
Physics informed neural networks
for phase field fracture modeling
enhanced by length-scale
decoupling degradation functions

Haojie Lian1, Peiyun Zhao2, Mengxi Zhang3, Peng Wang4 and
Yongsong Li5*
1Key Laboratory of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of
Technology, Taiyuan, Shanxi, China, 2College of Mining Engineering, Taiyuan University of Technology,
Taiyuan, Shanxi, China, 3State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin
University, Tianjin, China, 4Beijing Huituo Infinite Technology Co., Ltd., Beijing, China, 5School of
Architectural and Civil Engineering, Huanghuai University, Zhumadian, China

The paper proposed a novel framework for efficient simulation of crack
propagation in brittle materials. In the present work, the phase field represents
the sharp crack surface with a diffuse fracture zone and captures the crack path
implicitly. The partial differential equations of the phase field models are solved
with physics informed neural networks (PINN) by minimizing the variational
energy. We introduce to the PINN-based phase field model the degradation
function that decouples the phase-field and physical length scales, whereby
reducing the mesh density for resolving diffuse fracture zones. The numerical
results demonstrate the accuracy and efficiency of the proposed algorithm.
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1 Introduction

Predicting material and structural failure due to crack nucleation and extension is central
to many engineering applications. Several numerical methods are developed to capture
complex fracture phenomena, such as the finite element method [1], the boundary element
method [2], the cohesion zone method [3,4], the extended finite element methods [5], the
peridynamics Ha and Bobaru [6] and the phase field methods. In these methods, the phase
field method has demonstrated advantages in description of complex fracture patterns. By
introducing additional continuous field variables to track discrete discontinuities with
diffuse fracture zones, the phase field method Bourdin et al. [7] unifies crack initiation,
propagation, branching, and merging in structures.

In phase field method, the diffuse fracture region must be resolved with sufficient
degrees of freedom to obtain an accurate solution. The length scale of the physical process
zone is proportional to the ratio of the fracture energy to the square of the material
strength. For most problems modeled by linear elastic fracture mechanics, the length
scale of the physical process zone is very small compared to structures, but the
commonly used formulas in fracture phase field approach does not distinguish
between the phase field crack length scale the physical process zone length scale,
which leads to prohibitive meshing requirement when extending the models with
nanoscale phase field length to large structures. To alleviate the meshing burden,
Wu et al. proposed a length-scale insensitive phase-field model [8], but the method
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is practically applicable to the scenario that the phase-field length
scale and physical process zone length scale are in the same order
of magnitude. Lo et al. [9] proposes a degradation function that
separates the phase field length scale from physical length-scale,
which enables one to simulate crack propagation in large scale
structures.

As a branch of artificial intelligence, the deep learning based on
Artificial Neural Networks has made tremendous progress with the
explosive growth of data in the past decade [10–12] and applied in a
wide range of areas. ANN were initially trained for Computer
Visualization and Natural Language Processing tasks [13,14].
When it comes to the field of physical simulation, two major
problems arise: firstly, it is cumbersome to obtain the data from
complex engineering systems; secondly, the result predicted by the
training data cannot ensure that the physical principles of the
problem are satisfied. Hence, the effectiveness and reliability of
ANN in characterizing physical phenomena are questionable. To
overcome the difficulties, physics informed neural networks (PINN)
[12,15–19] were put forward, which comply with the distribution of
the training data as much as possible andmeanwhile obey the laws of
physics which are commonly formulated by partial differential
equations. Compared to purely data-driven neural network
learning, PINN allows learning with fewer data samples and
obtaining models with greater generalization capability. Goswami
et al. [20], Goswami et al. [21] firstly applied PINN to solve the phase
field model for simulating the growth and propagation of fractures
in brittle materials. Their results offer improved accuracy and
efficiency, demonstrating the advantages of PINN in simulating
moving boundary problems.

