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Dramatic advances in wireless networks have led to the Smart IoT, which may
enable newmodes of information transfer. Generally, data-driven advanced artificial
intelligence (AI) techniques can be used in smart IoT networks, which prones to a lot
of unexpected challenges. Enabling efficient management of spectrum resources
based on cognitive radio is considered to be an effective means to address the
limited spectrum resources. As a key technology in CR, automatic modulation
recognition (AMR) is developing towards intelligence with deep learning as themain
approach. Deep learning (DL) has been widely applied to AMR for possible
improvement of recognition accuracy, while the superb performance highly
depends on high-quality and well-labeled datasets. Consequently, these
requirements prone to poor performance in the environments where the
datasets are not well-labeled. Motivated by this, domain adaptation is considered
for AMR in this paper, and a novel network architecture is proposed therein, termed
semi-supervised automatic modulation recognition (SemiAMR). Specifically, source
domain high SNR data are mapped by the source encoder to the classification
domain and classified by the classifier, where the source data with labels enable this
training process. Next, the discriminator and the target domain encoder are trained
by determining whether the data is from the target or source domain. Finally, the
target domain encoder and classifier are combined and are used to infer the data
labels of the target domain. Experimental results state that the accuracy of proposed
SemiAMR achieves 1\% to 27\% improvements when compared with classical
schemes under the target domain condition where there is no corresponding
labeled data and signal-to-noise ratios (SNRs) varies from −20 dB to −4 dB.
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1 Introduction

With the continuous evolution of next-generation communication technology, multi-
band, ultra-broadband, high frequency, and internet of everything (IoX) seem the main
direction of attention, prone to the extremely complex wireless environment and fine-
grained multi-dimensional network resources [1–3]. In this context, traditional model-
driven wireless communication is inapplicable due to the exponential growth of wireless
terminals and increasing communication overhead. On the contrary, data-driven model,
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such as artificial intelligence (AI), etc. [4, 5], brings new impetus to
wireless communication, relying on its powerful capacity of feature
learning. As a key technology of wireless communication, automatic
modulation recognition (AMR) is facing new opportunities and
potential with the assistance of AI [6].

Typically, traditional AMR schemes mainly contain likelihood-
based (LB) scheme [7, 8] and feature-based (FB) scheme [9]. The
modulation modes are determined by likelihood value for LB while
the features of FB are pre-designed by experts and leveraged to infer
the accurate label. However, both LB and FB are well-designed and
low-robust, resulting in limited accuracy. Recently, deep learning
(DL) is widely applied to AMR, processing the baseband signal

intelligently and extracting the valuable feature automatically [10,
11]. Z. Zhang et al; [12] proposed a CNN-LSTM dual-stream
structure to implement AMR, which leveraged the temporal in-
phase/quadrature and amplitude/phase feature. S. Huang et al; [13]
proposed a novel grid constellation matrix (GCM)-based AMC
method using a contrastive fully convolutional network (CFCN),
which brought promising classification performance and better
robustness. However, the aforementioned AMR schemes are
driven by abundant training data and large-scale parameters [,
14, 6]. To collect a rich dataset with accurate labeling seems a
difficult task in the practical scenarios, limiting the performance of
DL-based AMR schemes.

FIGURE 1
Structure of SemiAMR. Source encoder and classifier implement pre-training operation (stage one). Then, source encoder, target encoder, and
discriminator realize the domain adaptation stage (stage two). Finally, target encoder and classifier use the predict operation (stage three).

FIGURE 2
Experimental diagram of the proposed scheme.
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To solve the issue of insufficient samples, K. Bu et al. [15] proposed
an adversarial transfer learning-based AMC, named ATLA, with half
of the training data reduced, and the target model achieved competitive
recognition accuracy by supervised learning. Besides, L. Li et al. [16]
proposed a capsule network-based AMC architecture (CapsNet),
which leveraged 3% of the dataset for training and obtained 80%
classification accuracy. However, both ATLA and CapsNet do not
work under the target domain without corresponding labeled
training data. Recognizing modulation modes at low SNRs poses a
challenge because the reduced SNR degrades the quality of the
transmitted signal, making recognition more difficult. Methods to
cope with this problem include enhancing the SNR, optimizing
receiver parameters, adopting a multi-mode approach, and using
advanced recognition algorithms [17]. In fact, modulation mode
recognition under low SNR conditions is a complex task that
requires consideration of multiple factors.

