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In this work, a novel technique is considered for analyzing the fractional-order
Jaulent-Miodek system. The suggested approach is based on the use of the
residual power series technique in conjunction with the Laplace transform and
Caputo operator to solve the system of equations. The Caputo derivative is applied
to express the fractional operator, which is more suitable for modeling real-world
phenomena with memory effects. As a real example, the proposed technique is
implemented for analyzing the Jaulent-Miodek equation under suitable initial
conditions. Additionally, the proposed technique’s validity (accuracy and
effectiveness) is examined by studying some numerical examples. The obtained
solutions show that the suggested technique can provide a reliable solution for the
fractional-order Jaulent-Miodek system, making it a helpful tool for researchers in
different areas, including engineering, physics, and mathematics. We also analyze
the absolute error between the derived approximations and the analytical
solutions to check the validation and accuracy of the obtained approximations.
Many researchers can benefit from both the obtained approximations and the
suggested method in analyzing many complicated nonlinear systems in plasma
physics and nonlinear optics, and many others.
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1 Introduction

Fractional differential equations (DEs) are types of DEs that involve fractional
derivatives (FDs). Unlike ordinary DEs, where the order of the derivative is a positive
integer, fractional DEs (FDEs) involve operators of non-integer orders. These equations are
applied to model various physical and biological phenomena, such as anomalous diffusion,
viscoelasticity, and fractal growth [1–3]. FDEs have several unique properties that
differentiate them from ordinary DEs, such as non-locality and memory effects. Solving
the FDEs requires specialized techniques, such as fractional calculus and numerical methods
[4–8]. These equations have become an active area of research in recent decades due to their
potential application in various fields of science [9–12].
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Fractional nonlinear systems of partial DEs (PDEs) are
mathematics model that describes the behavior of complex
models in different areas, such as chemistry, biology, physics,
engineering, and finance [13–15]. These systems are
characterized by the presence of FDs, which are generalizations
of the classical integer-order derivatives. FDs describe the system’s
memory and long-range interactions and allow for modeling
anomalous diffusion, power-law behavior, and other non-local
effects that classical models cannot capture. Nonlinearities are
another essential feature of fractional systems, as they can lead to
the emergence of rich and diverse phenomena, such as chaos,
bifurcations, solitons, and patterns. Nonlinear systems are
ubiquitous in nature and technology, and understanding their
dynamics is crucial for predicting and controlling their behavior
[16–23].

Fractional nonlinear systems of PDEs are challenging to study
due to their non-locality, nonlinearity, and complexity. They require
developing new analytical and numerical tools, such as fractional
calculus (FC), dynamical systems theory, and computer simulations
[24–26]. Despite the difficulties, fractional nonlinear systems of
PDEs have attracted increasing attention in recent years due to
their relevance in many applications. They provide a powerful
framework for modeling and understanding complex phenomena
and offer new opportunities for scientific and technological
advances [27, 28].

It has been found that FDEs describe real-world problems more
precisely than integral order DEs. The study of coupled systems of
FDEs is also quite interesting. Because mathematical models of
many phenomena in bio-mathematics, physics, psychology, and
other fields are coupled systems of DEs [29, 30]. Among such
coupled systems of fractional PDEs (FPDEs), we have the
coupled Jaulent-Miodek models with Schrodinger energy-
dependent potential. This type of equation system is widely
applied as a model for the solution of several real worlds
problems in the areas of applied sciences [31, 32]. Extensive
analysis of nonlinear coupled fractional-order Jaulent-Miodek
models a key role in many areas fields of science, such as plasma
physics [33], condensed matter physics [34, 35]. There are a variety
of techniques applied in achieving analytic and numeric results to
linear and nonlinear FPDE, such as the homotopy perturbation
technique (HPT) [36–39], the variational iteration technique [40],
the q-homotopy analysis transformation technique [41], the
fractional natural decomposition technique [42], the fractional
multi-step differential transform technique [43], the new iterative
technique [44, 45] and the homotopy analysis technique [46, 47],
Residual power series technique [48].