In the present work, we introduce the degradation function
proposed by Lo et al. [9] to the PINN-based phase field method
[20,21], in order to analyse crack growth in large structures with a
data driven and mechanism based hybrid approach. We use three
numerical simulation examples to demonstrate that the physical
neural network combined with the proposed degradation function is
correct and advantageous. The remaining o the paper is organized as

follows. Section 2 introduces fracture phase field method and shows
how the phase field length scale and the physical process zone length
are decoupled. Section 3 elaborates on how the fracture phase field
model is discretized with the PINN. The numerical examples are
given and analysed in Section 4, and Section 5 is the conclusion and
outlook of future work.

2 Phase field model of cracks

2.1 Conventional phase field crack modeling

The phase-field crack modeling of brittle fractures involves the
integration of two fields: the elastic field u and the phase field d, and
the crack propagation is determined according to the free energy
minimization principle. Based on the energy decomposition
proposed by Francfort and Marigo [22], the free energy of the
fracture system is given as:

E u, Γ( ) � ∫
Ω
ψe ε u( )( )dx + Gc∫

Γ
ds (1)

where: Gc is the critical energy release rate, ψe is the elastic energy
density, Γ is the fracture surface, and Ω is the problem domain. The
right hand side of the equation is the sum of the elastic strain energy
and the fracture surface energy, and the fracture phase field method
in mechanics assumes that the crack should follow the direction of
minimum free energy and be irreversible.

Since the boundary integral involved in the surface energy is not
easy to handle, it is replaced by the crack density equation in the
following:

ψc �
Gc

2l0
d2 + l20|▽d|2( ) (2)

where: d is the order parameter; l is the diffuse crack width.
Theoretically, the model draws on the elliptic regularization
method of the Mumford-Shah generalization Lie et al. [23] in
computer image segmentation (hence the model is also known
as AT2).

Since the elastic strain energy cannot distinguish between
positive and negative for stress and strain, Amor et al. [24] and
Miehe et al. [25] proposed a tension-compression split of the elastic
strain energy, which is defined as:

ψe ε, d( ) � g d( )ψ+
e + ψ−

e (3)
where the elastic energy is determined by both the strain and the
order parameter d. g(d) represents the degradation function, which
is used to reduce the strength of material around the cracked region.
To model material failure and crack propagation, the material
should be fully elastic when it is intact and disappears when it is
completely cracked. This is achieved by multiplying the elastic
energy by the degradation function in the phase field description
of the damaged materials.

In addition, to prevent the release of elastic energy after unloading
from causing crack healing, Miehe et al. [26] proposed a very concise
and effective solution by introducing a historical strain function:

H x, t( ) � max
τ∈ 0,t[ ]

ψ+
e (4)

FIGURE 1
Shape of the proposed degradation function in this work. As the
parameter q increases the degradation function approaches the
standard quadratic, and as q decreases towards 1 the peak stress
predicted by the model increases.
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Eq. 4 indicates that the crack driving force is taken as the historical
maximum tensile elastic energy. Even after re-unloading, the tensile
elastic energy maintains its maximum value and thus prevents crack
healing.

Substituting the crack density in Eq. 2 and the elastic energy in
Eq. 5 into the free energy of the fracture system in Eq. 1:

E u, d( ) � g d( )ψ+
e + ψ−

e +
Gc

2l
d2 + l2 ▽d| |2( ) + g d( )H x, t( ) (5)

Finally, we seek the solution to minimize the free energy E, which
consists of the elastic strain energyψe and the fracture surface energy ψc.

2.2 Degradation function

The degradation function needs to satisfy the following
conditions:

g 1( ) � 1
g 0( ) � 0
g′ 0( ) � 0

(6)

The most widely used degradation function in the literature is a
quadratic function,

g d( ) � 1 − d( )2. (7)
With this degradation function, for the AT2 model (d2) with
uniform uniaxial tension, the peak stress is obtained as:

σc �
������
27GcE

256l0

√
(8)

Eq. 8 shows that the phase-field length, l0 is not an independent
parameter but dependent on the material strength, σc, fracture
energy, Gc, and Young’s modulus, E. This length scale, which
represents the size of the physical process zone, lp, can be quite
small for real materials. In the past, the typical approach has been to
set lp equal to l0. However, this means that numerical solutions must

have the ability to resolve the small lp, which can be a challenge for
large engineering structures. This is because the mesh size around
cracks must be a fraction of l0, at most l0/2, leading to
computationally intensive simulations. To overcome the
difficulties, Lo et al. [9] proposed a new degradation as:

g d( ) � q p 1 − q − 1
q

( ) 1−d( )2⎡⎢⎢⎣ ⎤⎥⎥⎦ (9)

This degradation function meets all the requirements of Eq. 6. Its shape
depends on the value of q. When q is 200, the shape of the proposed
degradation function in Eq. 23 is close to that of the classical
degradation function in Eq. 7. When the value of q is slightly larger
than 1, the shape of the degradation function g(d) will dramatically alter
followingmarginal change of the value of q. This can be seen in Figure 1.

