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Low-light image enhancement (LLIE) has high practical value and development
potential in real scenarios. However, the current LLIE methods reveal inferior
generalization competence to real-world low-light (LL) conditions of poor
visibility. We can attribute this phenomenon to the severe domain bias
between the synthetic LL domain and the real-world LL domain. In this article,
we put forward the Domain-Gap Aware Framework, a novel two-stage framework
for real-world LLIE, which is the pioneering work to introduce domain adaptation
into the LLIE. To be more specific, in the first stage, to eliminate the domain bias
lying between the existing synthetic LL domain and the real-world LL domain, this
work leverages the source domain images via adversarial training. By doing so, we
can align the distribution of the synthetic LL domain to the real-world LL domain.
In the second stage, we put forward the Reverse Domain-Distance Guided
(RDDG) strategy, which takes full advantage of the domain-distance map
obtained in the first stage and guides the network to be more attentive to the
regions that are not compliance with the distribution of the real world. This
strategy makes the network robust for input LL images, some areas of which
may have large relative domain distances to the real world. Numerous
experiments have demonstrated the efficacy and generalization capacity of the
proposed method. We sincerely hope this analysis can boost the development of
low-light domain research in different fields.

KEYWORDS

real-world low-light image enhancement, domain-gap aware framework, domain
adaptation, reverse domain-distance guided strategy, adversarial training

1 Introduction

Real-world LLIE aims to reconstruct normal light images from observations acquired
under low-light conditions with low visibility and poor details. Numerous scientific deep-
learning approaches [1–5] with the advantage of the powerful capability to learn features
[6–10] have been extensively proposed. For the efficient LLIE task [11–13], they recover the
visibility and precise details of low-illumination images by learning the relationship between
LL and NL images. As the efficiency of deep learning methods is subordinate to the dataset,
some methods collect bursts of images with multiple exposure levels captured in real
scenarios for real-world LLIE applications [14, 15]. However, since the collections of large-
scale paired datasets are incredibly laborious and expensive [16], the existing paired datasets
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are usually of small scale, which may cause overfitting when training
networks using them. Therefore, some methods have been put
forward to enlarge the scale of datasets by synthesizing low-
illumination images and forming paired datasets with normal
illumination images [17, 18]. However, the synthetic LL images
are usually not compliant with real-world distribution, leading to
poor generalization capability to the real world for the LLIEmethods
trained on these datasets [19]. Specifically, the illumination level
cannot be improved sufficiently to recover details, or the white
balance cannot be maintained correctly. Therefore, it is a worthwhile
but challenging task to generate enhancement results that match
real-world distribution.

Unsupervised methods are of high practical value and
development potential because they do not require paired datasets
captured in the same static scenarios [20, 21]. They implement LLIE
tasks by taking full advantage of unpaired real-world NL images and
LL images. To realize the concept of aligning the distribution of
enhanced NL images to the unpaired NL domain, existing methods
usually adopt adversarial training directly for the enhanced results
against the real-world NL images. Further, to ensure that all regions in
the enhanced images are close to the real ones, EnlightenGAN [22]
crops image patches randomly from the enhanced images and adopts
adversarial training against the real NL image patches. However, these
methods seldom notice that the severe domain gap may impede the
enhancement performance but only focus on the enhancement
procedure, which degrades the generalization performance of the
networks trained on synthetic datasets. Moreover, randomly
comparing image patches does not guarantee that all regions of
the enhanced images match the real-world distribution.

Over recent years, researchers have extensively proposed ways to
address the shortage of data with labels for training. For Domain
adaptation (DA) methods, the labeled data enables adequate
training in the source domain as well as performing new tasks
on the unlabeled target domain with new distribution [23]. It greatly
improves the effectiveness of methods on the target domain, which
is appropriate for real-world LLIE tasks.

In this article, by comprehensively reviewing the potential and
reaping the full benefits of alternative methods, we put forward a
two-stage framework with the merit of both adversarial learning and
domain adaptive methods. Specifically, we propose the Domain-Gap
Aware Framework to implement real-world LLIE tasks, which
addresses the issue that the input LL images deviate from the
real-world distribution.

As shown in Figure 1, the noticeable domain gap between the
real-world and the synthetic LL domain can be observed. Besides,
different areas in a single low-light image may have different relative
domain distances. We find that the domain gap severely degrades
the generalization competency of the network to real-world low-
light conditions. Therefore, unlike existing methods that ignore the
domain bias for synthetic LL images, we propose the Domain-Gap
Aware Framework. Specifically, in the first stage, we impose
adversarial training on the Darkening Network to eliminate the
severe domain gap and generate realistic pseudo-LL images. By
doing so, we obtain pseudo-LL images that are consistent with real-
world distribution, as well as domain-distance maps. In the second
stage, we propose the Reverse Domain-Distance Guided strategy to
capitalize fully on the domain-distance maps and mitigate the
unrealistic areas of pseudo-LL images. In detail, we assign higher

FIGURE 1
(A) The presentation of the existing synthetic LL dataset and (B) the real-world LL images. (A,B) shows the apparent domain gap in terms of
illumination level and white balance lying between the real-world and the existing synthetic LL domain.
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weights to the regions in the generated NL images that are relatively
far from the real-world domain; while assigning smaller weights to
the realistic regions in the training phase, thus mitigating the
uncompetitive enhancement competence to real-world scenarios
due to the unrealistic input LL patches. The proposed two-stage
framework generalizes well to the real world with boosted
illumination level and clearly reconstructed structural details,
which can significantly facilitate subsequent computer vision
tasks and systems [24] focusing on objects at nighttime.

