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This paper proposes a simple frequency formula developed from He’s frequency
formulation for fractal systems. In this approach, the initial guess can be judiciously
chosen. Even the simplest initial guess leads to a highly accurate approximate
solution. A detailed theoretical development is elucidated, and the solving process
is given step by step. The simple calculation and reliable results have beenmerged
into an effective tool for deeply studying fractal vibration systems, and the present
approach offers a completely new angle for the fast insight into the physical
properties of a non-linear vibration system in a fractal space.
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1 Introduction

Fractal oscillations not only demonstrate the beauty ofmathematics but also reveal the nature
of the world and change the way people study nature. Fractal non-linear systems truly describe
the dynamic problems of engineering science, and the research on them greatly expands the field
of human cognition. The emergence of fractal theorymakes us realize that the world is non-linear
and fractals are everywhere. Fractal non-linear vibration can be close to practical problems in
both depth and breadth, and it explains many phenomena through the fractal theory. Since the
birth of the fractal theory, it has been used in engineering and science, for example, the fractal
diffusion [1, 2], the fractal rheological model [3], the fractal control [4], the fractal solitary waves
[5, 6], and the fractal oscillators [7]. The two-scale fractal calculus is used to describe transport
problems in a porous medium, such as the problem of oil extraction and heat transfer of heat
pipes. The porous medium is viewed as a fractal space, so non-linear vibrations in the porous
medium can be modeled by fractal vibration theory [8, 9].

There are many analytical and numerical methods to find an approximate solution of a
differential equation containing fractional derivatives. The homotopy perturbation method
contains perturbation parameters, which have been extended to a wide range of physical
applications and engineering fields by many researchers [10, 11]. He’s frequency formula is a
simple and powerful method for a conservation non-linear oscillator, which has been widely
applied to solve non-linear oscillator problems, especially the pull-in instability found in
MEMS [12, 13]. It can be extended to the fractal oscillators and non-conservative oscillators
[14–21]. The applications of these non-linear oscillations do not have non-linear even
functions. El-Dib proposed a modification of He’s method for the case of even non-linearity
[22]. The Hamiltonian-based frequency formula is a modification of He’s frequency formula
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[23]. The most important property of a non-linear system is the
relationship between frequency and amplitude, so how to quickly
estimate the frequency–amplitude relationship is an urgent problem
to study. Many researchers devoted their efforts to studying
fractional calculus which provides a powerful tool to characterize
the periodic behavior of a non-linear oscillator [24]. He gave a
tutorial review on fractal space and fractional calculus [25], Tian
et al. established a fractal model for N/MEMS [26], and Li et al.
studied the non-linear vibration of nanoparticles in the
electrospinning process [27].

There are many analytical solutions for fractal oscillators,
but the continuous solution has not been discussed so far.
Existing frequency formulas cannot be formulated to
correspond to the frequency of the continuous process [28].
Recently, El-Dib proposed an efficient frequency formula,
which can be used to obtain successive approximate
solutions for the non-linear oscillation [22]. In this paper, we
illustrate the frequency formula and extend it in the differential
equation with the fractional derivative. The new method will be
applied to rapidly predict the frequency characteristics and
determine successive approximate solutions of a fractal
vibration system.

2 Two-scale fractal theory

As the fractal theory is helpful in establishing a governing
equation in a fractal space, it has become a significant topic in
both mathematics and mechanical engineering. The two-scale
fractal derivative [29] is defined as follows:

dz
dtφ

t0( ) � Γ 1 + φ( ) lim
t−t0→Δt
Δt≠0

z t( ) − z t0( )
t − t0( )φ (1)

where φ ∈ R.
When we observe a motion at a large scale, it may be a continuous

change, while at a small scale, it may become discontinuous.
Therefore, the two-scale fractal theory is a powerful mathematical
tool to study the world with greater precision [30].

When φ � 1 and Δt → 0, we can easily have
dz
dt1 � Γ 2( ) lim

t−t0→Δt
Δt≠0

z t( )−z t0( )
t−t0 � z′. Similarly, when φ � 2, dz

dt2 �

Γ 3( ) lim
t−t0→Δt
Δt≠0

z t( )−z t0( )
t−t0( )2 � z″.

It is worthmentioning that the two-scale fractal derivative agrees
with the traditional differential derivative when the fractal
dimension φ is a positive integer.