The peak stress for a bar under homogeneous uniaxial tension can
be determined using the proposed degradation function, as follows:

σpc �
����
27GcE
256l0

√������������
q − 1( )ln q

q−1( )√ (10)

It’s worth mentioning that we’ve introduced the notation σc* to
represent the peak stress calculated using the alternative degradation
function, differentiating it from the conventional peak stress (σc).
Additionally, the physical length scale lp in the case of the alternative
degradation function is given as:

FIGURE 2
Schematic representation of the proposed physics informed neural network. X represents the input of the neural network, Y represents the output of
the neural network, f(e) represents the elastic strain energy, and f(c) represents the fracture energy. For training, we have used the ADAM optimizer
followed by L-BFGS.

FIGURE 3
Geometrical setup of a one-dimensional elastic bar with crack.
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FIGURE 4
1D elastic bar with crack using variation energy based PINN. Left column compares the exact displacement uexact and the computed displacement
ucomp. The right column compares the exact phase field dexact and the computed phase field dcomp. (A) lp = 0.0125, (B) lp = 0.0125, (C) lp = 0.00125, (D)
lp = 0.00125, (E) lp = 0.000125, (F) lp = 0.000125.
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lp � q − 1( )ln q

q − 1
( )l0. (11)

This allows us to also express the peak stress with the proposed
degradation function as follows:

σpc �
������
27GcE

256lp

√
(12)

q can be used to maintain the same peak stress σc* in numerical
simulations with the increase of the phase-field length, which allows
for a coarser mesh in the proximity of cracks. Supposing Gc, E, and
σc* are given as constants, when q is large, the sizes of the physical
process zone, lp, and the phase-field process zone, l0, are comparable.
Moreover, the finite elementmeshmust be refined according to l0. If we
would like to increase the l0 by 4 times without changing the peak stress,
σc* or the lp. q needs to be 1.107 according to Eq. 10. If we aim to increase
the length scale l0 by 16 times while still maintaining the same peak
stress, we find that q≈ 1.0148. If we increase l0 by 100 times, we find that
q ≈ 1.00155. This demonstrates that the proposed degradation function
allows for decoupling l0 from lp. Note that these results assume
homogeneous post-peak behavior and that localized deformations
have been suppressed. Importantly, it’s worth noting that the
resulting peak stress remains the same for different phase-field
length scales. Also note that the material is not damaged, i.e., d
begins to increase from 0, until the strains exceed peak strains.

3 PINN-based fracture phase-field
modeling

This section details the implementation of the phase field
method based on PINN [20, 21]. Firstly, the deep neural network
will be described, and secondly, the synthesis between the PINN

phase field method with the degradation function mentioned in the
above section is explained.

3.1 Deep neural networks

Deep learning is a branch ofmachine learning based on deep neural
networks. In comparison with shallow neural networks, deep learning
has more hidden layers and is more capable of fitting non-linearities.
Neural network training consists of two steps, i.e., forward propagation
and backward propagation. The forward propagation is used to train
the neural network parameters, while the backward propagation is used
to update the neural network parameters and find the optimal solution.
In this paper, a feed-forward deep neural network is used for the study.
The hidden layer of the deep neural network contains its main
parameter weights W and biases b, and the parameters are
continuously optimized by optimization algorithms (e.g., adaptive
moment estimation (ADAM), proposed Newton method (L-BFGS),
etc.) to find the optimal solution. Supposing that the network consists of
L hidden layers, with layer 0 denoting the input layer and layer (L + 1)
denoting the output layer, the expression of the neural network can be
written as:

zli � σ l−1 ∑ml−1

j�1
Wl

i,j zl−1j( ) + bli( )⎛⎝ ⎞⎠ (13)

The calculation of the output Y in the feed-forward algorithm can be
represented as follows: the activation function σl−1 in layer l is used
in conjunction with the number of neurons ml−1 in layer l − 1.

