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The Lie symmetry method is applied, and exact homotopic solutions of a non-
linear double-diffusion problem are obtained. Additionally, we derived Lie
point symmetries and corresponding transformations for equations
representing heat and mass transfer in a thin liquid film over an unsteady
stretching surface, using MAPLE. We used these symmetries to construct new
(Lie) similarity transformations that are different from those that are
commonly used for flow and mass transfer problems. These new (Lie)
similarity transformations map the partial differential equations of a
mathematical model under consideration to ordinary differential equations
along with boundary conditions. Lie similarity transformations are shown to
lead to new solutions for the considered flow problem. These solutions are
obtained using the homotopy analysis method to analytically solve the
ordinary differential equations that resulted from the reduction of
considered flow equations through Lie similarity transformations. With the
aid of these solutions, effects of various parameters on the flow and heat
transfer are discussed and presented graphically in this study.
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1 Introduction

Fluid flow and heat transfer phenomena have a wide range of applications in
engineering. By varying these transporters and enforcing various physical conditions, it
is possible to produce a variety of industrial products at their best. As a result, it has
drawn a significant amount of attention during the past several decades. The
Navier–Stokes equations are used to quantitatively represent these heat and flow
exchanges, with the appropriate circumstances. These are extremely non-linear
partial differential equations (PDEs) of order two or higher. Such non-linearities
lessen the likelihood of obtaining precise results. As a result, flow studies are
related to approximation techniques and analytical solution schemes, and heat
transfer techniques are frequently used.

OPEN ACCESS

EDITED BY

Samir A. El-Tantawy,
Port Said University, Egypt

REVIEWED BY

Nadeem Sheikh,
City University of Science and
Information Technology, Pakistan
Muhammad Khan,
University of Technology Malaysia,
Malaysia

*CORRESPONDENCE

Ilyas Khan,
i.said@mu.edu.sa

SPECIALTY SECTION

This article was submitted to
Mathematical Physics,
a section of the journal
Frontiers in Physics

RECEIVED 23 January 2023
ACCEPTED 08 February 2023
PUBLISHED 28 February 2023

CITATION

Khan RA, Taj S, Ahmed S, Khan I and
Eldin SM (2023), Lie symmetry and exact
homotopic solutions of a non-linear
double-diffusion problem.
Front. Phys. 11:1150176.
doi: 10.3389/fphy.2023.1150176

COPYRIGHT

©2023 Khan, Taj, Ahmed, Khan and Eldin.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 28 February 2023
DOI 10.3389/fphy.2023.1150176

https://www.frontiersin.org/articles/10.3389/fphy.2023.1150176/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1150176/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1150176/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1150176/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1150176&domain=pdf&date_stamp=2023-02-28
mailto:i.said@mu.edu.sa
mailto:i.said@mu.edu.sa
https://doi.org/10.3389/fphy.2023.1150176
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1150176


The Runge–Kutta and shot method are combined for the
derivation of the former type of solutions, whereas homotopy
analysis and perturbation techniques are frequently used for the
latter.

These problem-solving methods are not directly related to the
PDEs that describe the flow problems. The system of ordinary
differential equations (ODEs) relating to these flow issues is,
nevertheless, solved using these methods. The similarity
transformation is the technology that makes this kind of
reduction possible. The dependent and/or independent variables
of flow equations are reduced using these adjustments.

First, the fact that there are more established and diverse
solution methods for ODEs than PDEs accounts for this
reduction. Second, running ODEs through mathematical
symbolic and numeric software requires less time and equipment
compared to other approaches. Following the reduction of flow
equations to ODEs via similarity transformations, one finds several
applications of such solution algorithms in the literature.

