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This paper presents a method based on orthogonal arrays of constructing pure quaternary quantum error-correcting codes. As an application of the method, some infinite classes of quantum error-correcting codes with distances 2, 3, and 4 can be obtained. Moreover, the infinite class of quantum codes with distance 2 is optimal. The advantage of our method also lies in the fact that the quantum codes we obtain have less items for a basis quantum state than existing ones.
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1 INTRODUCTION
Quantum systems are more fragile than classical systems. When quantum information travels across a noisy channel, errors are unavoidable [1–3]. The primary tool to deal with different types of quantum noises is quantum error-correcting codes (QECCs) [1, 2, 4, 5]. They play an important role in quantum information tasks, such as in entanglement purification, quantum key distribution, fault-tolerant quantum computation, and so on [6–8]. Since its discovery, code construction has come a long way [9–16]. Plenty of binary QECCs have been obtained, some of which from classical error-correcting codes (CECCs) [16–19]. Relatively speaking, there are still less studies on quaternary QECCs. We are motivated by the fact that CECCs are one-to-one connected to orthogonal arrays (OAs) [20]. It would be interesting to see if OAs can reciprocate and help QECCs, especially, quaternary ones. Therefore, the main aim of this work is to construct quaternary QECCs from OAs.
If L is an r × N array with elements from S = {0, 1, …, s − 1} and every r × k subarray of L contains each k-tuple based on S as a row with same frequency, then the array is said to be an orthogonal array of strength k (for some k in the range 0 ≤ k ≤ N). We will use OA (r, N, s, k) to denote such an array [21]. The theory of OAs has been developed significantly since the seminal work of Rao [22]. In particular, in recent years many new methods for constructing strength k OAs have been proposed, and a lot of new classes of OAs have been presented [23–29]. An OA (r, N, s, k) is said to be an irredundant orthogonal array (IrOA), if every row in any r × (N − k) subarray is unique [20]. If all of a pure quantum state’s reductions to k qudits are maximally mixed, it is said to be k-uniform. And this state consists of N subsystems with d levels. A connection between a k-uniform state and an irredundant orthogonal array (IrOA) was established by Goyeneche et al. [20]. For simplicity, the normalization factors are omitted from this paper.
Lemma 1. [20] If [image: image] is an IrOA(r, N, s, k), then the superposition of r product states, 
[image: image]
 is a k-uniform state.By using this connection in Lemma 1, a lot of k-uniform states have been constructed from OAs [20, 30–37]. This kind of k-uniform states is closely related to QECCs [12, 20]. Usually, quantum information theory benefits from OAs [38–43]. These new developments in OAs and uniform states provide a higher possibility to construct infinite classes of QECCs from OAs [35, 36].In this work, we present a method based on OAs of constructing pure quaternary QECCs. As an application of the method, some infinite classes of QECCs with distances 2, 3, and 4 can be obtained. We know that quantum bound reflects the optimality of QECCs and is a key parameter to judge whether a construction method is effective or not. Moreover, the resulting infinite class of quantum codes with distance 2 is optimal. The advantage of our method also lies in the fact that the constructed QECCs have less items in each basis state than existing ones.This paper is organized as follows. After introducing symbols, definitions, and required lemmas in Section 2, Section 3 presents the main results. The conclusion is drawn in Section 4.
2 PRELIMINARIES
We introduce several symbols, definitions and lemmas used in this paper.
Let [image: image] denote the n dimensional space over a Galois field [image: image], ω2 = ω + 1. For the convenience of codeword expression, we use [image: image]. AT is the transposition of matrix A. [image: image], and 0r and 1r represent the r × 1 vector of 0s and 1s, respectively. We define the Kronecker product A ⊗ B and the Kronecker sum A ⊕ B as [image: image] and [image: image], respectively, if [image: image] and [image: image] with entries from a finite field with binary operations (+ and ⋅). Here, aij + B denotes the u × v matrix with elements aij + brs (1 ≤ r ≤ u, 1 ≤ s ≤ v). And if necessary, matrix A can always be viewed as a set of its row vectors. The strength of an orthogonal array L is denoted by t(L). We also use a k-strength OA to denote an OA of strength k for k ≥ 0. Let [image: image].
