4.1.1 Modeling of the physical constrained
manipulator

In this subsection, themodeling of amovable six-joint three-wheel
manipulator is introduced and its 3D model is shown in Figure 5A.

The equations of motion are analyzed according to the wheeled
robot mobile device in Figure 5B, and the parameters are shown below.

W0: the midpoint of the drive axis, expressed in the world
coordinate system as (x0, y0, z0).
Ws: the position of the manipulator, expressed in the world
coordinate system (xs, ys, zs).
d: distance from W0 to Ws, d = 0.1m.

b: distance from the midpoint of the drive axis to the left and right
drive wheels, b = 0.32m.
r: radius of each driving wheel, r = 0.1025m.
θ: The heading angle of the mobile device, expressed as the angle
of the mobile device from the X-axis to the symmetry axis; its
time derivative is the heading speed.
P: the mobile device rotates around the point P.
R: the distance of point P from the left driving wheel.
ω: the rotation speed of the mobile device around point P; and
ω � _θ.

_β1 and _βr: rotation speed of the left and right wheels.
The next step is to establish robot model of the mobile device.

Assume that each link of the wheeled robot is rigid and there is no
relative sliding between the mobile device and the robot arm. Based
on Figure 5B, the kinematic equations for the mobile device are
established as follows, and the detailed derivation can be found in
Supplementary Appendix S1A.

x
•
s � r

2
cos θ + dr

2b
sin θ( )β•1 + r

2
cos θ − dr

2b
sin θ( )β•r

y
•
s � r

2
sin θ − dr

2b
cos θ( )β•1 + r

2
sin θ + dr

2b
cos θ( )β•r

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(36)

Rewrite Eq. 36 into matrix form

x
•
s

y
•
s

[ ] � cos θ −sin θ
sin θ cos θ

[ ]
r

2
r

2

−dr
2b

dr

2b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ β

•

1

β
•
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (37)

FIGURE 3
Neural state solution of NAZNN model and IZNN model for solving Eq.1 with different noises, (A) is add Y(t)=0.5, (B) is add Y(t)=0.5t, (C) is add Y(t)
=cost, (D) is add exponential interference.
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where _xs and _ys denote the x-axis velocity component and y-axis
velocity of the pointWs, respectively. Figure 5A shows a 3D model of a
wheeled robot. The origin of the moving platform coordinate system (xs,
ys, zs) is defined at the point ws in Figure 5B, while xs is the positive
direction of the moving device. Let (xs, ys, zs) indicates the reference
points in the coordinate system of the moving platform, and for
computational convenience we set zs to 0. Similarly, the coordinate
system of the ith joint of the six-joint robot is defined as (Xi, Yi, Zi), as
shown in Figure 5C (i = 1, 2, . . . , 6). The articulation of each joint with
the previous joint is defined as the origin of each joint’s coordinate
system, and the direction along this joint is the Z-axis of this joint’s
coordinate system, which conforms to the left-hand rule to find the
X-axis and Y-axis. The coordinate system of the end-effector (X6,Y6,Z6)
position vector 6Wend belongs to Rm, and the homogeneity condition
shows that 6Wend � [6Wend

T, 1]T belongs to Rm+1. (The superscript T
denotes the transpose of the vector.) Based on the platform coordinate
system (xs, ys, zs), we can represent the end-effector vector as follows.

sWend � s
1T

1
2T

2
3T

3
4T

4
5T

5
6T

6Wend (38)
where s

1T,
1
2T,

2
3T,

3
4T,

4
5T,

5
6T denote the flush transformation

matrices. The position coordinate vector of the end-effector in
world coordinates can be expressed as

δz 1[ ]T � z
sT

sWend (39)
where δz ∈ Rn indicates the position relative to the world

coordinate system, and z
sT �

cos θ −sin θ 0 xs

sin θ cos θ 0 ys

0 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

According to the above analysis, the coordinates of the end-
effector in the world coordinate system can be expressed as (xz, yz,
zz), and the kinematic relations of the end-effector can be obtained
as follows:

δz � xz yz zz[ ]T � xs ys 0[ ]T + δs (40)

where δs is a three-dimensional vector, and the detailed expressions
and calculation procedure for δs are shown in Supplementary
Appendix S1B. Besides, Eq. 40 can be obtained by the time
derivative of the speed level equation.