With this procedure, the flow and heat transfers have been
studied under different sets of conditions, for example, in a liquid
film on an unsteady stretching surface [1, 2], under the effects of
variable fluid properties and thermo capillarity [3], with Soret and
Dufour effects on a viscoelastic fluid in three dimensions [4], in a
rotating channel three-dimensional squeezing flow [5], in a three-
dimensional flow of a nanofluid over a non-linearly stretching sheet
[6], and for an Oldroyd-B nanofluid thin film over an unsteady
stretching sheet [7]. Likewise, magnetohydrodynamic (MHD) flow
and heat transfer have been studied for the following: thermosolutal
Marangoni convection with heat generation [8], viscoelastic fluid
flow over a vertical stretching sheet under the effects of Soret and
Dufour [9], Jeffrey fluid over a stretching sheet considering the
chemical reaction and thermal radiation [10], three-dimensional
flow of an Oldroyd-B nanofluid on a radiative surface [11],
thermally radiative flow in three dimensions of a Jeffrey
nanofluid under internal heat generation [12], a shrinking sheet
with thermal slip [13], a vertical stretching sheet under the effects of
heat sink or source [14], mixed convection on the inclined stretching
plate in the Darcy porous medium with a Soret effect considering
variable surface conditions [15], and mixed convective flow of a
Maxwell nanofluid past a porous vertical stretching sheet with a
chemical reaction [16].

There are countless studies through an area of research known
as the Lie symmetry method, which helps to accurately derive the
analytical or approximate solutions for flow and heat transfer
equations. For instance, Lie group theory has been employed to
study the flow and heat transfer in a non-Newtonian fluid over a
stretching surface with thermal radiation [17], MHD boundary layer
flow over a stretching sheet with viscous dissipation and uniform
heat source/sink [18], MHDmixed flow of unsteady convection on a
vertical porous plate with radiation [19], MHD double-diffusion
convection of a Casson nanofluid on a vertical stretching/shrinking
surface under the effects of thermal radiation and chemical reaction
[20], heat flux effect on MHD second slip flow past a stretching
sheet along with heat generation [21], MHDCasson fluid flow near a
stagnation point on a linearly stretching sheet taking variable
viscosity and thermal conductivity into account [22],
thermophysical properties of a magnetized Williamson fluid
subject to porous/non-porous surfaces [23], two-parameter Lie

scaling approach on an unsteady MHD Casson fluid over a
porous rigid plate with a stagnation point flow [24], double-
diffusive MHD tangent hyperbolic fluid flow on a stretching
sheet [25], MHD thermally slip Carreau fluid subject to multiple
flow regimes [26], and for a liquid film on an unsteady stretching
sheet using Lie point symmetries [27].

The governing equations in the aforementioned flow models are
non-linear. Therefore, numerous approaches are adopted to deal
with the non-linearity of the governing equations. The Lie symmetry
method is one of those that provide a systematic procedure to
construct similarity transformation that is a pivotal component of
solution schemes employed on fluid flows mentioned previously.
Non-linear phenomena impose constraints on the studies conducted
to analyze physical models appearing in numerous applications due
to the availability of few techniques that are employed to deal with it.
As far as the Lie approach is concerned, one may linearize the
governing equations (28)–(31). There are many non-Lie procedures
that are also available in the literature, for example, effective
treatments of the non-linearity of differential equations have
been reported in [32–34].

A Lie point symmetry transformation can be associated with a
differential or an algebraic equation if it leaves it form invariant. It
implies that a heat equation remains a heat equation after mapping it
under its Lie point transformation. Every Lie point transformation
possesses a Lie symmetry generator. For basic theory and the
algebraic computations of the Lie symmetry generators and
transformation, readers are referred to [35, 36]. MAPLE contains
all these procedures to build symmetry transformations in the
“PDEtools” package, which, on applying “Infinitesimals” on
differential equations, reveals their symmetries. MAPLE is used
to find out symmetry generators and corresponding
transformations for flow problems that are being taken into
consideration in this study.

We deduce Lie point symmetries for the momentum, energy, and
concentration equations representing the flow problem under
consideration. There exist nine Lie symmetries, and by using them,

FIGURE 1
hf-curves (S � 2.10 − 2.30).