The suggested method is called Laplace residual power series
method (LRPSM) which was introduced recently to address
nonlinear DEs (NLDEs) with fractional orders [49, 50]. This
method is a combination between Laplace transform (LT) and
RPSM which provides a more accurate solution, requiring less
time and simpler calculations than other analytical methods.
Unlike other methods, LRPSM does not involve differentiation or
linearization and only utilizes the LT, followed by taking the limit at
infinity. Thus, the current work aims to apply an innovative
analytical technique (LRPSM) to obtain highly accurate estimated
fractional solutions to the Jaulent-Miodek equation in the Caputo
sense subject to suitable initial conditions. Also, the outcomes of the

LRPSM will be compared with the precise answer by creating graphs
and tables for the numerical problem. The suggested technique has
been used to make exact results for emerging realistic models of
physical phenomena by using fast convergent power series. This
method succeeded because it is straightforward and handles
different kinds of initial conditions directly. Also, it doesn’t need
linearization or restrictive assumptions, doesn’t need a lot of
computing power, takes less time, and is more accurate.

The framework of this study is detailed as follows: Section 2 reviews
certain essential concepts, properties, and theorems related to FC, LT,
and Laplace fractional expansion. The general methodology of LRPSM
for the proposed model is presented in Section 3. Fractional solution
Jaulent-Miodek equations are provided applying the LRPSM in Section
4. Section 5 contains the result and discussion. Finally, the conclusion is
given in Section 6.

2 Basic definitions

Definition 1. For at least n time differentiable function, the
fractional Caputo derivative of order ρ reads [51]

CDρ
τψ γ, τ( ) �

∫τ

0

τ − w( )n−ρ−1ψ η, w( )
Γ n − ρ( ) dw, n − 1< ρ≤ n,

∂nψ η, τ( )
∂τn

, n � ρ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1)

where n ∈ N and the fractional Riemann–Liouville (RL) of Ω(γ, τ) of
order κ becomes

Jρτψ η, τ( ) � 1
Γ ρ( )∫

τ

0
τ − w( )ρ−1ψ η, w( )dw, (2)

assuming that the given integral exists.

Lemma 1. For n − 1 < ρ ≤ n, q > − 1, τ ≥ 0 and λ ∈ R, we have [52]:

1. Dρ
ττq � Γ(q+1)

Γ(q−ρ+1)τ
q−ρ,

2. Dρ
τλ � 0,

3. Dρ
τI

ρ
τψ(η, τ) � ψ(η, τ),

4. IρτD
ρ
τψ(η, t) � ψ(η, τ) − ∑n−1

j�0∂
jψ(η, 0) τjj!.

Definition 2. The function of LT ψ(η, τ) is given as [52]

ψ η, s( ) � Lτ ψ η, τ( )[ ] � ∫∞

0
e−sτψ η, τ( )dτ, s> μ. (3)

The expression for the inverse of LT reads

ψ η, τ( ) � L−1
τ ψ η, s( )[ ] � ∫l+i∞

l−i∞
esτψ η, s( )ds, l � Re s( )> l0, (4)

where l0 is in the right half-plane of absolute convergence the Laplace
integral’s.

Lemma 2. Assuming that ψ(η, τ) is a piecewise continuous function
with exponential-order δ, we can obtain ψ(η, s) � Lτ[ψ(η, τ)] by
taking the LT of ψ(η, τ).

1. Lτ[Jρτψ(η, τ)] � ψ(η,s)
sρ , κ> 0.
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2. Lτ[Dρ
τψ(η, τ)] � sρψ(η, s) −∑m−1

k�0 s
ρ−k−1ψk(η, 0), m − 1< ρ≤m.

3. Lτ[Dnρ
τ ψ(η, τ)] � snρψ(η, s) − ∑n−1

k�0s(n−k)ρ−1D
kρ
τ ψ(η, 0),

0< ρ≤ 1.

