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Purpose: Convolutional neural networks (CNNs) offer a promising approach to
automating organ segmentation in radiotherapy. However, variations of
segmentation protocols made by different medical centers may induce a well-
trained CNN model in one center and may not perform well in other centers. In
this study, we proposed a transfer learningmethod to improve the performance of
deep-learning based segmentation models among different medical centers
using nasopharyngeal cancer (NPC) data.

Methods: The NPC data included 300 cases (S_Train) from one institution (the source
center) and 60 cases from another (the target center), divided into a training set of
50 cases (T_Train) and a test set of 10 target cases (T_Test). A ResNet CNNarchitecture
was developed with 103 layers. We first trained Model_S and Model_T from scratch
with the datasets S_Train and T_train, respectively. Transfer learning was then used to
train Model_ST by fine-tuning the last 10 layers of Model_S with images from T_Train.
We also investigated the effect of the numbers of re-trained layers on the performance.
Theperformanceof eachmodelwas evaluated using the dice similarity coefficient, and
it was used as the evaluationmetrics. We compared the dice similarity coefficient value
using the three different models (Model_S, Model_T, and Model_ST).

Results: When Model_S, Model_T, and Model_ST were applied to the T_Test dataset,
the transfer learning (Model_ST) had the best performance. Compared with Model_S,
the p-values of all organs at risk were less than 0.05. Compared with Model_T, the
p-valuesofmost organs at riskwere less than0.05, but therewas no significant statistical
difference inModel_ST for the brain stem (p=0.071), mandible (p=0.177), left temporal
lobes (p=0.084), and right temporal lobes (p= 0.068). Although therewas no statistical
difference for these organs, the mean accuracy of Model_ST was higher than that of
Model_T. The proposed transfer learning can reduce the training time by up to 33%.
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Conclusion: Transfer learning can improve organ segmentation for NPC by
adapting a previously trained CNN model to a new image domain, reducing the
training time and saving physicians from labeling a large number of contours.

KEYWORDS

radiotherapy, automatic segmentation, transfer learning, deep learning, small training
samples

1 Introduction

Segmentation of the organs at risk (OARs) plays a crucial role in
modern radiation therapy. However, manual segmentation is time
consuming. Over recent decades, a need of robust tools has emerged
for automatic segmentation. The convolutional neural network
(CNN) method is a type of supervised deep learning methods,
which has demonstrated outstanding performance in various
tasks, including organ and tumor segmentation for several
disease sites [1–6]. There have been various notable
developments in the use of deep learning methods for organ
segmentation [7–10]. These methods have obviously improved
the precision of automatic segmentation, and the performances
of CNN models may achieve the level of experienced physicians
for most OARs’ segmentation [11, 12].

Although most radiotherapy centers have made their own
segmentation protocol according to the published report (e.g.,
ICRU and QUANTAC), there may still be some inter- and intra-
observer variation in manual delineations [13, 14]. Some
inconsistency in interpreting the boundary of OARs may occur
among different centers, mainly because of differences in the
expertise level and preferences for prescription and treatment
planning. Due to this reason, the well-trained CNN model using
the data from one medical center tends not to generalize the
segmentation well to cases from medical centers compared to the
one that supplied the training dataset [15, 16]. The specific deep
learning models may need to be established for each medical center.

In general, training a deep learning model for image processing
often requires a sufficiently large training dataset to tune millions of
free parameters. For segmentation tasks in radiotherapy, the training
data include not only a great number of images but also the
corresponding manual contours. When retraining a CNN model
for a new domain, expert labeling requires to be performedmanually
by the physician. This is very time consuming and not always
possible.

When sufficiently large, standard datasets are not available for
training the CNN, and the training data may not encompass a wide
spectrum of the population; as a result, the performance of the trained
CNN model may not be robust. Robustness can be improved by
exploiting a technique known as transfer learning [17–19]. Xu et al.
[20] applied the pre-trainedmodel from ImageNet to segment brain 3D
MR images. Zheng [21] applied shape learned from a differentmodality
to improve the segmentation accuracy on the target modality. Van
Opbroek et al. [22] presented four transfer classifiers to deal with
inductive transfer learning for MRI segmentation. The team [23] also
performed image weighting with kernel learning to reduce differences
between the training and test data.

Some details of protocol for contouring each OAR are not
exactly the same across medical centers; a well-trained CNN

model from one center may not perform well for another center.
Transfer learning might be a potential tool in radiotherapy for OAR
segmentation across different centers which has not been adequately
reported. This study aimed to train specific and accurate organ
segmentation models using the NPC data for one center (the target
institution) with transfer learning using only a small amount of
training data based on a CNN model trained with a large dataset
from another center (the source institution).