To better understand the fractional derivative, let us take the
function z � tμ as an example. Using Eq. 1, we can obtain [31]

d
dtφ

tμ � Γ 1 + μ( )Γ 1 + φ − N( )
Γ 1 + μ − N( ) tμ−φ (2)

where N is a natural number, N≤φ.
Knowing the fractional derivative of the power function, the

derivatives of all elementary functions will also be calculated, with
the help of Taylor’s series. For example, we have the following
equation:

sint � ∑∞
k�0

−1( )k
2k + 1( )!t

2k+1. (3)

By using Eqs 2, 3, we can obtain

d
dtφ

sint � ∑∞
k�0

−1( )k
2k + 1( )!

Γ 2 + 2k( )Γ 1 + φ − N( )
Γ 2 + 2k − N( ) t2k+1−φ (4)

After simple calculations, it yields the following result:

d
dt1

sint � ∑∞
k�0

−1( )k
2k + 1( )!

Γ 2 + 2k( )Γ 1 + 1 − 1( )
Γ 2 + 2k − 1( ) t2k+1−1 � cost

(5)
and

d
dt1.5

sint � ∑∞
k�0

−1( )k
2k + 1( )!

Γ 2 + 2k( )Γ 1 + 1.5 − 1( )
Γ 2 + 2k − 1( ) t2k+1−1.5

�
��
π

√
2

t−0.5cost (6)

Also, we can obtain another form of the fractional derivative. It
is obvious that the fractal derivative is useful and convenient to
study.

3 Successive approximate solutions for
fractal non-linear oscillation

We consider a general fractal non-linear oscillator in a fractal
space as follows:

d
dtφ

dz
dtφ

( ) + h z( ) � 0, z 0( ) � A,
dz 0( )
dtφ

� 0 (7)

where h(z) is an odd potential function or an odd polynomial as
h(z) � a1z + a3z3 + . . . + a2n+1z2n+1.

Let τ � tφ, Eq. 7 can be converted into its differential partner as

z″ + h z( ) � 0, z 0( ) � A, z′ 0( ) � 0, (8)
where the derivative of the function z with respect to τ is defined.
Here, φ is the scale dimension, and t and τ describe the small and
large scales, respectively.

He rewrote Eq. 8 in the following form [12]:

z″ + h z( )
z

z � 0 (9)

where the ratio h(z)/z is the equivalent stiffness.
When Eq. 8 is approximated by a linear oscillator:

z″ + ω2z � 0 (10)
He has established a simple formula [12].

ωHe
2 � dh z( )

dz

∣∣∣∣∣∣∣z�A
2

(11)

Following the analysis principle of He’s frequency formula, He
and Liu proposed a modified frequency formulation for a fractal
vibration in the porous medium [32].

ωHL
2 � ∫A

0
z4h z( )dz∫A

0
z5dz

(12)
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El-Dib established an extended frequency–amplitude formula,
which is the best and most efficient formula and can be used to
obtain successive approximate solutions for the non-linear
oscillations [26]. We extend this method to the fractal system
and obtain high-precision approximate frequency.

In the same way as in Eqs 8, 9 can be rewritten as follows:

z″ + h z( )z
z2

z � 0 (13)

Integrating the numerator and the denominator of the stiffness
term, the frequency ω2 with the trial solution z � z(τ) that
corresponds to the initial conditions is obtained in the following
form:

ω2
∣∣∣∣z�z τ( ) �

∫T

0
h z( )zdτ∫T

0
z2dτ

(14)

where T is the period, T � 2π
ω .

Let us explain this frequency formula from another angle.
By the comparison of Eqs 8, 10, the error function needs to take

the minimum value.

E ω2( ) � h z( ) − ω2z
∣∣∣∣ ∣∣∣∣ (15)

The mean square error is defined as

MSE ω2( ) � ∫T

0
h z( ) − ω2z( )2dτ,

� ω4∫T

0
z2dτ − ω22∫T

0
h z( )zdτ + ∫T

0
h2 z( )dτ (16)

The aforementioned problem is equivalent to the value of ω2,
and the functionMSE(ω2) takes the minimum value. After a simple
calculation, the minimum point is

dMSE ω2( )
dω2

� ω22∫T

0
z2dτ − 2∫T

0
h z( )zdτ � 0 (17)

The solution of Eq. 17 is Eq. 14. The aforementioned analysis
process verifies the accuracy of the frequency formula. With a
suitable chosen trial solution, performing the aforementioned
integrals gives the corresponding frequency.