Theorem 1. Consider a function Ω(γ, τ) that is continuous and
piecewise-defined over the interval I × [0,∞) and has an exponential
order of ζ. Let us define the term Ω(γ, s) as the Laplace transform of
Ω(γ, τ) with respect to τ. It is worth noting that Ω(γ, s) has a
fractional expansion.

Ω γ, s( ) � ∑∞
n�0

fn γ( )
s1+nμ

, 0< μ≤ 1, γ ∈ I, s> ζ . (5)

Then, fn(γ) � Dnμ
τ Ω(γ, 0).

3 General implementation laplace
residual power series method

Consider the general FPDE

Dρ
τψ η, τ( ) +N ψ η, τ( )[ ] + A ψ η, τ( )[ ] � 0, where 0< ρ≤ 1,

(6)
subject to initial condition:

ψ η, τ( ) � f0 η( ). (7)
The function dψ(η, τ) is unknown and depends on the
independent variables η and τ, where the operator A is linear
and N is nonlinear.Applying LT to Eq. 6 and making use of Eq. 7
we get

ψ η, s( ) − f0 η, s( )
s

+ 1
sρ
Lτ N L−1

τ ψ η, s( )[ ][ ] + A ψ η, τ( )[ ][ ] � 0.

(8)
The result of Eq. 8 is given as

ψ ξ, s( ) � ∑∞
n�0

fn ξ, s( )
snρ+1

, (9)

the kth-truncate terms series are

FIGURE 1
The profile of the approximation ϕ(η, τ) (24) is plotted at different values of ρ andwith λ = 1: (A) ρ = 0.4, (B) ρ = 0.6, (C) ρ= 0.8., and (D) the comparison
between different values of ρ at x = 0.
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ψ η, s( ) � f0 x, s( )
s

+∑k
n�1

fn η, s( )
snρ+1

,

n � 1, 2, 3, 4/

(10)

The residual Laplace function reads [53].

LτRes η, s( ) � ψ η, s( ) − f0 η, s( )
s

+ 1
sρ
Lτ[N L−1

τ ψ η, s( )[ ][ ]
+A ψ η, τ( )[ ]]. (11)

And the kth-LRFs as:

LτResk η, s( ) � ψk η, s( ) − f0 η, s( )
s

+ 1
sρ
Lτ[N L−1

τ ψk η, s( )[ ][ ]
+A ψk η, τ( )[ ]]. (12)

The few properties of the LRPSM [53], is expressed as.

• LτRes(η, s) � 0 and limj→∞LτResk(η, s) � LτResψ(η, s) for
each s > 0,

• lims→∞sLτResψ(η, s) � 00lims→∞sLτResψ,k(η, s) � 0,
• lims→∞skρ+1LτResψ,k(η, s) � lims→∞skρ+1LτResψ,k(η, s) �
0, 0< ρ≤ 1, k � 1, 2, 3,/ .

To investigate the coefficient fn(η, s) and gn(η, s), we find the
solution of the following system

lim
s→∞

skρ+1LτResψ,k η, s( ) � 0, lim
s→∞

skρ+1LτResϕ,k η, s( ) � 0, k � 1, 2,/ .

(13)
Finally, we apply the inverse of the LT to Eq. 9, to get the kth

analytical solution of ψk(η, τ) and ϕk(η, τ).

4 Numerical problem

Consider the coupled fractional-order Jaulent-Miodek
equations:

FIGURE 2
The profile of the approximation ψ(η, τ) (25) is plotted at different values of ρ and with λ = 1: (A) ρ = 0.4, (B) ρ= 0.5, (C) ρ = 0.6., and (D) the comparison
between different values of ρ at x = 0.
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Dρ
τϕ η, τ( ) + ∂3ϕ η, τ( )

∂η3
+ 3
2
ψ η, τ( ) ∂3ψ η, τ( )

∂η3
+ 9
2
∂ψ η, τ( )