2 Materials and methods

2.1 Patient datasets

A retrospective study was conducted using the datasets from two
centers, one was the source institution (our institution) and the other
was the target institution. All the patients from the two institutes
included in this study were diagnosed with nasopharyngeal
carcinoma (NPC) who have received intensity-modulated radiation
therapy (IMRT) or volumetric modulated arc therapy (VMAT). The
datasets included 300 cases from the source institution and 60 cases
from the target institution. The anonymized DICOM files including CT
images and OARs’ contours were collected.

The simulation CT scans from the source institution were
acquired on a SOMATOM Definition AS 40 (Siemens
Healthcare, Forchheim, Germany) or Brilliance CT Big Bore
(Philips Healthcare, Best, the Netherlands) system with contrast
enhancement. Acquisition parameters were as follows: voltage:
120 kV; exposure: 270 mAs (Siemens) or 240 mAs (Philips);
pitch: 1 (Siemens) or 0.938 (Philips); reconstruction filter: B31s
kernel (Siemens) or B kernel (Philips); matrix size: 512 × 512; pixel
size: 0.96–1.27 mm; and slice thickness: 3.0 mm. The CT images
from the target institution were acquired on a LightSpeed RT (GE
Medical Systems,Waukesha, WI, United States) or Brilliance CT Big
Bore (Philips Healthcare, Best, the Netherlands) system with
contrast enhancement. Acquisition parameters were as follows:
voltage: 120 kV; exposure: 190 mAs (GE) or 200 mAs (Philips);
pitch: 1.5 (GE) or 0.813–0.938 (Philips); reconstruction filter:
STANDARD kernel (GE) or UB kernel (Philips); matrix size:
512 × 512; pixel size: 0.98–1.19 mm; and slice thickness: 3.0 mm.
All the enrolled cases were real clinical cases.

In total, 12 OARs were involved in this study, including the brain
stem, spinal cord, mandible, pituitary, bilateral parotid gland,
bilateral lens, bilateral optic nerve, and bilateral temporal lobe.
Each institution used the contours drawn according to its own
protocol as the ground truth. For each institution, the contours of
each OAR were first drawn by its own physician in charge and then
checked and confirmed by its own radiotherapy expert group for
quality control.
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2.2 CNN architecture for transfer learning

In this study, we developed a CNN architecture for transfer
learning with two steps.

The first step was to develop a CNN model using the dataset
from the source institution. There are many types of deep neural
networks available for medical segmentation. The CNNwe used was
modified based on the ResNet-101 CNN [24, 25] with
103 convolution layers. The network architecture is illustrated in
Figure 1, and details of the architecture are given in Table 1. The
input to the CNN was the dataset of CT images, and its output was
the corresponding segmentation probability maps for the organ. It
has multiple deeper bottleneck architectures (DBAs), each of which
consisted of three convolutional layers of 1 × 1, 3 × 3, and 1 × 1 and a
connection. There were 3, 4, and 23 DBAs in Conv2, Conv3, and
Conv4, respectively.

The second step was to fine-tune the existed CNN model (from
the source institute) using a small dataset from the target center only
by re-training the deeper layers. The parameters of Conv1 to
Conv4 were locked, and transfer learning was implemented by
re-training the last 10 layers (Conv5-b1, Conv5-b2, Conv5-b3,
and SPP) using images and labels from the target center.

2.3 Setup of training

The model training and testing were implemented using the
Caffe platform [26] on a NVIDIA TITAN XP GPU with an Intel®

Core i7 processor (3.4 GHz). Backpropagation with the stochastic
gradient descent (SGD) algorithm implementation in Caffe was used
for parameter optimization. The learning rate policy was set to
“poly” with a base learning rate of 0.00025 and power of 0.9. The
batch size, momentum, and weight decay were set to 1, 0.9, and
0.0005, respectively. The maximum number of iterations was 200 K.
The original images were 512 × 512. To avoid over-fitting, we
applied general methods for data augmentation, including
random scaling between 0.5 and 1.5 (scaling factors: 0.5, 0.75, 1,
1.25, and 1.5), random rotation (between −10° and 10°), and random
cropping (crop size: 417 × 417). In detail, the original images were
randomly resized with a factor of 0.5, 0.75, 1, 1.25, and 1.5 and then
randomly rotated between −10° and 10°. The crop size was selected
mainly based on the size of the image. Since the cropped images
would be fed into the network, it is necessary to unify their size.
Finally, all the training images were cropped to 417 × 417.