For the non-linear oscillator, h(z) � a1z + a3z3, we obtain

ωHe
2 � ωHL

2 � ω2
∣∣∣∣z�Acosωτ � a1 + 3

4
A2a3 (18)

The precision of Eq. 18 can be found by comparing it with the
exact frequency [22].

ωexc � π

2∫π/2

0
dθ������������

a1+1
2A

2a3 1+sin 2 θ( )√ (19)

FIGURE 1
Illustration of the first-order approximate solution with A � 1.

FIGURE 2
Illustration of the first-order approximate solution with A � 5.

FIGURE 3
Illustration of the second-order approximate solution with A � 1.
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4 Application and numerical illustration

In order to illustrate the solution process of the aforementioned
method, we consider the following oscillator:

d
dtφ

dz
dtφ

( ) + z
1
3 � 0, z 0( ) � A,

dz 0( )
dtφ

� 0 (20)

We consider that the general mth-order trial solution which
satisfies the initial conditions can be expressed by

zm τ( ) � ∑m

n�1cn cos 2n − 1( )ωmτ( ), (21)

where τ � tφ and ∑m

n�1cn � A.
Using the first-order trial solution, z1 � Acosω1τ, and

employing Eq. 14, the corresponding frequency is

ω1 �

���������∫T

0
z1( ) 4

3dτ∫T

0
z1( )2dτ

√√
� 1.076845

A
1
3

, T � 2π
ω1

(22)

For a comparison between He–Liu’s modification and the
present modification, we obtain

ωHL �

����������∫A

0
z4h z( )dz∫A

0
z5dz

√√
� 1.06066

A
1
3

(23)

The exact frequency of Eq. 20 is ωexc.

ωexc � 2π

2
�
2

√ ∫A

0
dz�����∫A

z
s
1
3 ds

√ � 1.070451

A
1
3

(24)

FIGURE 4
Illustration of the second-order approximate solution with A � 5.

FIGURE 5
Comparison of the numerical solution with first- and second-order solutions for A � 1

FIGURE 6
Graphing solution (28) for sequences of the parameter φ with
A � 1.
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So, the relative error in the first-order approximate frequency is
given by

ωexc − ω1

ωexc

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ × 100% � 0.5973% (25)

Also, the error in He–Liu’s modification is

ωexc − ωHL

ωexc

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ × 100% � 0.9147% (26)

It is noticed that the present method has better precision.
The first-order approximate solution of Eq. 20 is

z1 � Acos
1.076845

A
1
3

τ( ), (27)
that is,

z1 � Acos
1.076845

A
1
3

tφ( ) (28)

We consider that the second-order trial solution meeting the
initial conditions can be expressed as

z2 � c1 cos ω2τ( ) + A − c1( ) cos 3ω2τ( ) (29)
Using a trigonometric formula

cos(3ω2τ) � 4cos 3(ω2τ) − 3 cos(ω2τ), we have the following equation:
z2 � 4c1 − 3A( ) cos ω2τ( ) + 4A − 4c1( )cos 3 ω2τ( ) (30)

The least-square of the displacement is estimated as follows:

∫T

0
4c1 − 3A( ) cos ω2τ( )[ ]2dτ � ∫T

0
4A − 4c1( )cos 3 ω2τ( )[ ]2dτ,

T � 2π
ω2

(31)
The solution of Eq. 31 is c1 � 086038A, and substituting the

value into Eq. 29, we obtain

z2 � 086038A cos ω2τ( ) + 0.13962A cos 3ω2τ( ) (32)
Using Eq. 32 and the second-order trial solution, Eq. 14 becomes

ω2 �

���������∫T

0
z2( ) 4

3dτ∫T

0
z2( )2dτ

√√
, T � 2π

ω2
(33)

After integral calculation, the second-order approximate
frequency is given by

ω2 � 1.074586

A
1
3

(34)

The percentage relative error in second-order approximate
frequency is 0.3863%. Also, the second-order approximate
solution of Eq. 20 is

z2 � 086038A cos
1.074586

A
1
3

τ( ) + 0.13962A cos
3.223758

A
1
3

τ( )
(35)

This leads to

z2 � 086038A cos
1.074586

A
1
3

tφ( ) + 0.13962A cos
3.223758

A
1
3

tφ( )
(36)

In order to obtain the sequential extended approximate
solution and improve the accuracy of the solution, we can
use a higher-order trial solution, but the solving process
becomes more complex.