Frontiers in Physics frontiersin.org02

Khan et al. 10.3389/fphy.2023.1150176

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1150176


Lie similarity transformations are obtained. However, we
employ only those symmetries which leave the associated
boundary conditions in a particular form. Based on these
constraints, we consider three linear combinations (that are
also Lie point symmetries) of the derived Lie symmetries. In
one of these, we combine two symmetries, while the remaining
two consist of three symmetries. These three combinations
provided a different type of similarity transformation which
transformed flow equations into three different types of ODE
systems. Arbitrary constants are used in the linear combinations
of the Lie point symmetries, and these constants also appear in

the resulting system of ODEs due to their presence in the Lie
similarity transformations we construct. We use them to control
the convergence of solutions of the flow model we are
considering.

The outline of the paper is as follows. The second section is about
flow equations and their Lie symmetries. The subsequent section is on
similarity transformations and mapping of flow PDEs to ODEs. In the
fourth section, analytical solutions are constructed and presented with
graphs and tables. The last section is the conclusion.

2 Flow equations

The flow of heat and mass in a thin liquid film has been studied
[37] on an unsteady stretching surface with thermosolutal capillarity
and variable magnetic field. Here, we are considering the flowmodel
without the magnetic field and thermosolutal capillarity. The
governing equations for the flow of heat and mass transfer in a
thin liquid film over an unsteady surface are given by the following
system of PDEs:

zu

zx
+ zv

zy
� 0,

zu

zt
+ u

zu

zx
+ v

zu

zy
− ]

z2u

zy2
� 0, (1)

zT

zt
+ u

zT

zx
+ v

zT

zy
− κ

z2T

zy2
� 0,

zC

zt
+ u

zC

zx
+ v

zC

zy
−D

z2C

zy2
� 0,

subject to boundary conditions as follows:

u t, x, y( ) � Us t, x( ), v t, x, y( ) � 0, T t, x, y( ) � Ts t, x( ), C t, x, y( )
� Cs t, x( ), aty � 0,

FIGURE 2
Velocity profiles (S � 2.10 − 2.30).

FIGURE 3
Different h-curves. (A) hθ-curve (S � 2.5,hf � −1.0, k1 � −1, k2 � 1) and a variation in Pr. (B) hθ-curve (S � 2.5,hf � −1.0, k1 � −5, k2 � 1) and a variation
in Pr. (C) hθ-curve (S � 2.5,hf � −1.0, k1 � −10, k2 � 1) and a variation in Pr.
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zu t, x, y( )
zy

� 0,
zT t, x, y( )

zy
� 0,

zC t, x, y( )
zy

� 0, v t, x, y( ) � dh

dt
,

aty � h t( ).
(2)

The Lie point symmetries of the flow mathematical model (Eq.
1) are derived by using the MAPLE “PDEtools” package and the
built-in command “Infinitesimals.”
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2
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zu
− v

2
z

zv
.

(3)
However, for a detailed algebraic procedure to obtain

symmetries of system (Eq. 1), the reader is referred to [27]. The
Lie symmetry transformations corresponding to symmetry
generators (Eq. 3) leave equations of system (Eq. 1) form
invariant. These Lie transformations are given in Table 1.
Furthermore, all the associated conditions (Eq. 2) should also
remain invariant. For this purpose, we employ each

X l[ ]
m ζn( )∣∣∣ζn�0 � 0, (4)

where l denotes the extension of the symmetry generator; here, we require
the first extension of Xm, for m � 1, 2, . . . , 9, and ζn denotes the
conditions (Eq. 2) for n � 1, 2, . . . , 8, e.g., ζ1 ≔ u(t,x, 0) � Us(t,x),
and vice versa.