The following are the key contributions to this article:

• We put forward the Domain-Gap Aware Framework to
address the domain-gap issue and generate pseudo-low-
light images consistent with real-world distribution, which
is essential to attain models with high generalization capability
for real-world LLIE.

• A Reverse Domain-Distance Guided strategy is proposed for
real-world applications. The pixel-wise domain distance maps
are taken full advantage of to further promote the robustness
of the Enlightening Network. It is worth pointing out that this
is the pioneering work to introduce DA to LLIE as far as
we know.

The remainder of this paper is structured as follows. In Section 2,
we present a brief review of some related works in the LLIE field.
Section 3 introduces the proposed framework and strategy. Section 4
shows experimental results to demonstrate the effect of our method,
and Section 5 gives a conclusion of the paper.

2 Related work

2.1 CNN-based approaches

CNN-based approaches have become a principal method in the
LLIE field with their high efficiency in image analysis [25, 26]. They
reconstruct the contrast and structural details of LL images by learning
the mapping relationship between LL-NL images. Some methods have
collected paired data in real scenarios [27]. However, it is difficult to
construct large-scale paired datasets due to the required high cost and
heavy workforce. Since the applications of deep learning methods are
usually hampered by shortages of data in pairs for training [28], some
methods have also made attempts to construct simulated datasets [17,
18, 29]. It is widely known that the data for training are essential for the
networks’ performance [30]. However, the synthetic dataset was
generated under the assumption of simple degradation in terms of
illumination level, noise, etc., which leads to the poor generalization of
the trained networks to the real world and the side effect, e.g., color
distortion and insufficiently improved illumination.

Real-world LLIE has attracted significant research due to its high
practical value. Researchers have been extensively designing diverse
architectures to achieve better generalization to the real world. In
EnlightenGAN [22], the design philosophy is to address the domain
gap issue by applying adversarial training using unpaired datasets. In
addition, researchers have also made efforts to zero-shot LLIE. Zero-
DCE [31] regards the LLIE as a task of curve estimation for image-
wise dynamic range adjustment. However, it pays little attention to
the domain gap between the to-be-enhanced LL images and the real-

world ones and only focuses on the enhanced NL images, which
degrades the generalization performance of the networks trained on
synthetic datasets.

2.2 Domain adaptation

Domain adaptation (DA) intends to enhance performance when
confronting a new target domain despite domain bias [32]. It is
beneficial to deal with data shortages for tasks that are difficult to
obtain real data.

In this work, we concentrate on eliminating the domain gap to
synthesize realistic LL images, which is a preparation phase for the
enlightening stage. Inspired by relevant studies in super-resolution
[33], we construct a Domain-Distance Aware framework to perform
the real-world LLIE. We apply DA to improve the performance of
LLIE on real data.

In the next sections, we introduce the proposed Domain-
Distance Aware framework and Reverse Domain-Distance
Guided strategy in detail.

3 Methods

3.1 Network architecture

Given two domains, which can be described as the LL domain
and the NL domain, our goal is to learn an Enlightening Network to
promote the visibility and reconstruct structural details of the
images in the LL domain while generating enhanced NL
estimations belonging to the real-world NL domain. To achieve
this objective, we propose the Domain-Gap Aware Framework. We
did not follow previous work that directly utilizes the existing
synthetic low-illumination datasets to train the Enlightening
Network. Instead, our framework takes the domain bias between
xg and xr into full account. As shown in Figure 2, during the first
phase, we train the Darkening Network using adversarial training,
which generates pseudo-LL images belonging to the real-world LL
domain as well as domain distance maps. Then, in the second stage,
we put forward the Reverse Domain-Distance Guided strategy,
which leverages the pseudo-LL-NL image pairs and domain
distance maps to train the Enlightening Network.

In the next subsection, we first describe how to train the
Darkening Network to generate LL-NL image pairs in line with
real-world distributions. Then, we show the Reverse Domain-
Distance Guided strategy.

3.1.1 Training of darkening network
The general procedure of synthesizing low-light images by

existing methods is manually adjusting the illumination and
adding noise [17, 18]. However, the illumination levels in the real
world are diverse and may also vary spatially in a single image.
Moreover, it is difficult to represent noise with simple and known
distribution. In a word, the degradations assumed by existing
methods are too simple to fully simulate the complex
degradation in the real world, which unfortunately leads to
domain bias lying between the synthesized LL images and the
real-world ones. In contrast, our approach employs a deep
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network (i.e., the Darkening Network) to learn the real-world
degradation process. It works as the generator in the whole
framework and extracts the features of NL images using eight
blocks (each layer is convolved by a 3 × 3 kernel and activated
by a ReLU activation in between).