To verify the accuracy of the method, the approximate
solution is compared with the exact solution of Eq. 20 in
Figures 1–5. The comparison of the approximate frequency
with the exact one is made, and relative errors have been
found. It is noted that the relative error does not depend
upon the amplitude; that is, the error is the same for any
value of the amplitude, while it decreases with the increase in
the order of approximation. Figures 1, 2 show first-order
approximate solutions with different values of the
amplitudes. Figures 3, 4 show second-order approximate
solutions. A good agreement for various amplitudes of first-
and second-order approximate frequencies can be seen from
these figures. Figure 5 shows the comparison of the numerical
solution obtained by the Matlab solver “ode45” with
approximate solutions over a small interval.

Different values of the fractal exponent φ are considered for
Eq. 28 and shown together in Figure 6. It is observed that the
vibration attenuation occurs more, and the oscillation
frequency becomes faster for increasing the values of the
fractal exponent φ.

5 Conclusion

In this paper, a high-precision frequency is obtained by a trial
solution for the first time ever, and a frequency formula
determined by the trial solution is proposed for solving a
fractal nonlinear vibration system. The new method is
described theoretically, and an example is given to explain in
detail the process of finding the higher-order approximate solution
and the approximate frequency. The analysis results show that this
new method can be used to obtain the frequency with high
accuracy and to quickly calculate the high-order continuous
solution of the fractal non-linear oscillator. The influence of the
fractal derivative order on the periodic motion is visually displayed
graphically. It is revealed that the fractal exponent affects the
frequency characteristics greatly as that discussed in Refs. [33, 34].
Although we only discuss the oscillator with the non-zero initial
condition, it is still valid for the oscillator with zero initial
condition as that in micro-electromechanical systems [35],
which will be discussed in the next paper.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Frontiers in Physics frontiersin.org05

Niu et al. 10.3389/fphy.2023.1158121

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1158121


Author contributions

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial

relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Xiao BQ, Huang QW, Yu BM, Long GB, Chen HX. A fractal model for predicting
oxygen effective diffusivity of porous media with rough surfaces under dry and wet
conditions. Fractals (2021) 29(3):2150076. doi:10.1142/s0218348x21500766

2. He JH, Qian MY. A fractal approach to the diffusion process of red ink in a saline
water. Therm Sci (2022) 26(3B):2447–51. doi:10.2298/tsci2203447h

3. Zuo YT. Effect of sic particles on viscosity of 3-D print paste a fractal rheological
model and experimental verification. Therm Sci (2021) 25(3):2405–9. doi:10.2298/
tsci200710131z

4. Ma HJ. Fractal variational principle for an optimal control problem. J Low
Frequency Noise, Vibration Active Control (2022) 41:1523–31. doi:10.1177/
14613484221104647

5.Wang KL. Exact solitary wave solution for fractal shallow water wave model by He’s
variational method. Mod Phys Lett B (2022) 36(7):2150602. doi:10.1142/
s0217984921506028

6. Wang KL. New variational theory for coupled nonlinear fractal Schrodinger system. Int
J Numer Methods Heat Fluid Flow (2022) 32(2):589–97. doi:10.1108/hff-02-2021-0136

7. Shen Y, El-Dib YO. A periodic solution of the fractional sine-Gordon equation
arising in architectural engineering. J Low Frequency Noise, Vibration Active Control
(2021) 40(2):683–91. doi:10.1177/1461348420917565

8. He JH, Kou SJ, He CH, Zhang ZW, Gepreel KA. Fractal oscillation and its
frequency-amplitude property. Fractals (2021) 29(4):2150105. doi:10.1142/
s0218348x2150105x

9. Elías-Zúñiga A, Martínez-Romero O, Trejo DO, Palacios-Pineda LM. Exact steady-
state solution of fractals damped and forced systems. Results Phys (2021) 28:104580.
doi:10.1016/j.rinp.2021.104580