3 Lie similarity transformations of flow
equations

We construct the Lie similarity transformations corresponding
to a few linear combinations for the derived Lie point symmetries
X1,X2, ...,X9. These combinations are based on the unknown

functions they determine for Us(t, x), Ts(t, x), Cs(t, x), and h(t).
In this work, only those cases are of interest in which all these
functions remain dependent on their arguments. Hence, we consider
the combination k1X8 + k2X9 of Lie symmetries in Case-I, k1X6 +
k2X7 + k3X8 in Case-II, and k1X6 + k2X7 + k3X9 in Case-III, where
k1, k2, and k3 are any non-zero real numbers. All other symmetries
from the list (Eq. 3) are not suitable in any form to construct the
similarity transformations due to stretching sheet velocity and
temperature obtained for these symmetries and their
combinations. Hence, we consider only those linear combinations
that are mentioned previously. These three linear combinations of
symmetries leave both x and t in the stretching sheet velocity Us �
Us(t, x) and temperature Ts � Ts(t, x); i.e., we want to keep them as
functions of time t and space variable x. Moreover, h(t) is also left as
a function of t.

FIGURE 4
Different temperature profiles. (A) Temperature profiles (S � 2.5,hf � −1.0,hθ� − 0.03, k1 � −1, k2 � 1) and a variation in Pr. (B) Temperature profiles
(S � 2.5,hf � −1.0,hθ� − 0.03, k1 � −5, k2 � 1) and a variation in Pr. (C) Temperature profiles (S � 2.5,hf � −1.0,hθ� − 0.03, k1 � −10, k2 � 1) and a variation
in Pr.

TABLE 1 Lie symmetry generators and transformations.

Generator Transformation

X1 t � �t + ϵ, x � �x, y � �y, u � �u, v � �v, T � �T, C � �C

X2 t � �t, x � �x + ϵ, y � �y, u � �u, v � �v, T � �T, C � �C

X3 t � �t, x � �x, y � �y, u � �u, v � �v, T � �T + ϵ, C � �C

X4 t � �t, x � �x, y � �y, u � �u, v � �v, T � �T, C � �C + ϵ

X5 t � �teϵ , x � �x, y � �y, u � �u + ϵ, v � �v, T � �T, C � �C

X6 t � �t, x � �x, y � �y, u � �u, v � �v, T � �Teϵ , C � �C

X7 t � �t, x � �x, y � �y, u � �u, v � �v, T � �T, C � �Ceϵ

X8 t � �t, x � �xeϵ , y � �y, u � �ueϵ , v � v, T � �T, C � �C

X9 t � �teϵ , x � �x, y � �y
��
eϵ

√
, u � �ue−ϵ , v � �v��

eϵ
√ , T � �T, C � �C

The symmetry generator from (3) is applied to each of these conditions through the

invariance criterion.
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In the study conducted earlier on this type of fluid and heat
transports [38], both the said quantities are set to be dependent on
both t and x.

3.1 Case-I: Similarity transformations
for k1X8 + k2X9

These symmetry generators provided the similarity
transformations

y � β

���
α]t
b

√
η, u � −bx

αt

df

dη
, v � β

��
b]
αt

√
f η( ), T � xt

−k1
k2 θ η( ) − 1,

C � xt
−k1
k2 ϕ η( ) − 1

(5)

which map the system of PDEs (Eq. 1) into the following system of
ODEs:

d3f

dη3
+ β2 S

df

dη
+ Sη

2
d2f

dη2
+ df

dη
( )2

− f η( )d2f

dη2
( ) � 0,

1
Pr

d2θ

dη2
+ β2

df

dη
θ η( ) − f η( ) dθ

dη
+ Sη

2
dθ

dη
+ k1
k2

S θ η( )( ) � 0, (6)

1
Sc

d2ϕ

dη2
+ β2

df

dη
ϕ η( ) − f η( ) dϕ

dη
+ Sη

2
dϕ

dη
+ k1
k2

Sϕ η( )( ) � 0,

where η is the new independent variable. The associated boundary
conditions are

f 0( ) � 0, θ 0( ) � ϕ 0( ) � 1,
df 0( )
dη

� 1, f 1( ) � S

2
,

d2f 1( )
dη2

� dθ 1( )
dη

� 0,
dϕ 1( )
dη

� 0. (7)

3.2 Case-II: Similarity transformations
for k1X6 + k2X7 + k3X8

In this case, the following similarity transformations are
obtained:

y � β

��������
α] 1 + t( )

b

√
η, u � − bx

α 1 + t( )
df

dη
, v � β

�������
b]