∂η

∂2ψ η, τ( )
∂η2

− 6ϕ η, τ( ) ∂ϕ η, τ( )
∂η

− 6ϕ η, τ( )ψ η, τ( ) ∂ψ η, τ( )
∂η

− 3
2
ψ2 η, τ( ) ∂ϕ η, τ( )

∂η
� 0,

Dρ
τψ η, τ( ) + ∂3ψ η, τ( )

∂η3
− 6

∂ϕ η, τ( )
∂η

ψ η, τ( ) − 6ϕ η, τ( ) ∂ψ η, τ( )
∂η

− 15
2

∂ψ η, τ( )
∂η

ψ2 η, τ( ) � 0,

where 0< ρ≤ 1, (14)

with the initial conditions (ICs)

ϕ η, 0( ) � λ2

8
1 − Sech2

λη

2
( )( ),

ψ η, 0( ) � λSech2
λη

2
( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

By utilizing Eq. 14 and taking advantage of Eq. 15, we get

ϕ η, s( ) − ϕ η, 0( )
s

+ 1
sρ

∂3ϕ η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψ η, s( )L−1

τ

∂3ψ η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ

∂2ψ η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ϕ η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ ψ η, s( )L−1

τ

∂ψ η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψ η, s( )( )2L−1

τ

∂ϕ η, s( )
∂η

[ ] � 0,

ψ η, s( ) − ϕ η, 0( )
s

+ 1
sρ

∂3ψ η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕ η, s( )
∂η

L−1
τ ψ η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ψ η, s( )
∂η

[ ]
− 15
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ ψ η, s( )( )2[ ] � 0.

(16)
By applying the ICs, we get

TABLE 1 The approximate solution ϕ(η, τ) (24) is considered at different values ρ and with (τ = 0.0099, λ = 0.2). Also, the absolute error of ϕ(η, τ) (24) at ρ = 1 as
compared to the exact solution (26) is estimated.

η ρ = 0.5 ρ = 0.7 ρ = 0.8 LRPSM (ρ = 1) exact Abs.error

0.1 −0.01 −0.0150 −0.0150 −0.0150 −0.0150 8.67132 × 10−8

0.2 −0.01 −0.01499 −0.01499 −0.01499 −0.01499 1.69551 × 10−7

0.3 −0.01 −0.01498 −0.01498 −0.01498 −0.01498 2.51868 × 10−7

0.4 −0.01 −0.01497 −0.01497 −0.01497 −0.01497 3.33415 × 10−7

0.5 −0.01 −0.01495 −0.01495 −0.01495 −0.01495 4.1395 × 10−7

0.6 −0.01 −0.01493 −0.01493 −0.01493 −0.01493 4.93232 × 10−7

0.7 −0.01 −0.0149 −0.0149 −0.0149 −0.0149 5.71027 × 10−7

0.8 −0.01 −0.01488 −0.01487 −0.01487 −0.01487 6.47109 × 10−7

0.9 −0.01 −0.01484 −0.01484 −0.01484 −0.01484 7.21256 × 10−7

1 −0.01 −0.0148 −0.0148 −0.0148 −0.0148 7.93258 × 10−7

1.1 −0.01 −0.01476 −0.01476 −0.01476 −0.01476 8.62914 × 10−7

1.2 −0.01 −0.01472 −0.01472 −0.01472 −0.01471 9.30033 × 10−7

1.3 −0.01 −0.01467 −0.01467 −0.01467 −0.01467 9.94433 × 10−7

1.4 −0.01 −0.01462 −0.01462 −0.01461 −0.01461 1.05595 × 10−6

1.5 −0.01 −0.01456 −0.01456 −0.01456 −0.01456 1.11442 × 10−6

1.6 −0.01 −0.0145 −0.0145 −0.0145 −0.0145 1.16971 × 10−6

1.7 −0.01 −0.01444 −0.01444 −0.01443 −0.01443 1.22168 × 10−6

1.8 −0.01 −0.01437 −0.01437 −0.01437 −0.01437 1.27022 × 10−6

1.9 −0.01 −0.0143 −0.0143 −0.0143 −0.01429 1.31522 × 10−6

2 −0.01 −0.01423 −0.01422 −0.01422 −0.01422 1.35661 × 10−6
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ϕ η, s( ) −
λ2