In this paper, inspired by adversarial learning, we design a semi-
supervised automatic modulation recognition network (SemiAMR)
to implement cross-domain recognition, which can adapt to another
signal-to-noise domain with no corresponding labeled data pre-
trained. In detail, the source domain is mapped into the classification
domain by the source encoder and can be classified by the classifier,
where the labeled source data enables the process. Then, the
discriminator and target encoder are trained by determining
whether the data comes from the target or source domain.
Finally, the target encoder and the classifier are leveraged to infer
target domain data labels. The contributions and main work of this
paper can be summarized as follows.

1. A novel network is proposed to implement semi-supervised learning
for AMR, which consists of two CNN-based encoders, a classifier,
and a domain discriminator.

2. To enable the inference ability of the DL-based model on target
data, all domain data are mapped into a classification domain.
The source encoder enables the source data into the classification
domain. The target domain data is employed by the target
encoder, which is trained by an adversarial distinguish process.

3. Extensive experiments are carried out to validate the performance of
the proposed scheme under the target domain. Under the poor
signal-to-noise environment, the results elaborate that the proposed
SemiAMR improves the classification accuracy from 3% to 27% for
the target domain, compared with no adaptation algorithm.

The rest of this paper is organized as follows. Section 2 discusses
related work of this paper including semi-supervised learning, spectrum
monitoring and automatic modulation classification. In Section 3, the
signal model wireless signal and motivation are firstly provided. Section
4 mainly considers the proposed semi-supervised scheme for wireless
IoT. Experiment and discussions are implemented in Section 5. Finally,
the conclusion of this paper is described in Section 6.

2 Related work

This section gives a brief introduction of existing methods on
semi-supervised learning, spectrum monitoring, and automatic
modulation classification.

TABLE 1 The details of proposed SemiAMR.

Module Layer Output

Source/Target Encoder Conv1D (filters 64, size 1 × 5, padding same) + BN + ReLU + Maxpool1D (size 2, stride 2) 64 × 64

Conv1D (filters 64, size 1 × 5, padding same) + BN + ReLU + Maxpool1D (size 2, stride 2) 64 × 32

Conv1D (filters 64, size 1 × 5, padding same) + BN + ReLU + Maxpool1D (size 2, stride 2) 64 × 16

Conv1D (filters 64, size 1 × 5, padding same) + BN + ReLU + Maxpool1D (size 2, stride 2) 64 × 8

Conv1D (filters 64, size 1 × 5, padding same) + BN + ReLU + Maxpool1D (size 2, stride 2) 64 × 4

Classifier FC 256 × 128

Relu + Dropout + FC 128 × 11

Discriminator FC + ReLU 256 × 128

FC 128

LogSoftmax 2

TABLE 2 The details of the experimental dataset and implementation settings.

Parameter Assignment

Modulation modes 8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, 4PAM, 16QAM, 64QAM, QPSK, WBFM

SNR (Source Domain) 2 dB, 4 dB, 6 dB, 8 dB, 10 dB, 12 dB, 14 dB, 16 dB, 18 dB

SNR (Target Domain) −20 dB, −18 dB, −16 dB, −14 dB, −12 dB, −10 dB, −8 dB, −6 dB, −4 dB

Total number of data 220,000

Learning rate 0.001
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2.1 Semi-supervised learning

The problem of limited labeled data is a major challenge in
training DL-based models [18]. Semi-supervised learning aims to
address this challenge by utilizing the information contained in
unlabeled data to improve the performance of models. Semi-
supervised learning has broad applications in various fields,
including image classification, text classification, speech
recognition (SR), computer vision (CV), and natural language
processing (NLP). There are various approaches to semi-
supervised learning, including graph-based semi-supervised
learning [19], generative semi-supervised learning [20], and semi-
supervised support vector machines [21]. Each approach has its own
strengths and weaknesses, and the choice of approach depends on
the specific problem being addressed.