α 1 + t( )

√
f η( ),

T � 1 + t( )x k1
k3θ η( ), C � 1 + t( )x k2

k3ϕ η( ). (8)

These similarity transformations map the system of PDEs (Eq.
1) into the following system of ODEs:

d3f

dη3
+ β2 S

df

dη
+ Sη

2
d2f

dη2
+ df

dη
( )2

− f η( ) d2f

dη2
( ) � 0,

1
Pr

d2θ

dη2
+ β2

k1
k3

df

dη
θ η( ) − f η( ) dθ

dη
+ Sη

2
dθ

dη
− Sθ η( )( ) � 0, (9)

1
Sc

d2ϕ

dη2
+ β2

k2
k3

df

dη
ϕ η( ) − f η( )dϕ

dη
+ Sη

2
dϕ

dη
− S ϕ η( )( ) � 0,

and the associated boundary conditions are given as follows:

f 0( ) � 0,
df 0( )
dη

� θ 0( ) � ϕ 0( ) � 1,

f 1( ) � S

2
,
d2f 1( )
dη2

� dθ 1( )
dη

� dϕ 1( )
dη

� 0.
(10)

3.3 Case-III: Similarity transformations
for k1X6 + k2X7 + k3X9

Here, we obtain the following similarity transformations:

FIGURE 5
Different h-curves.
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y � β

���
α]t
b

√
η, u � −b 1 + x( )

αt

df

dη
, v � β

��
b]
αt

√
f η( ),

T � 1 + x( )t k1
k3 θ η( ), C � 1 + x( )t k2

k3ϕ η( ). (11)
These similarity transformations map the system of PDEs (Eq.

1) into the following system of ODEs:

d3f

dη3
+ β2 S

df

dη
+ Sη

2
d2f

dη2
+ df

dη
( )2

− f η( ) d2f

dη2
( ) � 0,

1
Pr

d2θ

dη2
+ β2

df

dη
θ η( ) − f η( ) dθ

dη
+ Sη

2
dθ

dη
− k1
k3

S θ η( )( ) � 0, (12)

1
Sc

d2ϕ

dη2
+ β2

df

dη
ϕ η( ) − f η( ) dϕ

dη
+ Sη

2
dϕ

dη
− k2
k3

Sϕ η( )( ) � 0.

The associated boundary conditions map to

f 0( ) � 0,
df 0( )
dη

� θ 0( ) � ϕ 0( ) � 1,

f 1( ) � S

2
,
d2f 1( )
dη2

� dθ 1( )
dη

� dϕ 1( )
dη

� 0.
(13)

4 Analytic solution by the homotopy
analysis method

In this section, the velocity and temperature profiles are constructed
with the aid of the analytical solution of order ten derived through the
HAM. It has been observed that the first equation in all three cases that
are under consideration here is the same. First, we draw hf-curves that
are presented graphically for 2.10< S< 2.30 in Figure 1. The reason to
consider this range is the dimensionless film thickness which remains

negative or zero for S≤ 2.0. Hence, all the velocity, temperature, and
concentration profiles are presented here for S> 2.0. The dimensionless
film thickness increases with an increase in S, under the conditions
provided by Lie similarity conditions. This situation changes and
opposite trends have been found in [39] using Lie similarity
transformations with an introduction of a magnetic term. Figure 2
shows the velocity profiles for the same range of an unsteadiness
parameter, which shows an increase in the velocity with this
parameter. The temperature and concentration profiles are expected
to be different in all three cases as, apparently, the second and third
equations in the systems of ODEs (Eq. 6), (Eq. 9), and (Eq. 12) are
different. Hence, they are written separately in the following cases to
present the trends that are followed by these quantities under the
influence of S, Pr, and Sc. Moreover, the constants k1, k2, and k3 that
are used in forming the linear combinations of the Lie symmetry
generators (Eq. 3) also affect the temperature and concentration
profiles. These are all present in the second and third equations of
the systems in Case (3.1)–(3.3).