8
1 − Sech2

λη

2
( )( )

s
+ 1
sρ

∂3ϕ η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψ η, s( )L−1

τ

∂3ψ η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ

∂2ψ η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ϕ η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ ψ η, s( )L−1

τ

∂ψ η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψ η, s( )( )2L−1

τ

∂ϕ η, s( )
∂η

[ ] � 0,

ψ η, s( ) −
λSech2

λη

2
( ))
s

+ 1
sρ

∂3ψ η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕ η, s( )
∂η

L−1
τ ψ η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ψ η, s( )
∂η

[ ]
− 15
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ ψ η, s( )( )2[ ] � 0.

(17)

The kth-truncated term series reads

ϕ η, s( ) �
λ2

8
1 − Sech2

λη

2
( )( )

s
+∑k

n�1

fn η, s( )
snρ+1

,

ψ η, s( ) �
λSech2

λη

2
( ))
s

+∑k
n�1

fn η, s( )
snρ+1

,

n � 1, 2, 3, 4/ .

(18)

The Laplace residual functions (LRFs) reads

LτRes η, s( ) � ϕ η, s( ) −
λ2

8
1 − Sech2

λη

2
( )( )

s
+ 1
sρ

∂3ϕ η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψ η, s( )L−1

τ

∂3ψ η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ

∂2ψ η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ϕ η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ ψ η, s( )L−1

τ

∂ψ η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψ η, s( )( )2L−1

τ

∂ϕ η, s( )
∂η

[ ],

LτRes η, s( ) � ψ η, s( ) −
λSech2

λη

2
( ))
s

+ 1
sρ

∂3ψ η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕ η, s( )
∂η

L−1
τ ψ η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ψ η, s( )
∂η

[ ]
− 15
2sρ

Lℓ L−1
τ

∂ψ η, s( )
∂η

L−1
τ ψ η, s( )( )2[ ]. (19)

The kth-LRFs are given by

LτResk η, s( ) � ϕk η, s( ) −
λ2

8
1 − Sech2

λη

2
( )( )

s
+ 1
sρ

∂3ϕk η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψk η, s( )L−1

τ

∂3ψk η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψk η, s( )
∂η

L−1
τ

∂2ψk η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕk η, s( )L−1
τ

∂ϕk η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕk η, s( )L−1
τ ψk η, s( )L−1

τ

∂ψk η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψk η, s( )( )2L−1

τ

∂ϕk η, s( )
∂η

[ ],

LτResk η, s( ) � ψk η, s( ) −
λSech2

λη

2
( ))
s

+ 1
sρ

∂3ψk η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕk η, s( )
∂η

L−1
τ ψk η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕk η, s( )L−1
τ

∂ψk η, s( )
∂η

[ ]
− 15
2sρ

Lτ L−1
τ

∂ψk η, s( )
∂η

L−1
τ ψk η, s( )( )2[ ]. (20)

To compute fk (η, s) and gk (η, s) for k = 1, 2, 3, . . . , we can use
Eq. 18 which gives the nth-truncated series, and substitute it into
Eq. 20, which gives the nth-Laplace residual term. Then, we can
multiply the solution of the equation by snρ+1 and solve the
relation recursively for lims→∞(snρ+1LτResϕ, n(η, s)) � 0 and
lims→∞(snρ+1LτResψ, n(η, s)) � 0 for n = 1, 2, 3, /. The
following are the first few terms:

f0 � λ2

8
1 − Sech2

λη

2
( )( ), g0 � λSech2

λη

2
( ),

f1 � − 1
128

λ5Sech7
λη

2
( ) 794Sinh

λη

2
( ) − 165Sinh

3λη
2

( ) + sinh
5λη
2

( )( )
g1 � − 1

32
λ4 −189 + 52Cosh λη( ) + Cosh 2λη( )( )Sech6 λη

2
( )Tanh λη

2
( ),

f2 � λ8

16384
10003020 − 11000862Cosh λη( )(

+ 1410960Cosh 2ηλ( ))Sech12 λη

2
( )