Graph-based semi-supervised learning uses the graph
structure in unlabeled data to build a model. The method utilizes
a technique called graph embedding, which maps nodes in the graph
into a low-dimensional space. By mapping nodes into a low-
dimensional space, we can better understand the relationships
between nodes. In graph-based semi-supervised learning, we can
use these relationships to infer the labels of unlabeled data.
Generative semi-supervised learning methods are based on
generative models that generate data distributions from unlabeled
data. The method uses the generative model to estimate the
distribution of the unlabeled data and uses this distribution to
make predictions. Generative semi-supervised learning methods
are a very effective method, especially when the amount of data
is small.

Semi-supervised support vector machine is a supervised
learning method based on kernel functions [22], which leverages
unlabeled data to improve the performance of the classifier. Semi-
supervised support vector machines use a data structure
called a similarity graph to establish the relationship between
unlabeled and labeled data. However, based on semi-supervised
learning, there are still many problems to be solved for application in
various scenarios.

2.2 Spectrum monitoring

To ensure efficient use of spectrum resources and prevent
interference, radio spectrum is monitored, analyzed, and managed.
Spectrum data is obtained by collecting and processing radio
spectrum signals. The collected spectrum data is analyzed to identify
radio signals, classify, and analyze them based on signal type, frequency
band, bandwidth, modulation mode, etc. Many researcher investigated
UAV-assisted deep algorithm implementation [23]. These analysis help
in detecting interference signals in the spectrum, and identifying their
location, so that appropriate countermeasures can be taken.

However, spectrummonitoring also presents several challenges.Multi-
signal composite and low SNR signals can make signal processing and
identificationdifficult [24]. Furthermore, spectrummonitoring is limited in
coverage and density due to monitoring station deployment and
equipment constraints. This can affect the accuracy and effectiveness of
monitoring, as well as subsequent analysis and management.

2.3 Automatic modulation classification

Modulation mode recognition is a crucial aspect of spectrum
monitoring, which involves classifying the modulation mode of
radio signals [25]. Modulation mode refers to the relationship
between information and the carrier in the radio signal, and can
be categorized into various types, such as amplitude modulation,
frequency modulation, phase modulation, quadrature amplitude
modulation, and others. Identifying modulation modes plays a
critical role in signal identification, interference detection,
frequency band usage analysis, among others.

There are different modulation mode identification algorithms
that can be used, including the energy spectrum-based algorithm,
which determines the modulation mode by calculating the energy
spectrum of the signal, and the higher-order statistical features-
based algorithm, which uses higher-order statistical features to
describe and recognize the signal. Machine learning-based
algorithms build classification models to identify the modulation
of unknown signals by training the signals with known modulation.
Common machine learning methods include support vector
machine (SVM) [26], artificial neural network (ANN) [27], and
random forest (RF) [28], while common DL-based models include
convolutional neural networks and recurrent neural networks.

However,modulationmodes recognition becomesmore challenging
when the signal is more complex [29]. Noise is a significant factor that
affects the recognition of modulation modes as it alters the signal’s
characteristics, thereby impacting the recognition accuracy of
modulation modes. Moreover, the diversity of radio signals leads to a
richer variety of modulation modes, and different types of modulation
modes pose varying degrees of recognition difficulty. In practical
applications, real-time requirements are often necessary for
distributed scenarios that require prompt judgment [30].

3 Signal model of wireless IoT and
motivation

Assume that the received signal x(t) suffers from dynamic
channel interference and noise, which is modeled as

FIGURE 3
Performance comparison of source domain encoder (No-Ada)
and domain adaptation (Ada) on target domain data.
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x t( ) � G s t( )( ) + n t( ), (1)
where G(·) signifies the dynamic radio channel, s(t) is the modulated
signal at the transmitter, and n(t) denotes the Additive White
Gaussian Noise (AWGN).

The purpose of AMR is to recognize the modulation mode of x(t)
without prior knowledge after it is filtered at the receiver. Based on the
fitting ability of deep neural network (DNN), the DL-based AMR
algorithm achieves surprising performance. However, the advance of
DL-based AMR algorithm relies on sufficient samples with various
modulationmodes and radio environments. However, sample collection
and labeling are a time-consuming and costly task in real application
scenarios. Moreover, trained AMR model with high-quality samples
may fail to obtain a promising performance on the collected samples
with poor quality. As a consequence, AMR with the capacity of cross-
domain recognition seems urgent to reduce the overhead of data
collection and improve the recognition robustness.