_δz � _xz _yz _zz[ ]T � _xs _ys _zs[ ]T + _δs (41)

It can be reformulated as:

_δz � Jz _ϕ (42)

where _ϕ � [ _θ1, _θr, _γ1, _γ2, _γ3, _γ4, _γ5, _γ6]. In three-dimensional space,
the position of the end-effector is calculated with n = 3 (n is the
number of variables), and the position and direction of the end-
effector is calculated with n = 6. To control the wheeled robot, we set
n = 8 (including two rotation variables and six joint variables). _θ1
and _θr denote the rotational speed of the left and right drive wheels,
and _γi (i = 1, 2, . . . , 6) denotes the joint velocity vector of the robotic
arm. The combined velocity vector _ϕ is a derivation of the combined
angular vector ϕ with respect to t. In addition, Jz ∈ Rm×n denotes a
generalized Jacobi matrix and Jz ∈ Rm×n. The detailed expressions
and derivations are given in Supplementary Appendix S1C. The
physical constraints of the robot are shown in Table 2.

FIGURE 4
Residual errors of the NAZNNmodel and the IZNNmodels for solving Eq. 1 when disturbed by various noises. The noises considered in (A-D) are the
same ones with (A-D).
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Conventional control approaches have difficulty in handling
trajectory tracking with constraints, and physical constraints are
rarely considered before. However, almost all controllers have
physical constraints (angular constraints, speed constraints, etc.).
Therefore, it is very realistic and necessary to consider the failure
problem of trajectory tracking of wheeled robots subject to
constraints. The physical constraints of wheeled robot trajectory
tracking considered in this work are listed below.

Jz _ϕ � _δzd + v δzd − δz( )
ϕ− ≤ ϕ≤ ϕ+
_ϕ
−
≤ ϕ≤ _ϕ

+

⎧⎪⎨⎪⎩ (43)

where v > 0 is the feedback gain, _δzd and δzd denote the position
vector and velocity of the desired end position of the tracking path.
ϕ− and ϕ+ denote the lower and upper limits of the joint angle ϕ, _ϕ

−

and _ϕ
+
denote the lower and upper limits of the joint velocity _ϕ,

respectively. For the range of motion of the wheeled robot, we
theoretically set the upper and lower limits of ϕ1 and ϕ2 to converge
to infinity.

To deal with the problem at the joint velocities level, the range of
active wheel rotation angles of the wheeled robot and the range of
robot joint angles are transformed into the corresponding velocities
as follows.

η ϕ− − ϕ( )≤ϕ≤ η ϕ+ − ϕ( ) (44)

where the coefficient η > 0 is used to calculate the range of joint
velocities, and the coefficient has η special points. The value of ηmay
lead to a sudden deceleration of the joint velocity when the wheeled
robot approaches the joint limit, in numerical terms,
η≥ 2max1≤i≤n{ _ϕi+/(ϕi+ − ϕi

−),− _ϕi
−
/(ϕi+ − ϕi

−)}. By calculating
and setting the next simulation experiment in η = 4; the
constraints of angle and velocity can be combined into constraint
ψ− ≤ _ϕ≤ψ+, where the κ th element of ψ− and ψ+ can be expressed as

ψ− � max ϕ−
κ η ϕ− − ϕ( ){ }

ψ+ � min ϕ+
κ η ϕ+ − ϕ( ){ }{ (45)

In summary, the velocity control of wheeled robot trajectory
tracking with physical constraints can be formulated as