10. He CH, El-Dib YO. A heuristic review on the homotopy perturbation method for
non-conservative oscillators. J Low Frequency Noise, Vibration Active Control (2022)
41(2):572–603. doi:10.1177/14613484211059264

11. He JH, Jiao ML, He CH. Homotopy perturbation method for fractal Duffing
oscillator with arbitrary conditions. Fractals (2022) 30(9). doi:10.1142/
S0218348X22501651

12. He JH. The simplest approach to nonlinear oscillators. Results Phys (2019) 15:
102546. doi:10.1016/j.rinp.2019.102546

13. He JH, Na Q, He CH, Khaled G. Fast identification of the pull-in voltage of a nano/
micro-electromechanical system. J Low Frequency Noise, Vibration Active Control
(2022) 41:566–71. doi:10.1177/14613484211068252

14. Feng GQ. He’s frequency formula to fractal undamped Duffing equation. J Low
Frequency Noise Vibration Active Control (2021) 40:1671–6. doi:10.1177/
1461348421992608

15. Elias-Zuniga A, Palacios-Pineda LM, Jimenez-Cedeno IH, Martinez-Romero O,
Olvera-Trejo D. Analytical solution of the fractal cubic–quintic duffing equation.
Fractals (2021) 29(4):2150080. doi:10.1142/s0218348x21500808

16. Elias-Zuniga A, Palacios-Pineda LM, Jiménez-Cedeño IH, Martinez-Romero O,
Olvera-Trejo D. A fractal model for current generation in porous electrodes.
J Electroanalytical Chem (2021) 880:114883. doi:10.1016/j.jelechem.2020.114883

17. Qie N, Hou WF, He JH. The fastest insight into the large amplitude vibration of a
string. Rep Mechan Eng (2020) 2:1–5. doi:10.31181/rme200102001q

18. El-Dib YO. The frequency estimation for non-conservative nonlinear oscillation.
Zamm-z Angew Math Mech (2021) 101:101. doi:10.1002/zamm.202100187

19. El-Dib YO. The damping Helmholtz–Rayleigh–Duffing oscillator with the non-
perturbative approach. Mathematics Comput Simulation (2022) 194:552–62. doi:10.
1016/j.matcom.2021.12.014

20. El-Dib YO. The simplest approach to solving the cubic nonlinear jerk oscillator
with the non-perturbative method.MathMeth Appl Sci (2022) 45:5165–83. doi:10.1002/
mma.8099

21. Elías-Zúñiga A, Palacios-Pineda LM, Jiménez-Cedeño IH, Martínez-Romero O,
Trejo DO. He’s frequency–amplitude formulation for nonlinear oscillators using Jacobi
elliptic functions. J Low Frequency Noise, Vibration Active Control (2020) 39(4):
1216–23. doi:10.1177/1461348420972820

22. El-Dib YO. Insightful and comprehensive formularization of frequency-
amplitude formula for strong or singular nonlinear oscillators. J Low Frequency
Noise, Vibration Active Control (2022) 42:89–109. doi:10.1177/14613484221118177

23. He JH. Hamiltonian approach to nonlinear oscillators. Phys Lett A (2010) 374:
2312–4. doi:10.1016/j.physleta.2010.03.064

24. Ain QT, He JH. On two-scale dimension and its applications. Therm Sci (2019) 23:
1707–12. doi:10.2298/tsci190408138a

25. He JH. Fractal calculus and its geometrical explanation. Results Phys (2018) 10:
272–6. doi:10.1016/j.rinp.2018.06.011

26. Tian D, Ain QT, Anjum N, He CH, Cheng B. Fractal N/MEMS: From pull-in
instability to pull-in stability. Fractals (2021) 29(2):2150030. doi:10.1142/
s0218348x21500304

27. He JH. The simpler, the better: Analytical methods for nonlinear oscillators and
fractional oscillators. J Low Frequency Noise Vibration Active Control (2019) 38:
1252–60. doi:10.1177/1461348419844145

28. Elías-Zúñiga A, Martínez-Romero O, Palacios-Pineda LM, Olvera-Trejo D. New
analytical solution of the fractal anharmonic oscillator using an ancient Chinese
algorithm: Investigating how plasma frequency changes with fractal parameter
values. J Low Frequency Noise, Vibration Active Control (2022) 41(3):833–41. doi:10.
1177/14613484211070883