Yl � σ l Wl+1zl + bl+1( ),
zl � σ l−1 Wlzl−1 + bl( ),
zl−1 � σ l−2 Wl−1zl−2 + bl−1( ),

. . .
z1 � σ0 W1x + b1( )

(14)

where x represents the input to the neural network in Eq. 14. Forward
propagation is used to train the neural network parameters, (w, b),
which represent all theWl and bl parameters that appear in Eq. 14. We
evaluate a neural network prediction result by the loss function, and if
the loss value reaches low enough, (which is generally not possible to be
0) we end the neural network training. The common loss functions for
regression are MAE loss, MSE loss, and smooth L1 loss. Their
expressions are given by the following equations.

L � 1
n
∑n
i�1

Yi −N xi;W, b( )| | (15)

L � 1
n
∑n
i�1

Yi −N xi;W, b( )( )2 (16)

smoothL1 x( ) � 0.5 Yi −N xi;W, b( )( )2 if |Yi −N xi;W, b( )|< 1
|Yi −N xi,W, b( )| − 0.5 otherwise,

{
(17)

Yi represents the target value and N(xi; W, b) represents the
predicted value of the neural network. Backward propagation is
automatically performed based on the value of the loss function.
Automated differentiation and weight update implemented in
TensorFlow or PyTorch allow algorithm designers to perform
their tasks without coding the back propagation from scratch.

FIGURE 5
Geometrical setup and boundary conditions of the single-edge
notched plate.
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The reader is referred to LeCun et al. [27] for details of the adopted
gradient calculation method and the layer-by-layer chain rule
gradient derivation process. In the following section we focus on
an algorithmic approach for solving problems using the variational
energy-based physics informed neural network.

3.2 Variational energy based PINN

We can define the problem by a one-dimensional time-
independent differential equation:

F u, ux, . . . , ux...x, x, f x( )( ) � 0, (18)
together with the Dirichlet boundary condition, which is defined as:

u xD( ) � uD (19)
The deep neural network can be utilized to compute the field
variable, represented by u, by considering variables such as the
Dirichlet boundary point, represented by xD, and the source term,
represented by f(x). Furthermore, the first, second, and higher-order
derivatives with respect to the independent variable x can be
calculated using ux, uxx and ux. . .x respectively. The variational
energy principle has the distinctive benefit of automatically
satisfying homogeneous Neumann boundary conditions. At this
point, the expression for the variational energy is:

V � ∫
Ω
y u, ux, . . . , ux...x, x, f x( )( )dΩ (20)

where y is the differentiable functional. Ω is the problem domain for
which a solution is required, so the problem for which we require a
solution can be expressed as follows:

u* � argminuV u( )
subject to: u xD( ) � uD.

(21)

The steps for solving the differential equation using a neural network
are detailed as follows: First, we construct a neural network, N(x;W,
b) with initial parameters. Second, we revise the neural network

according to the boundary conditions. In terms of addressing the
boundary conditions in the context of neural network, weak form
and the strong form. When dealing with boundary conditions in a
weak form, a penalty term reflecting the boundary condition is
added to the loss function. But this may cause interference among
different loss terms, which slows or even cripples the convergence of
the problem. So, we prefer the strong form here and we redesign the
output of the neural network so as to comply with the Dirichlet
boundary condition.To this end, we set:

u ≈ ~uD + B x( ) ·N x;W, b( ). (22)
The function ~uD is selected such that it matches the value of uD at the
Dirichlet boundary points. Meanwhile, B(x) is equal to zero at the
same boundary. There is no requirement for a boundary component
in the calculation of the loss function. Thirdly, the output of the
neural network existing in variable energy expression is calculated
using an automatic differential technique. Having computed the first
and higher-order derivatives of u, we can now calculate the
variational energy at each quadrature point. This is done by
using ux from Eq. 22 and its derivatives obtained previously. The
total variational energy of the system is then obtained by summing
the energies at each point, as defined in Eq. 20. In this step we use the
PDE (partial differential equation), i.e., the total variational energy,
as the loss function of the neural network. The neural network
constructed above is named physics informed neural network. The
final step is to update the neural network parameters W and b by
adjusting them so that the next neural network output value is closer
to the target value.