4 Semi-supervised AMR scheme for
wireless IoT

4.1 The design of domain adaptation
network for AMR

To improve the cross-domain inference ability of DL-based
model, we propose a semi-supervised AMR network architecture,
termed SemiAMR. SemiAMR can learn the feature of source
modulation data and adapt the target domain signal data into the
sharing classification domain. As shown in Figure 1, the overall
structure of SemiAMR consists of four parts, including the source
encoder Scnn, target encoder Tcnn, classifier C, and discriminator D.

The main implementation process of the proposed SemiAMR
approach can be manifested as Algorithm 1. Specifically, Scnn enables
a non-linear mapping algorithm for mapping source-domain wireless
signal data to the classification domain. For the classification domain,
the general classifier C trained on the source domain data can implement
effective classification on the source data. In this way, we also try to
enable the target domain data map to the classification domain.

PRETRAIN(Scnn′ , C′,Xs)
selectrandomly xs ⊂ Xs
initial model C′, Scnn′
fori = 1, . . ., Ns:

C, Scnn ← L(C′, Scnn′ , xs);
return C, Scnn

Domain adaptation(Scnn,D′, Tcnn′ ,Xs,Xt)
selectrandomly xs ⊂ Xs, xt ⊂ Dt
initial modelD′, Tcnn′
fori = 1, . . ., Nd:

D ← LD(D′, Scnn, xs, xt);
Tcnn ← LT(D, Scnn, Tcnn′ , xt);

return Tcnn
PREDICT(Tcnn,Xt , C)

Yt ← C(Tcnn(Xt))
return Yt

Algorithm 1. Proposed Semi-supervised AMR: SemiAMR

Then, based on the target and source domain data, the
discriminator D and the Tcnn are trained by optimizing mathcalLD
and mathcalLT, respectively. LD represents the loss of Discriminator,
while LT denotes the loss of domain label predictor. In detail, D and
Tcnn are trained to distinguish the data from the source or target
domain. When D can not distinguish the data from which domain,
Tcnn is considered that can map the target data into the classification
domain. In this way, by combining Tcnn and C, the combinedDL-based
network can implement inference operations on the target domain.
The corresponding dimensions of each layer are shown in Table 1.

1) Source encoder Scnn: Scnn extracts key features from the signal data of
source domain and then maps the model to the classification
domain. Scnn contains five convolutional blocks, and each block
consists of a convolutional layer, a batch normalization (BN) layer,
an activation function ReLU, and a max-pooling layer. The
convolutional layer implements the extraction of useful features,
and BN speeds up the training process and convergence of the
network by regularizing the data. The activation function ReLU is
formulated as fReLU(x) = max(0, x), preventing gradient
disappearance and avoiding over-fitting. The max-pooling layer
reduces data dimensionality, decreases the number of parameters,
removes redundant information, and compresses features.

2) Classifier C: C consists of one layer of neural network, which
performs classification in the classification domain.
Furthermore, the layer contains 128 dimension neurons and
an activation function ReLU.

3) Target encoder Tcnn: The mapping task is conducted by Tcnn from
the target domain data to the classification domain. The structure
of Scnn and Tcnn are identical.

4) DiscriminatorD:D contains three fully connected layers, and the
dimension of each layer is 128. Besides, ReLU is added between
the two layers. The last layer ofD is LogSoftMax, and it is defined
as follows

fLogSoftMax xi( ) � log
exp xi( )∑j exp xj( )⎛⎝ ⎞⎠, (2)

which can solve the overflow and underflow issues of deep network,
speed up operation speed and improve data stability.

As shown in Figure 2, the source encoder and the classifier are
combined into an end-to-end model that implements pre-training
operations in the first stage. In the second stage, the source encoder,
target encoder and discriminator are combined and the discriminator
and target encoder are trained with input of source domain data and
target domain data, respectively. A number of iterations are
performed until the discriminator is unable to determine which
domain the data from. In the third stage, the target encoder and
the classifier are combined to achieve a complete end-to-end function
for the target domain.