+ λ8

16384
61341Cosh 3λη( )(

− 4700Cosh 4λη( ) + Cosh 5λη( ))Sech12 λη

2
( ),

g2 � λ7

8192
−1713684 + 1217538Cosh λη( )315984Cosh 2λη( )( )Sech12 λη

2
( )

+ λ7

8192
−79491Cosh 3λη( ) + 1348Cosh 4λη( )(

+ Cosh 5λη( ))Sech12 λη

2
( ),

(21)

Now, by using the values of fk(η), k = 1, 2, 3, . . . , we get
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ϕ η, s( )�
λ2

8
1−Sech2 λη

2
( )( )

s

−
1
128

λ5Sech7
λη

2
( ) 794Sinh

λη

2
( )−165Sinh 3λη

2
( )+ sinh 5λη

2
( )(

sκ+1

+
λ8

16384
10003020−11000862Cosh λη( )+1410960Cosh 2ηλ( )( )Sech12 λη

2
( )

s2κ+1

+
λ8

16384
61341Cosh 3λη( )−4700Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

s2κ+1
+/ ,

(22)

ψ η, s( )�
λSech2

λη

2
( ))
s

−
1
32
λ4 −189+52Cosh λη( )+Cosh 2λη( )( )Sech6 λη

2
( )Tanh λη

2
( )

sκ+1

+
λ7

8192
−1713684+1217538Cosh λη( )315984Cosh 2λη( )( )Sech12 λη

2
( )

s2κ+1

+
λ7

8192
−79491Cosh 3λη( )+1348Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

s2κ+1
+/ .

(23)

Applying the inverse of LT, we get

ϕ η,ρ( )� λ2

8
1−Sech2 λη

2
( )( )

−
1
128

λ5Sech7
λη

2
( ) 794Sinh

λη

2
( )−165Sinh 3λη

2
( )+sinh 5λη

2
( )(

Γ ρ+1( ) τρ

+
λ8

16384
10003020−11000862Cosh λη( )+1410960Cosh 2ηλ( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ

+
λ8

16384
61341Cosh 3λη( )−4700Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ +/ ,

(24)

ψ η,ρ( )�λSech2 λη

2
( ))

−
1
32
λ4 −189+52Cosh λη( )+Cosh 2λη( )( )Sech6 λη

2
( )Tanh λη

2
( )

Γ ρ+1( ) τρ

+
λ7

8192
−1713684+1217538Cosh λη( )315984Cosh 2λη( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ

+
λ7

8192
−79491Cosh 3λη( )+1348Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ+/.

(25)

The exact solutions of ϕ(η, τ) and ψ(η, τ) are, respectively,
given by

TABLE 2 The approximate solution ψ(η, τ) (25) is considered at different values ρ and with (τ = 0.0095, λ = 0.02). Also, the absolute error of ψ(η, τ) (25) at ρ = 1 as
compared to the exact solution (276) is estimated.