Jq � _δ,
ψ− ≤ q≤ψ+,

{ (46)

where q ∈ Rm denotes the combined velocity vector _ϕ, J = Jz, and the
equation restriction represents the linear relationship between the
velocities. Besides, _δ � _δzd + v(δzd − δz) ∈ Rm, where v > 0 is the
feedback gain. _δzd and δzd denote the position vector and velocity at
the desired end position of the tracking path. ψ denotes the range of
active wheel rotation angles of the wheeled robot and the range of
robot joint angles transformed into the corresponding velocities. ψ+

and ψ− represent the upper and lower bounds of the transformed

FIGURE 5
Wheeled robot modeling process. (A) is 3D model, (B) is the model of mobile platform, (C) is Wheeled robot world coordinate system and axis
coordinate system.
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velocities, respectively. In order to keep the joint variables within the
set range, they can be constrained with restriction conditions.

4.1.2 NAZNN model for trajectory tracking control
of wheeled robots

Equation 46 with the above conditions can be transformed as

Jq � _δ
q≤ψ+

q≥ψ−

⎧⎪⎨⎪⎩ (47)

Convert (47) to matrix form by referring to the CTVLMA
calculation process.

J 0 0
1 D1 t( ) 0
1 0 −E1 t( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ q
y t( )
o t( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � _δ
ψ+

ψ−
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ (48)

D1(t), E1(t), y(t) and o(t) are process quantities generated by the
calculation process with reference to CTVLMA. Let

M(t) �
J 0 0
1 D1(t) 0
1 0 −E1(t)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ∈ R(m+p)×(n+p) and N(t) �

[ _δ;ψ+;ψ− ]T ∈ R(m+p).
Then, define u(t) � [ q y(t) o(t) ]T, the following matrix

vector form of (45) is obtained

M t( )u t( ) � N t( ) (49)
The NAZNN model for trajectory tracking control of wheeled

robots with physical constraints is obtained.

M t( ) _u t( ) � − _M t( )u t( ) + _N t( ) − λF M t( )u t( ) −N t( )( ) (50)

4.2 Simulation results on physically
constrained wheeled robots

In this section, the above NAZNN model (50) and other related
ZNN models are all used to solve the same wheeled robotic arm
trajectory tracking problem with physical constraints for the
purpose of comparison.

The initial heading angle of the wheeled robot is set to zero, and
the motion direction of the wheeled robot is parallel to the x-axis of
the world coordinate system, and its initial position is (xs(0), ys(0),
zs(0)) = (0, 0, 0). The initial state of the robot arm joint is [π/5; π/3; π/
6; π/3; π/6; π/3]T, and the rotation angle of the drive wheel set to β1 =
βr = 0rad. In summary, the initial value of the combined angular
vector is ϕ (0) = [0,0; π/5; π/3; π/6; π/3; π/6; π/3]T.

4.2.1 NAZNN model simulation results
In this subsection, the proposed NAZNN model is applied to

control the wheeled robot to perform trajectory tracking, and the
corresponding simulation results are represented in Figure 6. As
observed in Figure 6, the wheeled robot controlled by the NAZNN
model completes the tracking task effectively.

Additionally, the joint angle variation of the robot for spiral
trajectory tracking is represented in Figure 7, and the joint velocity of
the robot for the tracking process is represented in Figure 8.

It can be observed in Figures 7, 8 that the joint angles and joint
speeds of the NAZNN model-controlled wheeled robotic arm are
within the physical limits until the end of the trajectory tracking,
which indicates that the NAZNN model-controlled wheeled robotic
arm successfully completes the tracking task.

TABLE 2 Physical constraints of the robotic arm.

Joint angle Upper limit (rad) Lower limit (rad)

Left wheel angle +∞ −∞

Right wheel angle +∞ −∞

Joint angle 1 + π/5 −π/5

Joint angle 2 +π/9 −π/3

Joint angle 3 +π/2 −π/6

Joint angle 4 +π/6 −π/9

Joint angle 5 +π/5 −π/3

Joint angle 6 +π/9 −π/9

velocity Upper limit (rad/s) Lower limit (rad/s)

Rotation speed +90 −90

Rotation speed +90 −90

Joint angular velocity 1 +3 −3

Joint angular velocity 2 +3 −3

Joint angular velocity 3 +3 −3

Joint angular velocity 4 +3 −3

Joint angular velocity 5 +3 −3

Joint angular velocity 6 +3 −3
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4.2.2 IZNN models simulation results
In this subsection, the IZNN models controlled robots are also

used for the same tracking task for the purpose of comparison, and
the corresponding simulation results are represented in
Figures 9–12.