Definition 1. [44] Suppose Sl = {(u1, …, ul)|ui ∈ S, i = 1, 2, …, l}. The number of positions in which two vectors v = (v1, …, vl), u = (u1, …, ul) ∈ Sl differ from one another is defined as the Hamming distance HD(u, v) between them. Let HD(L) represents all possible values of the Hamming distance between two distinct rows of an OA L. The minimal distance of a matrix A means the minimal Hamming distance between its distinct rows and denoted by MD(A).Let k ≥ 1 and [image: image] represent the additive group of order sk which consists all k-tuples of elements from [image: image]. The typical vector addition is used as the binary operation. If [image: image], [image: image] is a subgroup of [image: image] of order s, and [image: image], i = 1, …, sk−1–1 will be used to denoted its cosets.
Definition 2. [44] Let D be an r × c matrix with elements from [image: image]. For every r × k submatrix of D, its rows are seen as entries of [image: image]. If in the submatrix each set [image: image], i = 0, 1, …, sk−1–1, is represented equally frequently, then the D is said to be a difference scheme of strength k. We use Dk(r, c, s) to denote such a matrix. When k = 2, we denote Dk(r, c, s) by D(r, c, s).
Definition 3. [29] Let L be an OA(r, N, s, k). Suppose the rows of L can be partitioned into u submatrices {L1, L2, …, Lu} such that each Li is an [image: image] with k1 ≥ 0. Then the set {L1, L2, …, Lu} is called an orthogonal partition of strength k1 of L. In particular, {L1, L2, …, Lu} is called a strength k1 orthogonal partition of a space [image: image] if [image: image] .
Definition 4. Let D = Dk(r, c, s). A set of difference schemes {D1, D2, …, Du} is called a k1-strength orthogonal partition of D, if Di⋂Dj = ø for i ≠ j and [image: image].
Lemma 2. [44] If s≢2 (mod  4), and s ≤ k, then the difference scheme Dk(sk−1, k + 1, s) exists.
Lemma 3. [34] If L = OA(sk, N, s, k), then MD(L) = N − k + 1.
Lemma 4. [45] (1) Let D = Dk(r, c, s). Then D ⊕ (s) = OA(rs, c, s, k).(2) Let D = Dk (m, n, s) and L = OA (r, N, s, k) for k = 2, 3. Then D ⊕ L = OA (mr, nN, s, k).
Lemma 5. [36] (Expansive replacement method) Assume that LA is a k-strength OA with s levels in factor 1 and that LB is a k-strength OA with s rows. After building a one-to-one mapping between the levels of factor 1 in LA and the rows of LB, we may construct an OA of strength k by substituting each level of factor 1 in LA with the matching row from LB .
Lemma 6. [44] For a prime power s ≥ 2, an OA(sk, s + 1, s, k) exists if s ≥ k − 1 ≥ 0.
Lemma 7. [12] If the reductions of all states in a subspace Q of [image: image] to any given k parties are equal, then Q is an ((N,K,k + 1))s QECC, and vice versa. Furthermore, if any state in Q is k-uniform, then Q is pure, and vice versa.We can also define a QECC ((N,K,k + 1))s according to Lemma 7, where N denotes the code length, K is the dimension of the encoding state, k + 1 denotes the distance, and s denotes the levels number. For s = 2, it is simply ((N, K, k + 1)).
Lemma 8. [46] (quantum Singleton bound) If K > 1 in an ((N,K,k + 1))s then K ≤ sN−2k. Similarly, a pure ((N,1,k + 1))s satisfies 2k ≤ N.
Definition 5. A QECC such that the equality in Lemma 8 holds is called optimal.
3 CONSTRUCTION OF ((N,K,K + 1))4 QECC
This section provides a construction method of quaternary quantum error-correcting codes (QECCs) from orthogonal arrays (OAs). In Theorem 1, we use Lemma 4 (2) to construct QECCs with distance 2. Theorems 2 and 3 produce QECCs with distances 3 and 4 from the OAs with orthogonal partitions. In Theorem 4, we study the existence of QECCs with any distance by using a special construction of OAs.