2.4 Experiments

First, we trained and validated an original CNN model (Model_
S) with the 300 cases in the source center dataset for 12 OARs
separately. Second, the 60 cases from the target center were

FIGURE 1
Architecture of the segmentation network for transfer learning. The input to the CNN was the dataset of CT images from the source institution, and
its output was the corresponding segmentation probability maps for the organ. For transfer learning, the layers that were re-trained are shown in green
and those not re-trained are shown in gray.

TABLE 1 Detailed architecture of the segmentation network.

Layer Convolution kernel Output

Input data — 417 × 417 × 1

Conv1 [7 × 7] 209 × 209 × 64

Max-pool1 [3 × 3] 105 × 105 × 64

Conv2 1 × 1
3 × 3
1 × 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 3
105 × 105 × 64

105 × 105 × 64

105 × 105 × 256

Conv3 1 × 1
3 × 3
1 × 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 4
53 × 53 × 128

53 × 53 × 128

53 × 53 × 512

Conv4 1 × 1
3 × 3
1 × 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 23
53 × 53 × 256

53 × 53 × 256

53 × 53 × 1,024

CAC Conv5-b1 1 × 1
3 × 3
1 × 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ 53 × 53 × 512

53 × 53 × 512

53 × 53 × 2,048

Conv5-b2 1 × 1
3 × 3
1 × 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ 53 × 53 × 512

53 × 53 × 512

53 × 53 × 2,048

Conv5-b3 1 × 1
3 × 3
1 × 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ 53 × 53 × 512

53 × 53 × 512

53 × 53 × 2,048

SPP [1 × 1] + [3 × 3] + [3 × 3] + [3 × 3] 53 × 53 × 2

Interpolation factor = 8 417 × 417 × 2

Output data — 417 × 417 × 1
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randomly divided into a training set of 50 cases (T_Train) and a test
set of 10 cases (T_Test). We then used the 50 cases (T_Train) in the
target center dataset to train another CNN model (Model_T) from
scratch for 12 OARs separately. Third, to build the transfer learning
model (Model_ST), we transferred the learned weights fromModel_
S to the new model, locked most of the shallower layers, and fine-
tuned the remaining deeper layers with the T_Train training dataset.
Finally, the remaining 10 cases of the target center dataset (T_Test)
were used as the test set for evaluation.

The dice similarity coefficient (DSC) [27] was used as the
evaluation metrics. We compared the DSC value using the three
different models (Model_S, Model_T, and Model_ST). Data were
analyzed using SPSS version 24. The Wilcoxon signed-rank test for
the paired samples non-parametric test was performed. A p-value
of <0.05 was considered to be statistically significant. The training
times for each of the models and configurations were recorded to
compare the efficiency of the transfer learning.

3 Results

3.1 Evaluation of segmentation accuracy
with transfer learning

For each organ, Model_S and Model_T were trained with the
original network from starch, while Model_ST was trained with the
proposed transfer learning. The comparisons of Model_S, Model_T,
and Model_ST on the testing sets (T_Test) are shown in Table 2.
Model_S, trained with the images from the source center dataset,
performed worst (DSC = 0.74 ± 0.12) on the 10 T_Test cases from
the target center. Model_T, trained with the T_Train training
images from the target center dataset, had higher DSC (DSC =
0.78 ± 0.10) than Model_S when applied to T_Test. The p-values
were less than 0.05 in all organs except the right parotid gland (p =
0.075). The transfer learning model Model_ST, fine-tuned using T_
Train, had the best performance (DSC = 0.81 ± 0.09) when applied

to T_Test. Compared with Model_S, the p-values of all OARs were
less than 0.05. Compared with Model_T, the p values of most OARs
were less than 0.05, but there was no significant statistical difference
in Model_ST for the brain stem (p = 0.071), mandible (p = 0.177),
left temporal lobes (p = 0.084), and right temporal lobes (p = 0.068).
Although there was no statistical difference for these organs, the
mean accuracy of Model_ST was higher than that of Model_T. The
average DSC for all the OARs was increased by 0.03 with Model_ST
compared to that with Model_T.

Figure 2 visualizes some typical examples of the contours
segmented with Model_T and the proposed Model_ST. By
comparison, it can be found that Model_ST had better
performance in general.

3.2 Contouring and training time

The time for contouring one slice was 0.15 s for all the models
used in this study because the same architecture was used to train
each model. However, the training time varied significantly with the
number of parameters to tune. We used 200 K iterations to train
each model. It took ~100 h to train Model_T with the original
network, while the training time was reduced by 33% for the transfer
learning.