According to the above steps, Goswami et al. [20], Goswami
et al. [21] proposed a PINN combined with phase field method to
simulate the fracture problem. The displacement control is applied
for the loading process. To train the PINN, a fixed displacement
step, denoted by △u, is taken and the strain-history function is
updated at each displacement increment. Before training the
network, the weights are initialized randomly from a Gaussian
distribution with the Xavier initialization technique [11]. In order
to calculate the parameters of the neural network at the first

FIGURE 6
Phase field image of the single-edge notched plate at l0 = lp (A) Crack initialization, (B) 3 * 10−3 mm, (C) 5 * 10−3 mm.
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displacement step i, the Gaussian quadrature points and their
corresponding weights are generated using the above process,
and in the subsequent step, the automatic differentiation method
is employed to calculate the displacement increment, △u, and the
eigenvalues of the strain, (λ1, . . ., λd), where d denotes the number of
spatial dimensions. These eigenvalues are then utilized to determine
ψ+
e and ψ−

e .
Next we modify the degradation function in the initial PINN

model as Lo et al. [9]:

g d( ) � q p 1 − q − 1
q

( ) 1−d( )2⎡⎢⎢⎣ ⎤⎥⎥⎦ (23)

The initial crack is defined by the initial strain-history function,H(x,
0). This function is determined based on the closest distance
between a point x in the domain and the initial crack, which
represents the discrete crack [28]. The local strain-history
functional approach allows for the specification of initial cracks
in the system [26]. In particular, we set

H x, 0( ) �
BGc

2l0
1 − 2d x, l( )

l0
( ) d x, l( )≤ l0

2

0 d x, l( )≥ l0
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (24)

where Gc is a material property known as the critical energy release
rate, representing the energy needed to produce a fracture surface
with a unit area. The parameter l0 controls how the crack spreads. In
Eqs. 24, B is a scalar parameter that controls the magnitude of the
scalar history field and is calculated as:

B � 1
1 − d

for d< 1 (25)

As is shown in Eq. 22, the output of the neural network is modified
to meet the boundary conditions.

As explained in Section 2, the solution to the crack problem is
obtained by minimizing the free energy E. which consists of the
elastic strain energy ψe and the fracture surface energy ψc. To use the
variational energy based PINN approach to study the growth of
fracture, the problem is formulated as:

FIGURE 7
Phase field images of single-edge notched plates with the same model size and different l0 values. The upper half: l0 = 4lp=0.05. The low half: l0 =
10lp = 0.125. (A) Crack initialization, (B) 4 p 10−3 mm, (C) 5 p 10−3 mm, (D) Crack initialization, (E) 4 p 10−3 mm, (F) 5 p 10−3 mm.
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Minimize: E � ψe + ψc

subject to: u � �u on zΩD

where: ψe � ∫Ω g d( )ψ+ ϵ( ) + ψ− ϵ( )( )dΩ
ψc � ∫Ω

Gc

2l0
d2 + l20 ∇d| |2[ ] + g d( )H x, t( )( )dΩ

(26)
Note that integration is needed to calculate ψe and ψc in Eq. 26 for
obtaining the elastic strain energy and the surface energy over the
whole domain. Figure 2 shows a schematic diagram of the proposed
PINN framework. For simplicity, only one layer of hidden layers is
explicitly shown.