4.2 Loss function

In this work, to improve the generation of the CNN-based AMR
scheme, Scnn and C are pre-trained on the source data firstly. Cross
entropy is leveraged as the loss function of the pre-train process,
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TABLE 3 Performance comparison of different encoder layers under various SNR conditions.

Settings −20 dB −18 dB −16 dB −14 dB −12 dB −10 dB −8 dB −6 dB −4 dB

Encoder 4 Layers 0.090 0.087 0.092 0.103 0.105 0.131 0.213 0.406 0.443

Encoder 5 Layers 0.089 0.085 0.091 0.105 0.105 0.129 0.216 0.416 0.460

Encoder 6 Layers 0.091 0.089 0.099 0.108 0.125 0.143 0.238 0.426 0.463

Encoder 7 Layers 0.089 0.089 0.090 0.101 0.100 0.117 0.210 0.409 0.452

FIGURE 4
Confusion matrix of no-adaptation and adaptation methods when SNR ∈{−6 dB, −4 dB}. (A) Evaluating classifier for target domain by source
encoder and classifier under SNR = −4 dB. (B) Evaluating classifier for target domain by target encoder and classifier under SNR = −4 dB. (C) Evaluating
classifier for target domain by source encoder and classifier under SNR = −6 dB. (D) Evaluating classifier for target domain by target encoder and classifier
under SNR = −6 dB.
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LC � −Exs logC Scnn xs( )( )[ ], (3)
where xs denotes the source data, and E(·) represents the

mathematical expectation operation.
The training strategy of domain adaptation enables data from

the target domain to be mapped to the classification domain by Tcnn.
In the training process, for data from the source domain (with
labels) and data from the target domain (without labels), the
discriminator determines whether the incoming data is from the
source domain (computed by Scnn) or from the target domain
(computed by Tcnn). For each iteration, the network continuously
minimizes the loss of the domain discriminator LD, and the weights
of Tcnn are not trained in this optimize process. Similarly, the weights
of discriminator are frozen to train Tcnn, and the network tries to
minimize the loss of the domain label predictor LT. The loss
function of the domain adaptation is modeled as

LD � −Exs logD Scnn xs( )( )[ ] − Ext log 1 −D Tcnn xt( )( )( )[ ],
LT � −Ext logD Scnn xt( )( )[ ], (4)

where xs and xt denote the data of source domain and target domain,
respectively.Tcnn signifies the weights ofTcnn are frozen, whichmeans the
parameters are not trained, andD represents the frozen parameters ofD.
Based on these schemes, the Adam method and the back-propagation
algorithm are employed to optimize the weights of SemiAMR.

5 Implementation details

5.1 Datasets and settings

To evaluate the performance of the proposed algorithm, we
implement the experiment on the RadioML2016.10a dataset [10].
The details of the dataset and experiment settings are exhibited in
Table 2. Accordingly, the modulation of the dataset consists of 8PSK,
AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, 4PAM, 16QAM, 64QAM,
QPSK, WBFM, with SNR ∈ {−20 dB, 18 dB} and the stride is 2 dB.
There are 1,000 pieces of signal data for every SNR of each class, and

the total number of data is 220,000. In this way, the dataset is
separated into a higher SNR part (source domain), including {2 dB,
4 dB, 6 dB, 8 dB, 10 dB, 12 dB, 14 dB, 16 dB, 18 dB}, and a lower
SNR part (target domain) that includes {−20 dB, −18 dB, −16 dB,
−14 dB, −12 dB, −10 dB, −8 dB, −6 dB, −4 dB}. In the experiments,
an NVIDIA GeForce RTX 2080Ti GPU is employed, and the
algorithm is implemented by PyTorch.

5.2 Experiments and discussions

The experimental result of the proposed SemiAMR is exhibited
in Figure 3, where “No-Ada” denotes the source encoder inference
only, and “Ada” represents the proposed algorithm SemiAMR.
Accordingly, for SNR = −8 dB, the classification accuracy of the
proposed scheme is 21.6%, which exceeds 11.6% over the baseline
“No-Ada”. When SNR = −4 dB, the classification of SemiAMR
reaches 41.6%, which far exceeds the no-adaptation method
27.4%, and makes an improvement of 18.6%. The results show
that the domain adaptation scheme effectively solves the
classification issue of cross signal-to-noise domain.