Theorem 1. For every N ≥ 2, there is a QECC ((N,K,2))4 for each integer 1 ≤ K ≤ 4N−2 where the [image: image] code is optimal.Proof. When N ≥ 5, a difference scheme D = DN−1(4N−2, N, 4) exists by Lemma 2. Let L = D ⊕ (4) = OA (4N−1, N, 4, N − 1). By Lemma 3, MD(L) = N − (N − 1) + 1 = 2. Set [image: image]. Let Li = di ⊕ (4) = OA (4, N, 4, 1) for i = 1, 2, …, 4N−2. Then t (Li) = 1, MD (Li) = N.From Lemma 1, [image: image] can generate 4N−2 1-uniform states [image: image]. They can be used as a set of orthogonal basis to generate a subspace Q of [image: image]. Thus Q is an optimal [image: image] code by Lemma 7 and Definition 5.In addition, for any integer 1 ≤ K ≤ 4N−2–1, if QK is the subspace spanned by |φ1⟩, …, |φK⟩, then it is a ((N,K,2))4 code.When 1 < N < 5, we can construct the following QECCs [image: image].When N = 2, an optimal ((2,1,2))4 code can be generated with a basis |φ⟩ = |01⟩ + |12⟩ + |23⟩ + |30⟩.When N = 3, take [image: image]. Let Ai = di ⊕ (4) and [image: image]. Obviously, A and Ai are OAs for i = 1, 2, 3, 4. From Lemma 3, MD(A) = 2, and by Lemma 7, an optimal ((3,4,2))4 QECC can be obtained from A1, …, A4.When N = 4, take [image: image]. Then B4(i−1)+j = di ⊕ ((4) (j − 1) ⊕ (4)) is an OA (4, 4, 4, 1) for i, j = 1, 2, 3, 4 and [image: image] is an OA (64, 4, 4, 2). By simple calculation, we have MD(B) = 2. By Lemma 7, an optimal ((4,16,2))4 QECC can be obtained from B1, …, B16.Remark. The quantum codes obtained by Theorem 1 have less items in a basis state than existing ones. For example, every basis states of the ((3,4,2))4 code has four items. It has far less number of items for a basis state than the ((3,4,2))4 in [13]. Compared with the codes [[N,N − 2,2]]4 in [47] for N = 9 + 6m with 0 ≤ m ≤ 165, we have the codes for all N ≥ 2.
Theorem 2. Suppose L is an OA(r, N, 4, 2) with MD(L) ≥ 3. A QECC ((N,K,3))4 exists, if there are vectors b1, b2, …, bK in [image: image] that fulfill HD(bu, bv) ≥ 3 and |HD(bu, bv) − HD(L)|≥ 3 for u ≠ v.Proof: Let [image: image], where Xu = 1r ⊗ bu + L for 1 ≤ u ≤ K. Both X and Xu are 2-strength OAs. Let x1 = bu + l1, x2 = bv + l2 ∈ X for l1, l2 ∈ L. Then we can compute the Hamming distance (HD) between x1 and x2 and the minimum distance (MD) of X.
(1) HD (x1, x2) = MD(L) ≥ 3, if u = v, l1 ≠ l2.
(2) HD (x1, x2) = HD (bu, bv) ≥ 3, if u ≠ v, l1 = l2.
(3) If u ≠ v and l1 ≠ l2, we have HD (x1, x2) ≥HD (bu + l2, x2) − HD (bu + l2, x1) or HD (x1, x2) ≥HD (bu + l2, x1) − HD (bu + l2, x2), hence HD (x1, x2) ≥|HD (bu, bv) − HD(L)|≥ 3.
Therefore, MD(X) ≥ 3. We can obtain K states from {X1, X2, …, XK} and Lemma 1. Let Q be a subspace of [image: image] with the K states to be an orthogonal basis. Thus Q is a QECC ((N,K,3))4 by Lemma 7.