4 Numerical examples

4.1 One dimensional cracked elastic bar

We are analyzing a bar with a crack located at the center (x = 0)
and it is fixed at both ends (x = −1, x = 1). This bar is subjected to a
sinusoidal load. The geometric setup is shown in Figure 3. For a
given material, we take into account the elastic property E, material

strength σc, and fracture energy Gc as the primary parameters. This
implies that for the commonly used quadratic degradation function
in Eq. 7, the length scale l0 is not a separate variable and is valued as
l0 � 27GcE/256σ2c . We choose the following parameters for this
model: σc = 0.15MPa, Gc = 2.7N/m, E = 1MPa, and l0 = lp =
12.5 μm. The mesh size h in the vicinity of the crack is h = l0. The
crack at center is imposed by the following initial strain-history
function:

H x, 0( ) � 1000 if d x( )≤ l0
0 if d x( )> l0{ (27)

where l0 is the length scale parameter. The displacement field
satisfies the Dirichlet boundary conditions, i.e.,

u 1( ) � u −1( ) � 0 (28)
The analytical solution of the displacement field Schillinger et al.
[29] is discontinuous and is given by the following equation:

uex �
1

π2 sin πx( ) − 1 + x

π
if x< 0

1

π2 sin πx( ) + 1 − x

π
if x≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (29)

FIGURE 8
Phase field images of single-edge notched plates with 4 and 10 times of model enlargement while maintaining the peak stress unchanged. The
upper half: l0 = 4lp. The low half: l0 = 10lp, (A)Crack initialization, (B) 4 p 10−3 mm, (C) 5 p 10−3 mm, (D)Crack initialization, (E) 4 p 10−3 mm, (F) 5 p 10−3 mm.

Frontiers in Physics frontiersin.org08

Lian et al. 10.3389/fphy.2023.1152811

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152811


and phase field solutions is,

dex � exp
−|x − a|

l0
( ) (30)

where the crack is located at ‘a’. For this problem, the configurations
of the neural network are: three hidden layers and a subsequent
linear layer, we use adaptive tanh activation function in the hidden
layer, while for the last layer, we adopt a linear activation function.
The optimization is first performed using the Adam optimizer, and
then the L-BFGS optimizer is used, where the learning rate of the
L-BFGS optimizer is α = 0.001. The one-dimensional elastic bar is

divided into three regions: lc: [−1, − 2L0], c: [−2L0, 2L0], rc: [2L0, 1],
where lc and rc respectively represent the left and right crack regions,
and c is the crack region. To ensure that the output of the neural
network fully satisfies the boundary conditions of Dirichlet, we set:

u � x + 1( ) x − 1( )[ ]uθ (31)
where uθ is the displacement field obtained as the output of the
neural network. To optimize the proposed Physics-Informed Neural
Network (PINN), we minimize the total variational energy of the
system, which is defined in Eq. 20. To evaluate the precision of the
results derived using this approach, we adopt two metrics: the
relative error Lrel2 and the root mean square error (RMSE).

Next, we study the effect of the proposed degradation function
on the model. First, for the proposed degradation function, it can
decouple between the length of the coupling field, l0, and the physical
length, lp. By setting different q values, we can make l0 multiple times
larger than lp. For instance, l0 = 100lp when q = 1.00155. Figure 4
shows the simulation results in cases of l0 = lp = 0.0125, 1/10L0 = lp =
0.00125 and 1/100L0 = lp = 0.000125. To ensure an impartial
evaluation, both methods were tested using the same neural
network architecture and the number of integral points. The
results from the proposed method were then compared to those
obtained from the AT2-based PINN approach. Figures 4A,B show
the displacement field u and phase field d obtained using lp = 0.0125.
Visually, the obtained results overlap with the analytical solutions
obtained using formulas Eqs. 29, 30. To quantify the accuracy of the

FIGURE 9
Scatter plots of single-sided notched plates with 4 and 10 times ofmodel enlargement whilemaintaining the peak stress unchanged. The upper half:
l0 = 4Lp. The low half: l0 = 10lp, (A) Crack initialization, (B) 4 p 10−3 mm, (C) 5 p 10−3 mm, (D) Crack initialization, (E) 4 p 10−3 mm, (F) 5 p 10−3 mm.