4 Discussion

Deep learning networks are increasingly used in radiotherapy to
delineate OARs, achieving promising results. However, when a
model built in one medical center is applied in another, its
performance tends to be poorer. This prevents a single model
from being used across multiple medical centers. The results of
this study showed that the proposed transfer learning method could
improve the automatic segmentation of OARs by adapting a
previously trained CNN model to a new domain. In addition,

TABLE 2 Dice similarity coefficients for the models on T_Test.

OAR Model_S Model_T Model_ST Model_T vs. Model_S Model_ST vs. Model_S Model_ST vs. Model_T

Brain stem 0.81 ± 0.03 0.88 ± 0.03 0.89 ± 0.02 p = 0.005 p = 0.005 p = 0.071

Spinal cord 0.79 ± 0.03 0.84 ± 0.03 0.86 ± 0.03 p = 0.004 p = 0.004 p = 0.009

Mandible 0.86 ± 0.03 0.89 ± 0.02 0.90 ± 0.02 p = 0.005 p = 0.005 p = 0.177

Parotid gland left 0.82 ± 0.04 0.83 ± 0.04 0.85 ± 0.03 p = 0.018 p = 0.005 p = 0.011

Parotid gland right 0.82 ± 0.04 0.83 ± 0.04 0.85 ± 0.03 p = 0.075 p = 0.007 p = 0.017

Lens left 0.61 ± 0.06 0.67 ± 0.05 0.71 ± 0.06 p = 0.005 p = 0.005 p = 0.014

Lens right 0.60 ± 0.05 0.66 ± 0.05 0.71 ± 0.05 p = 0.005 p = 0.004 p = 0.008

Optic nerve left 0.63 ± 0.05 0.68 ± 0.05 0.72 ± 0.05 p = 0.005 p = 0.005 p = 0.007

Optic nerve right 0.66 ± 0.05 0.69 ± 0.05 0.71 ± 0.05 p = 0.007 p = 0.005 p = 0.043

Temporal lobe left 0.81 ± 0.03 0.88 ± 0.02 0.89 ± 0.02 p = 0.005 p = 0.005 p = 0.084

Temporal lobe right 0.81 ± 0.03 0.87 ± 0.02 0.89 ± 0.02 p = 0.005 p = 0.005 p = 0.068

Pituitary 0.55 ± 0.06 0.67 ± 0.04 0.70 ± 0.03 p = 0.005 p = 0.005 p = 0.021
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transfer learning could save up to 33% of the training time with the
same training iterations.

For a task such as OAR segmentation, using data from the target
center to fine-tune just the last few layers of a model trained using
source center datasets could potentially yield a good performance. In
addition, it was difficult to re-train all the free parameters of the
network because of the limited amount of training data. For the
proposed transfer learning, a large number of samples (300 cases)
have been used to tune the parameters of the network, and then, the
shallower layers were locked. The smaller number of parameters to
be fine-tuned avoided over-fitting and improved the robustness of
the segmentation model.

Training a CNN segmentation model usually needs large-scale
image data with labels. The important findings of this study are,
therefore, of great relevance for clinical practice. Transfer learning
can improve organ segmentation to a high level with only a small
amount of training data, which can reduce the need for time-
consuming human interventions and improve the efficiency of
model training.

There are several limitations in this study that need to be
addressed in the future. First, the transfer learning in this study
was based on the ResNet network. This may be a limitation because
there are many other possible networks and OARs that were not
considered. The network we chose has previously been
demonstrated to be state of the art. Second, due to the limitation
of data security and privacy, there were only 60 cases from the target

domain. The amount of training set could not be too small, so we
randomly selected only 10 from 60 cases as the testing set to verify
the proposed method. Although the results show that it has
significant improvement in all 10 testing cases, the small size of
the testing set is another limitation of this study. Third, we
demonstrate the power of the developed method only using the
NPC data from two centers, while including more centers and more
tumor sites to test our method would be more convincing. Finally,
different scanners, scanning parameters, protocols, physicians, or
contouring platforms may affect the performance of model on cases
from different medical centers. It will be further explored to see
which factor is most important in future research.

5 Conclusion

In this study, a transfer learning method was established to
train specific organ segmentation models for one center using
only a small amount of data based on a CNNmodel trained with a
large dataset from another center. The findings demonstrated
that the established method can improve predictive accuracy by
adapting a previously trained deep learning model to a new image
domain. This approach could save the training times and reduce
the need for physicians to label a large number of contours. These
findings suggest an approach for training segmentation models
across medical centers.

FIGURE 2
Segmentation results for tested cases. Red, ground truth; green, Model_T; and b, the proposed Model_ST.
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