Theorem 3. There exists a QECC [image: image] with [image: image] for n ≥ 3 and with 3 ≤ p ≤ 5 for n = 2.Proof. Let {D1, D2, D3, D4} be orthogonal partition of the difference scheme D (16, 3, 4) = (016, (4) ⊕ 04, 04 ⊕ (4)) and [image: image] be an orthogonal partition of strength two of [image: image]. Let Yi denote the ith row of [image: image] with [image: image] for n ≥ 3. Take
[image: image]
where Li = [image: image] for i = 1, 2, …, 4p−n and (a1, a2, …, ap) is an OA (4n, p, 4, 2).Because Dj is a 2-strength difference scheme and Li is a 2-strength OA, it follows from Lemma 4 that Mk = Dj⊕ Li is a 2-strength OA for k = 1, 2, …, 4p−n+1. Let m1 = d1 ⊕ l1, m2 = d2 ⊕ l2 ∈ Mk for d1, d2 ∈ Dj, l1, l2 ∈ Li. Then we have
[image: image]
Therefore, MD (Mk) ≥ 3 and Mk is an IrOA for any k. Furthermore, M is an OA and has strength two because it is equal to [image: image] after row permutations. Similarly, we can obtain MD(M) ≥ 3. From Lemma 1, M1, M2, …, [image: image] can generate 4p−n+1 states. They can be used as a basis to form a subspace Q of [image: image]. From Lemma 7, Q is a QECC [image: image].Similarly, when 3 ≤ p ≤ 5 and n = 2, we can construct a [image: image] QECC.
Example 1. Let the following + be the operation in [image: image]. Let [image: image], [image: image], [image: image], [image: image]. In Theorem 3, we take 3 ≤ p ≤ 5 and n = 2. Let (a1, a2, …, ap) be an OA (16, p, 4, 2) and Li=(a1, a2, (a3, …, ap) + 116 ⊗ Yi), where Yi denotes the ith row of [image: image] for i = 1, 2, …, 4p−2. Then [image: image] is an orthogonal partition of strength 2 of [image: image]. We can obtain QECCs [image: image], [image: image] and [image: image]. With 6 ≤ p ≤ 21 for n = 3, Theorem 3 produces QECCs [image: image].
Theorem 4. If an OA(4n, p, 4, 3) exists for p > n ≥ 3, then there is a [image: image] QECC.Proof. This can be proved in the same way as Theorem 3.
Example 2. Let D1 = (016, (4) ⊕ 04, 04 ⊕ (4), (4) ⊕ (4)), D2 = (016, (4) ⊕ 04, 04 ⊕ (4), 1 + (4) ⊕ (4)), D3 = (016, (4) ⊕ 04, 04 ⊕ (4), 2 + (4) ⊕ (4)), D4 = (016, (4) ⊕ 04, 04 ⊕ (4), 3 + (4) ⊕ (4)). Then the difference scheme D3(64, 4, 4) = (064, (4) ⊕ 016, 04 ⊕ (4) ⊕ 04, 016 ⊕ (4)) has a 3-strength orthogonal partition {D1, D2, D3, D4}. Take p = 5, 6 and n = 3 in Theorem 4. Let (a1, a2, …, ap) be an OA(64, p, 4, 3) and Li=(a1, a2, a3, (a4, …, ap) + 164 ⊗ Yi), where Yi denotes the ith row of [image: image] for i = 1, 2, …, 4p−3. Then [image: image] is an orthogonal partition strength 3 of [image: image]. By Theorem 4, two new QECCs [image: image] and [image: image] can be obtained.
Theorem 5. Let LN denote an OA(r, N, 4, k). Let [image: image] for s ≤ 4 and N1 + N2 ≤ N. If MD(Y) ≥ k + 1, then there exists an [image: image] QECC.Proof. Let [image: image] for i = 1, 2, …, s. Since Yi is isomorphic to Y1, Yi is an OA and t (Yi) = k. And we have [image: image]. If MD(Y) ≥ k + 1, then Yi is an IrOA (r, N1 + N2, 4, k). By Lemma 7, an [image: image] QECC exists.
Example 3. As illustrations for small size codes, we obtain ((6,2,3))4, ((7,4,3))4 and ((5,4,3))4.Take an OA (32, 7, 4, 2) = (a1, a2, …, a7) in [48]. For the case s = 2, take Y = (02 ⊕ (a5, a6), (2) ⊕ (a2, a3, a4, a7)). Then MD(Y) = 3. Application of Theorem 5 yields a new ((6,2,3))4 code.Let s = 4 and Y = (04 ⊕ (a4, a5, a6), (4) ⊕ (a1, a2, a3, a7)). Then MD(Y) = 3. By Theorem 5, we can construct a ((7,4,3))4 code in [47].Let L5 = (a1, a2, …, a5) be an OA (16, 5, 4, 2) and Y = (04 ⊕ (a2, a3), (4) ⊕ (a1, a4, a5)). Then MD(Y) = 3 and we obtain an optimal ((5,4,3))4 code from Theorem 5. Every basis states of the ((5,4,3))4 code has 64 items. Compared to ((5,4,3))4 in [14], it includes less items for its base states.