FIGURE 10
Geometrical setup and boundary conditions of the symmetrically
double-edge notched plate.
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proposed PINN method, relative errors and RMSEs corresponding
to u and d are calculated. For u and d, the observed relative errors are
3.32% and 2.77%. In terms of themodel size, 800 Gaussian points are
involved. Corresponding to lp = 0.00125 for u and d, relative
prediction errors of 2.46% and 1.01%. Relative errors of u and d
in case of lp = 0.000125 of 20.56% and 48.28%. Note that the
difference in Figures 4E,F is actually due to a lack of resolution
at the material length scale. Therefore increasing the integration
points appropriately and adjusting the number of training iterations
may narrow the difference. The results shown in Figures 4E,F are not
perfect. However, as the linear elastic fracture mechanics must meet
the constraint of the phase-field process on a small scale zones, the
constraint of the phase-field process on a small scale zones also
applies to the proposed modeling method. Nevertheless, the phase
field length scale can be selected independent of the inherent
material process zone length scale, provided that the material
processing zone length scale is sufficiently refined.

4.2 Single-edge notched plate subjected to
tension

In this case, we take into consideration a unit square plate with a
horizontal crack running from the midpoint of the left outer edge to
the center of the plate. The problem’s geometry and boundary
conditions are illustrated in Figure 5. The plate material has a
tensile strength of σc = 2.54MPa, a fracture energy of Gc = 2.7N/
m, a Young’s modulus of E = 282.69MPa, and a phase field length
scale of l0 = lp = 12.5 μm. The mesh size, h, near the crack is h = l0/4.
The constant displacement increment applied during the
computation is δv = 10−3mm. The crack path for the single-edge

notched plate under tension was obtained using a fully connected
neural network with three hidden layers, each of which has
50 neurons. The activation function for the first two layers adopt
the tanh function, and for the last layer adopt the linear function.
The initial crack was determined using the strain history functional
described in Eq. 24. The boundary conditions imposed were
Dirichlet boundary conditions.

u 0, y( ) � v x, 0( ) � 0, v x, 1( ) � Δv (32)
where u and v are the solutions of the elastic field along the x and
y-axes, respectively. To satisfy the Dirichlet boundary conditions,
the neural network outputs for the elastic field are modified as:

u � x 1 − x( )[ ]û (33)
v � y y − 1( )[ ]v̂ + yΔv (34)

where û and v̂ are obtained from the neural network. Figure 6
illustrates the crack propagation process in case of lp = l0 =
0.0125 mm. The result is very close to that of Goswami et al. [20].

As in the previous case, we first study the effect of the proposed
degradation function on different physical length scale, lp for the
same size model. The ratio between l0 and lp is varied by setting
different values of q. Figure 7 shows the simulation results for the
cases l0 = lp = 0.0125mm, l0 = 4lp = 0.05 mm and l0 = 10lp =
0.125 mm. In the above simulation, we observe that when the length
of the phase field increases, the number of required Gaussian
integration points decreases considerably, when l0 = lp =
0.0125mm, the number of required integration points is:
20*20*16 (20 represents the mesh of elements and 16 represents
the number of required integration points per element), when l0 =
4lp = 0.05mm, the number of required integration points is:

FIGURE 11
Phase field images of Symmetric double notched plates at l0 = lp, (A) Crack initialization, (B) 2.5 * 10−3 mm, (C) 5 * 10−3 mm.
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15*15*16, When l0 = 10lp = 0.125mm, the number of integration
points required is: 12*12*16, and the same simulation speed is also
increased. Therefore, assuming that the model is enlarged and the lp
is unchanged, does it mean that we can simulate the harsh
conditions in the large-scale model where the physical length
scale, lp has to be small. We will therefore next investigate
increasing the size of the model while keeping the length scale of
the physical process zone constant. The previous example in Section
4.1 shows that decoupling the physical length scale from the phase
field length is achievable albeit with limitations. The proposed
degradation function allows to solve large-scale problem with

much less computational cost. Suppose we multiply the length of
the model edge by a factor of 4 and 10. In themeanwhile, the value of
q is modified so that l0 = 4lp and l0 = 10lp. The value of σc remains
constant all the time. The proposed degradation function allows to
increase the size of l0 and decrease the mesh, 1

h (which is closely
related to the size of l0, usually h = l0/4), while keeping the physical
length scale lp constant. Simulation results for l0 = 4lp and l0 = 10lp
are shown in figures Figure 8 and Figure 9. With the classical
degradation function, if we want to increase the model by a factor of
10, we would need to add more integration points, whereas with the
proposed degradation function, we can keep the number of

FIGURE 12
Phase field images of Symmetric double notched plates with 4 and 10 times of model enlargement while maintaining the peak stress unchanged.
The upper half: l0 = 4lp. The low half: l0 = 10lp, (A) Crack initialization, (B) 2.5 * 10−3 mm, (C) 5 * 10−3 mm, (D) Crack initialization, (E) 2.5 * 10−3 mm, (F) 5 *
10−3 mm.