4.1 Velocity and concentration profiles for
Case-I

For system (Eq. 6), we draw the hθ-curves in Figures 3A–C, for
S � 2.5, hf � −1.0, k2 � 1 and for three different values of
Pr � 0.25, 0.35, 0.45. The hθ-curves show a decline for k1 < 0.
From these curves, we select a value for hθ � −0.003 to construct
the temperature profiles in Figures 4A–C, which also exhibit a
decreasing trend with a decrease in the values of k1. Likewise, we
draw hϕ− curves in Figures 5A–C for S � 3.5, hf � −1.0, k2 � 1 and
for multiple values of k1. These figures show a decrease in the hϕ−
curves with a decrease in k1 and an increase in
Pr � 0.025, 0.035, 0.045. The concentration profiles behave in a
similar manner as hϕ− curves. Here, we present these profiles for

FIGURE 6
Different concentration profiles.
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S � 3.5, hf � −1.0, hϕ � −0.025, k2 � 1 and a variation in k1 and
Sc � 0.025, 0.035, 0.045. The temperature and concentration
profiles follow the same trends as system (Eq. 6) equations for
both are the same; however, we are presenting them here separately.
In both the mentioned set of figures, we considered different values
of the unsteadiness parameter S. It can be observed from these
figures that the unsteadiness parameter and concentration are
inversely proportional, i.e., S∝ 1

T.

4.2 Velocity and concentration profiles for
Case-II

System (Eq. 9) involves three arbitrary constants k1, k2, and
k3, which appear here due to the linear combination of Lie point
symmetries we used to construct the corresponding Lie similarity
transformation. We draw common curves for hθ and hϕ as
h-curves for this system in Figures 6A–C. These curves are

FIGURE 7
Different h-curves.

FIGURE 8
Different temperature and concentration profiles.
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drawn for hf � −1.0, k1 � 1, k2 � 1 and a variation in the
unsteadiness parameter S � 3.0 and 4.0, k3 � −0.2 and −0.1,
and a range of Pr � 0.35, 0.40, 0.45 and Sc � 0.35, 0.40, 0.45.
These curves and corresponding set of graphs for temperature
and concentration show an increase when the unsteadiness
parameter decreases from S � 4.0 to S � 3.0. Similar is the case
when k3 goes from −0.1 to −0.2, as shown in Figures 7A–C and
Figures 8A–8C.

4.3 Velocity and concentration profiles for
Case-III

System (Eq. 12) involves three arbitrary constants k1, k2, and
k3 that are also part of the associated Lie similarity
transformation. Figures 9A–C show the h-curves for both hθ
and hϕ. These curves are constructed with the same values of
hf, k1, k2 as in the previous case and for a different value of the

FIGURE 9
Different h-curves.

FIGURE 10
Different temperature and concentration profiles.
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unsteadiness parameter S. When the unsteadiness parameter
decreases from 4.5 to 3.5, the hθ- and hϕ-curves are
decreasing. Similar behavior is shown by temperature and
concentration profiles in Figures 10A–C; that is, for
1.0< k3 < 1.5, the temperature and concentration are
increasing. However, for Pr � 0.5, 0.7, 0.9, a decrease in the
temperature and concentration is evident from these figures.

5 Conclusion

Lie point symmetries for heat and mass transfer in a
thin liquid film on an unsteady stretching sheet are derived.
These symmetries are used to construct Lie similarity
transformations which map the PDEs representing the heat
and flow model to ODE systems. We showed that there exist
three different types of such reductions of the considered
flow equations. In the Lie similarity transformation
derivation, linear combinations of Lie symmetry generators
are utilized. These linear combinations are derived with the
help of arbitrary constants, which gives rise to multiple
solutions of the flow and heat equations. We use the HAM
to analytically solve the obtained non-linear ODEs with a
10th-order of approximation. Velocity, temperature, and
concentration profiles are drawn with the aid of these
10th-order HAM solutions. These profiles are presented
graphically with variations in the unsteadiness parameter S,
Prandtl number Pr, Schmidt number Sc, and the arbitrary
constants used in the linear combinations of the Lie point
symmetries.
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