Theorem 6. Let L = OA(r, N, 4, k) with MD(L) ≥ k + 1. We can construct a QECC ((N,K,k + 1))4 if there are vectors b1, b2, …, bK in [image: image] such that [image: image].Proof: Let [image: image]. Evidently, MD(M) ≥ k + 1 and Mi is an OA (r, N, 4, k). By Lemma 7, there is a QECC ((N,K,k + 1))4.
Example 4. For N = 7 and r = 32, take L = OA(32, 7, 4, 2) in [48]. We can get [image: image] which meet the requirements in Theorem 6 where b1 = (0000000), b2 = (0001103), b3 = (0011332), b4 = (0012030), b5 = (0013200), b6 = (0020021), b7 = (0022113), b8 = (0023323), b9 = (0030210), b10 = (0031313). Then we can construct a new ((7,10,3))4 QECC, which is better than the code ((7,4,3))4 in [47].
Theorem 7. If m is an integer satisfying 4m−1 + 3 < 2d ≤ 4m + 3, then there exists a QECC [image: image] for 2m(d − 1) ≤ nd ≤ (4m + 1)m.Proof: Let q = 4m. From Lemma 6, there exists LB = OA (qd−1, q + 1, q, d − 1). By Lemma 3, MD (LB) = q − d + 3. When the q levels, 0, 1, …, q − 1, are replaced respectively by distinct rows of [image: image], we can construct LC = OA (qd−1 (q + 1)m, 4, d − 1). Removing the last 0, 1, 2, …, (q − 2d + 3)m columns from LC, an L = OA (qd−1, nd, 4, d − 1) for 2m (d − 1) ≤ nd ≤ (4m + 1)m can be obtained and MD(L) ≥ d. By Lemma 7, the desired QECC [image: image] exists.Remark. When m = 1, two optimal QECCs ((2,1,2))4 and ((4,1,3))4 can be obtained.
Example 5. By giving different values to d in Theorem 7, some new QECCs with larger distances can be obtained, which are listed in Table 1.
TABLE 1 | Some new QECCs with larger distance by Theorem 7.
[image: Table 1]Theorem 8. Construction of new codes ((16,1,6))4, ((24,1,8))4, ((23,81,5))4, ((15,4,5))4, ((14,16,4))4, ((23,4,7))4, ((20,256,4))4 and ((6,1,4))4 from Lemma 7.Proof: An IrOA (48, 16, 4, 5) with MD = 6 obtained by using product of two OA (28, 16, 2, 5)s in [49] and an IrOA (412, 24, 4, 7) with MD = 8 obtained by using product of two OA (212, 24, 2, 7)s in [49] can generate two new QECCs ((16,1,6))4 and ((24,1,8))4 respectively. By using product of two OA (4608,23,2,4)s obtained from the ((23,9,5)) QECC in Example 7 in [15], we can get an OA (46082, 23, 4, 4) with an orthogonal partition {C1, C2, …, C81} of strength 4 which can generate a new QECC ((23,81,5))4.An IrOA (48, 15, 4, 5) with an orthogonal partition {A1, A2, A3, A4} of strength 4, an IrOA (48, 14, 4, 5) with an orthogonal partition {B1, B2, …, B16} of strength 3, an IrOA (412, 23, 4, 7) with an orthogonal partition {E1, E2, E3, E4} of strength 6 and an IrOA (412, 20, 4, 7) with an orthogonal partition {F1, F2, …, F256} of strength 3 produce four new QECCs ((15,4,5))4, ((14,16,4))4, ((23,4,7))4 and ((20,256,4))4 respectively. In particular, an IrOA (64,6,4,3) in [48] yields an optimal QECC ((6,1,4))4 in [50].
4 CONCLUSION
Binary QECCs have been widely studied, but the research on quaternary QECCs is still rare. In the study, from OAs we construct a large number of pure quaternary QECCs, some of which are optimal. The advantage of the method presented is that the quantum codes we obtain have fewer items for a basis quantum state compared with the existing ones. In future, we intend to construct more optimal QECCs with the distance [image: image] and investigate the q-ary QECCs for other prime powers and non-primes q from OAs.
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