Convolutional layers are fundamental building blocks of deep
learning models and play a critical role in extracting features from
input data. The number of convolutional layers is a crucial factor in
the structure of a CNN, and it can significantly impact experimental
outcomes. To investigate the impact of different convolutional layers
on experimental results, we create an encoder set and measured
recognition accuracy at different SNR levels. Table 3 shows that the
encoder module with 4 layers achieved a recognition accuracy of
44.3%, while 5 layers achieved 46%, 6 layers reached 46.3%, and
7 layers obtained 45.2%. These results (depicted in Table 3) suggest
that the recognition accuracy is not always positively correlated with
the number of convolutional layers at every SNR. Interestingly, the
recognition accuracy decreases when the number of convolutional
layers reaches seven, indicating that the optimal number of
convolutional layers is task-dependent and not solely related to
increased complexity.

FIGURE 5
Classification performance of various modes under various
experimental SNR conditions.

FIGURE 6
Comparison with multiple baseline methods under various SNR
conditions in the target domain.
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As shown in Figure 4, the normalized confusion matrix of
SemiAMR are exhibited, adapting to the target domain under
SNR ∈ {−4 dB, −6 dB}. In detail, Figures 4A, C represent that the
data of target domain is tested on the Scnn and C directly, which
are trained on the source data. The results show apparent
confusion in the target domain test results, and many
categories are misclassified as AM-SSB. In addition, the results
of the proposed SemiAMR are presented in Figures 4B, D, stating
that the confusion between categories is effectively relieved.
Simultaneously, 16QAM and 64QAM are confusion-prone
under direct recognition of model Scnn trained in the source
domain. Figures 4B, D show that the confusion is effectively
mitigated by domain adaptation training.

The classification performance for various modes is exhibited
under the experimental SNRs conditions in Figure 5. From Figure 5,
the accuracy of all 11 modulated modes in the target domain
increases with SNR. Furthermore, the accuracy of AM-SSB
classification is around 90% at each SNR. As CPFSK, 8PSK, and
QPSK are easily confused in the classification domain, the
classification accuracy of CPFSK does not vary significantly with
SNR and is determined into 8PSK and QPSK.

In Figure 6, the recognition accuracy of proposed SemiAMR
scheme is compared with various approaches, such as ResNet [11],
CLDNN [31], DenseNet [14], SS-VM [32], Proxy-label [33], and
FixMatch [34]. In addition, As the SNRs increase from −20 dB
to −4 dB, the recognition accuracy of the baseline method gradually
increases from 9% to 33%. However, the accuracy of SemiAMR
inference starts to exceed that of the baseline method at −12 dB.
When SNR = −8 dB, the proposed scheme is higher than the baseline
method by about 12%, and at SNR = −6 dB, it is greater than the best
classification accuracy of the baseline method by 17%. SemiAMR
can reach 47% under SNR = −4 dB, which exceeds the baseline
method by 12%. As a result, the accuracy of the no-adapt schemes
seems very low in poor signal-to-noise conditions, where labeled
signal can not be obtained for pre-training. In terms of proposed
SemiAMR scheme, the performance is greatly improved by domain
adaptation, yielding a promising inference ability on target domain
data as a consequence.

6 Conclusion

In this paper, inspired by the domain adaptation algorithm, we
design a semi-supervised architecture for AMR. The proposed
scheme is evaluated on the RadioML2016.10a [10], and the
adaptability of baseline methods with target domain (unlabeled
data) is discussed. Experimental results indicate that our

proposed SemiAMR can obtain a maximum classification
accuracy of 46% with no corresponding labeled data pre-trained
under SNR = −4 dB. Simultaneously, to investigate the effect of the
number of convolutional layers on the experimental results, the
performance of the model at different signal-to-noise ratios (SNR)
was tested with 4, 5, 6 and 7 convolutional layers. Besides, the
proposed SemiAMR is greater than the best classification accuracy
of the baseline methods by 17% under SNR = −6 dB.
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