Figure 9 shows the difference between the IZNN-1 and IZNN-2
models. Both the IZNN-1 and IZNN-2 models are activated by the
linear activation function. Because the parameter size has a great impact
on the models, the actual experimental results are also different.

As observed in Figure 9, the IZNN-1 model controlled robot
fails the tracking task due to robot joint angle _λ1 exceeds
limitation; besides, the IZNN-2 model controlled robot also
fails the tracking task due to robot joint speed _λ5 exceeds
limitation. Figure 9A shows that joint angle 1 of the IZNN-1
model exceeds the upper limit at 3.6 s, and it lead to the trajectory
tracking task fail; Figure 9B shows that joint velocity 5 of the
IZNN-2 model falls below the lower limit at 3.6 s, and it lead to
the trajectory tracking task pause.

FIGURE 6
NAZNN model-controlled wheeled robot trajectory and the end-effector trajectory. (A) is Robot operation trajectory, (B) is Robotic arm end-
effector trajectory.

FIGURE 7
The NAZNN model-controlled wheeled robots trajectory tracking with 6 joint angle changes.
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FIGURE 8
The NAZNN model-controlled wheeled robot successfully finishes the trajectory tracking with 6 joint velocities change.

FIGURE 9
(A) represent joint angle fault for IZNN-1, (B) represent joint speed fault for IZNN-2.

FIGURE 10
(A) represent IZNN-3 model-controlled wheeled robot's joint trajectory, (B) represent the end-effector trajectory.
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The wheeled robot controlled by the IZNN-3model for the same
tracking task is presented in Figures 10–12. As observed in Figure 10,
the wheeled robot controlled by the IZNN-3 model also fails the

tracking task. Additionally, the joint angle variation of the robot
controlled by the IZNN-3 model for spiral trajectory tracking is
represented in Figure 11, and the joint velocity of the robot

FIGURE 11
The IZNN-3 model-controlled wheeled robot fails trajectory tracking with joint angles exceed limits.

FIGURE 12
The IZNN-3 model-controlled wheeled robot fails trajectory tracking with Joint velocities exceed limits.
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controlled by the IZNN-3 model for the tracking process is
represented in Figure 12.

As observed in Figure 10, Figures 11, 12, the tracking task is
interrupted, with the joint speed ( _λ3) exceeds the physical limit
(3 rad/s) and the joint angle (λ3) exceeds the physical limit (exceeded
the lower limit - π/6). Speed 3 ( _λ3) in Figure 10 exceeds the limit at 3.3 s
and angle 3 (λ3) in Figure 11 exceeds the limit at 3.3 s, which stop the
tracking task. The above analysis indicates that the wheeled robotic arm
controlled by the IZNN-3model does not complete the tracking task due
to exceediton of the joint speed and joint angle constrains.

In summary, the proposed NAZNN model has better control
performances compared to other models for physically constrained
wheeled robot trajectory tracking, and it completes the physically
constrained trajectory tracking task smoothly and accurately
without exceeding the joint angle and joint speed. The detailed
comparative results of the models are presented in Table 3.

5 Conclusion

In this paper, a NAZNNmodel is proposed and effective applied to
solve CTVLME problems. It is theoretically demonstrated that the
NAZNN model can obtain the exact solutions of CTVLME problems.
The validity and superiority of the NAZNNmodel is further verified by
two numerical examples. Besides, the proposed NAZNN model is also
applied to the failure problem of trajectory tracking of wheeled robots
with physical constraints. Finally, the NAZNNmodel is used to control
the wheeled robot to complete trajectory tracking under restricted
conditions to prove the feasibility of this control method.
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