29. Elias-Zuniga A. On the two-scale dimension and its application for deriving a new
analytical solution for the fractal Duffing’s equation. Fractals (2022) 30(3):2250061.
doi:10.1142/S0218348X2250061X

30. Elias-Zuniga A, Palacios-Pineda LM, Olvera-Trejo D, Martinez-Romero O.
Recent strategy to study fractal-order viscoelastic polymer materials using an
ancient Chinese algorithm and He’s formulation. J Low Frequency Noise Vibration
Active Control (2022) 41(3):842–51. doi:10.1177/14613484221085413

31. He JH, El-Dib YO. A tutorial introduction to the two-scale fractal calculus and its
application to the fractal Zhiber-Shabat oscillator. Fractals (2021) 29(8):2150268.
doi:10.1142/s0218348x21502686

32. He CH, Liu C. A modified frequency-amplitude formulation for fractal vibration
systems. Fractals (2022) 30(3):2250046. doi:10.1142/S0218348X22500463

33. He JH, Moatimid GM, Zekry MH. Forced nonlinear oscillator in a fractal space.
Facta Univ Series: Mech Eng (2022) 20(1):1–20.

34. Liu FJ, Zhang T, He CH, Tian D. Thermal oscillation arising in a heat shock of a
porous hierarchy and its application. Facta Univ Series: Mech Eng (2022) 20(3):633–645.

35. Anjum N, He JH, Ain QT, Tian D. Li-He’s modified homotopy perturbation
method for doubly-clamped electrically actuated microbeams-based
microelectromechanical system. Facta Univ Series: Mech Eng (2021) 19(4):601–612.

Frontiers in Physics frontiersin.org06

Niu et al. 10.3389/fphy.2023.1158121

https://doi.org/10.1142/s0218348x21500766
https://doi.org/10.2298/tsci2203447h
https://doi.org/10.2298/tsci200710131z
https://doi.org/10.2298/tsci200710131z
https://doi.org/10.1177/14613484221104647
https://doi.org/10.1177/14613484221104647
https://doi.org/10.1142/s0217984921506028
https://doi.org/10.1142/s0217984921506028
https://doi.org/10.1108/hff-02-2021-0136
https://doi.org/10.1177/1461348420917565
https://doi.org/10.1142/s0218348x2150105x
https://doi.org/10.1142/s0218348x2150105x
https://doi.org/10.1016/j.rinp.2021.104580
https://doi.org/10.1177/14613484211059264
https://doi.org/10.1142/S0218348X22501651
https://doi.org/10.1142/S0218348X22501651
https://doi.org/10.1016/j.rinp.2019.102546
https://doi.org/10.1177/14613484211068252
https://doi.org/10.1177/1461348421992608
https://doi.org/10.1177/1461348421992608
https://doi.org/10.1142/s0218348x21500808
https://doi.org/10.1016/j.jelechem.2020.114883
https://doi.org/10.31181/rme200102001q
https://doi.org/10.1002/zamm.202100187
https://doi.org/10.1016/j.matcom.2021.12.014
https://doi.org/10.1016/j.matcom.2021.12.014
https://doi.org/10.1002/mma.8099
https://doi.org/10.1002/mma.8099
https://doi.org/10.1177/1461348420972820
https://doi.org/10.1177/14613484221118177
https://doi.org/10.1016/j.physleta.2010.03.064
https://doi.org/10.2298/tsci190408138a
https://doi.org/10.1016/j.rinp.2018.06.011
https://doi.org/10.1142/s0218348x21500304
https://doi.org/10.1142/s0218348x21500304
https://doi.org/10.1177/1461348419844145
https://doi.org/10.1177/14613484211070883
https://doi.org/10.1177/14613484211070883
https://doi.org/10.1142/S0218348X2250061X
https://doi.org/10.1177/14613484221085413
https://doi.org/10.1142/s0218348x21502686
https://doi.org/10.1142/S0218348X22500463
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1158121

	A simple frequency formulation for fractal–fractional non-linear oscillators: A promising tool and its future challenge
	1 Introduction
	2 Two-scale fractal theory
	3 Successive approximate solutions for fractal non-linear oscillation
	4 Application and numerical illustration
	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