Frontiers in Physics frontiersin.org11

Lian et al. 10.3389/fphy.2023.1152811

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1152811


integration points almost unchanged while increasing the model size
by a factor of 10. We observe that the crack path shape is accurately
captured by the larger length scale of the phase field. This
adjustment to the phase field model formulation, therefore,
allows for an increased sample size without the need for a
significant increase in the computational volume of the length
scale of the material processing zone.

4.3 Symmetrically double-edge notched
plate sujected to tension

To verify the proposed method, we add another case, in which a
double-edge notched plate subjected to a tensile load (see Figure 10)
is considered. The material parameters are σc = 2.54Mpa, Gc =
2.7*10N/m, E = 282.69Mpa, and l0 = lp = 12.5 μm.

To determine the crack path, we employed a fully connected
neural network that includes four hidden layers, each of which has

50 neurons. The first three layers use the tanh activation function,
while the final layer uses the linear activation. Both of cracks were
initiated using the strain history functional, and the Dirichlet
boundary conditions are specified:

u x, 0( ) � v x, 0( ) � 0, v x, 1( ) � Δv (35)
The solution for the elastic field along the x and y-axes are
represented by u and v, respectively. In order to determine the
crack path, a constant displacement increment of δu = 0.5p10−4 mm
has been applied. The output from the neural network for the elastic
field is adjusted to conform with the Dirichlet boundary conditions:

u � yû (36)
v � y y − 1( )[ ]v̂ + yΔv (37)

where û and v̂ are obtained from the neural network. The value of q
is set to be 200. Figure 11 show the predicted crack propagation as a
function of the tensile displacement. The predicted results are

FIGURE 13
Scatter plots of Symmetric double notched plates with 4 and 10 times of model enlargement while maintaining the peak stress unchanged. The
upper half: l0 = 4lp. The low half: l0 = 10lp, (A) Crack initialization, (B) 2.5 * 10−3 mm, (C) 5 * 10−3 mm, (D) Crack initialization, (E) 2.5 * 10−3 mm, (F) 5 *
10−3 mm.
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compared with the results in Goswami et al. [20], and our findings
are highly consistent with the results reported in the literature.

We multiply the lengths of the model edges by factors of 4 and
10, and modify the value of q so that l0 = 4lp and l0 = 10lp. The value
of σc is kept constant. The simulation results are shown in Figure 12
and Figure 13. Compared to the classical degradation function, there
is no substantial increase in the running time when the model is
expanded by a factor of 10 (mainly a small increase in the number of
neural network iterations). We can find that with by introducing the
length-scale separating degradation function to the PINN-based
phase field model, maintaining a given mesh density sufficient to
solve a larger scale model.

5 Conclusion and outlook

In this paper, we enhanced PINN-based phase field method
(Goswami et al. [20], Goswami et al. [21]) with the degradation
functions proposed by Lo et al. [9] in order to simulate fracture
propagation in large structures. In conventional phase field
method, the length scale of the phase field length scale is set
to equate the physical length scale, which is very small compared
to the structure size. Because a very refined mesh is needed to
represent the diffuse fracture zone, it is impractical to apply
PINN-based phase field method to large-scale models. To solve
this problem, we introduce to PINN-based phase field simulation
the degradation function that decouples the length scales of the
phase field and the physical process zone. The merits and
limitations of the modified phase field approach are discussed
through several numerical examples. The proposed method
combines the advantages of data driven and mechanism based
computational approaches and improved its efficiency in fracture
simulation. Although these examples are only for 2D problems, it
is expected that the method could be applied to 3D situations
without issue. In the future, we will investigate the uncertainty
quantification of fractures with the present method. In addition,
we will extend the present method to the hydraulic fracture
problems.
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