η ρ = 0.56 ρ = 0.78 ρ = 0.85 LRPSM (ρ = 1) exact Abs.error

0.1 0.0200 0.0200 0.0200 0.0200 0.0200 1.00061 × 10−8

0.2 0.0200 0.0200 0.0200 0.0200 0.0200 4.0012 × 10−8

0.3 0.0200 0.0200 0.0200 0.0200 0.0200 9.00175 × 10−8

0.4 0.0200 0.0200 0.0200 0.0200 0.0200 1.60022 × 10−7

0.5 0.020 0.0200 0.0200 0.0200 0.0200 2.50025 × 10−7

0.6 0.019999 0.019999 0.019999 0.019999 0.02000 3.60025 × 10−7

0.7 0.019999 0.019999 0.019999 0.019999 0.02000 4.9002110 × 10−7

0.8 0.019999 0.019999 0.019999 0.019999 0.019999 6.40011 × 10−7

0.9 0.019998 0.019998 0.019998 0.019998 0.019999 8.09995 × 10−7

1 0.019998 0.019998 0.019998 0.019998 0.019999 9.99969 × 10−7

1.1 0.019998 0.019998 0.019998 0.019998 0.019999 1.20993 × 10−6

1.2 0.019997 0.019997 0.019997 0.019997 0.019999 1.43988 × 10−6

1.3 0.019997 0.019997 0.019997 0.019997 0.019998 1.68982 × 10−6

1.4 0.019996 0.019996 0.019996 0.019996 0.019998 1.95973 × 10−6

1.5 0.019996 0.019996 0.019996 0.019996 0.019998 2.24963 × 10−6

1.6 0.019995 0.019995 0.019995 0.019995 0.019997 2.5595 × 10−6

1.7 0.019994 0.019994 0.019994 0.019994 0.019997 2.88934 × 10−6

1.8 0.019994 0.019994 0.019994 0.019994 0.019997 3.23915 × 10−6

1.9 0.019993 0.019993 0.019993 0.019993 0.019996 3.60892 × 10−6

2 0.019992 0.019992 0.019992 0.019992 0.019996 3.99866 × 10−6
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ϕ η, τ( ) � λ2

8
1 − Sech2

λ

2
η + λ2τ

2
( )( )( ), (26)

ψ η, τ( ) � λSech
λ

2
η + λ2τ

2
( )( ). (27)

In the results section, we will discuss the profile of the obtained
solutions as well as will make a comparison with the exact solutions
and the other literature approximations.

5 Results and discussion

Figures 1, 2 represent both two- and three-dimensional graphs
for the approximations (24) and (25), respectively, using the
LRPSM at different values of fractional order derivative ρ. It is
clear that the absolute amplitude of the approximation ϕ(η, τ)
decreases with the enhancement of ρ while the amplitude of the
approximation ψ(η, τ) has an opposite behavior, i.e., its amplitude
increases with increasing ρ. Moreover, the two approximations are
presented in Tables 1, 2 at different values of ρ and discrete values
forη and τ. Furthermore, the absolute error for the approximations
ϕ(η, τ) and ϕ(η, τ) at ρ = 1 as compared to the exact solutions is
estimated in Tables 1, 2, respectively. After analyzing the obtained
results, we can conclude that the obtained approximations using
theproposed technique are closely alignedwith the exact solutions,
indicating a strong level of agreement. We have applied the
proposed method to the fractional-order Jaulent-Miodek system
to analyze it, and this is not the only example, and it can be applied
to a wide range of complicated systems related to nonlinear
mediums such as plasma physics and optical fibers.

6 Conclusion

In conclusion, the fractional-order Jaulent-Miodek system has
been solved using a novel technique, called the residual power
series method with the help of the Laplace transform (LT) in the
sense of the Caputo operator. The LT, in conjunction with the
Caputo operator, has been used to transform the fractional
differential equation into an algebraic equation, which can then
be solved using the residual power series method. The suggested
method (Laplace residual power series method (LRPSM)) involves
using a truncated power series to approximate the solution, and the
residual error is minimized by adjusting the power series
coefficients. The study of fractional-order systems has gained
significant attention in recent years due to their ability to model
complex phenomena in various fields of science and engineering.
For instance, the Jaulent-Miodek system is a well-known example
of such a fractional system, and its solution has been a topic of
interest for many researchers. Accordingly, the LRPSM has been
applied for derived high accurate approximations for the
fractional-order Jaulent-Miodek system. The derived
approximations have been compared with the analytical
solutions. It was found great harmony and agreement with a
very small absolute error between both the approximate

solutions and the analytical solutions. This method has proven
to be an effective tool for solving fractional-order systems, as it can
provide accurate and efficient solutions. The findings of this study
may be helpful in different areas of applied sciences where
fractional-order systems are commonly encountered.
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