3.1.1.1 Losses
We employ multiple loss functions to train the Darkening

Network. To ensure that the content of the pseudo-LL images is
preserved consistently with the GT (Ground-Truth) LL images, we
adopt content loss along with the perceptual loss to optimize the
distance between them at the image level and the feature level,
respectively. In detail, the content loss contains reconstruction loss,
which is L1-norm and SSIM (Structural SIMilarity Index) [34] loss,
which aims at measuring structural similarities between two images.
The reason why we adopt L1-norm as our reconstruction loss is that
it treats all errors equally so that the training can keep going even
though the error is tiny. Perceptual loss is also widely used in the
image reconstruction field, which measures the distance between
features extracted via deep neural networks.

LRecons. � Eyr xri − DN yri( )
����

����1

SSIM m, n( ) � 2μmμn + c1( ) 2σmn + c2( )
μ2m + μ2n + c1( ) σ2

m + σ2
n + c2( )

LSSIM � 1 − SSIM xri ,DN yri( )( )

Lcontent � LRecons. + LSSIM

Lpercept � Eyr Φ xri( ) −Φ DN yri( )( )
����

����1

We show the adopted loss functions above, where Φ(·) denotes
the convolutional layers of the conv5_3 of VGG-16 [35], and
SSIM(·,·) means the SSIM score between two input images.

In addition to the above training, to address the domain gap issue
and align the distribution of the pseudo-LL images to the real world,
the pseudo-LL images are trained against the real-world LL images by
adversarial training. Specifically, we adopt a similar strategy as DASR

[33], which uses a patch discriminator with four layers of fully
convolutional layers to determine whether each image block
matches the real-world distribution. This strategy facilitates
pseudo-LL images to fit the real-world distribution.

LG
Adv. � −Eyr logD DN yr( )( )[ ]

LD
Adv. � −Eyr logD xr( )[ ] − Eyr log 1 − D DN yr( )( )( )[ ]

The loss functions are shown above, where D(·) denotes the
patch discriminator.

3.1.2 Reverse domain-distance guided strategy
As shown in Figure 1 previously, each region in the generated LL

image may distant diversely from the domain of the real world,
i.e., some regions lie relatively close to the domain of the real world,
while some regions are relatively far. Since the regions relatively far
from the domain of the real world may degrade the enhancement
competency of the network, we should endow different regions with
diverse attention. We realize this concept by reversing the domain
distance maps first and then applying them to eliminate the
discrepancy between yg

i and xr
i . Thereby, we adaptively adjust

the loss functions by assigning diverse weight parameters to these
regions adaptively. We present the Reverse Domain-Distance
Guided strategy in Figure 3.

3.1.2.1 Losses
We denote the supervised losses as follows, where ωi denotes the

domain distance map for xg
i , which is attained by the patch

Discriminator trained in the first stage.

Lω,content � −Exgi ,y
r
i

1 − ωi( ) ⊙ EN xgi( ) − yri( )
����

����1

Lω,percept � −Exgi ,y
r
i

1 − ωi( ) ⊙ Φ EN xgi( )( ) −Φ yri( )( )
����

����1

The trained patch Discriminator can differentiate between the
pseudo-LL patches and those from the real-world domain. A smaller
value in ωi means a lower probability that the pseudo-LL patches

FIGURE 2
(A) The proposed Domain-Gap Aware Framework contains two stages, i.e., the Darkening stage and Enlightening stage. (B) Adversarial training
during the training of Darkening Network.
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belong to the real-world domain. It also indicates a higher value in
the reverse of ωi, i.e., 1- ωi, and a larger domain distance from the
pseudo-LL to the real-world domain. Therefore, we guide the
network to be attentive to the enhanced outcomes of the input
pseudo-LL patches relatively far from the real-world domain by
endowing distance-related importance to different areas. The
Reverse Domain-Distance Guided strategy makes full use of
domain distance to remedy the unrealistic areas of pseudo-LL
images and further improves the generalization to the real world.

To evaluate the proposed method, we describe experimental
settings and results in detail in the next section.

4 Experiments

Since the similarity with the ground-truth NL images can reflect
the enhanced result to a large extent, we adopt PSNR and SSIM [34]
as reference metrics, two widely adopted quality metrics in the image
restoration field. In addition, as our method adopts a generative-
adversarial network, we also focus on perceptual quality. Therefore,
we also adopt LPIPS (Learned Perceptual Image Patch Similarity
[36] as the quality metric. Diverse ablation studies are carried out by
us to figure out the effect of the proposed strategies in our
framework. Then, to figure out our method’s generalization
competency, the real-world LL dataset is assigned as the testing
set. Finally, we further make comparisons with other competing
LLIE approaches by applying them to real-world LL datasets.

4.1 Training settings

Researchers have constructed MIT-Adobe FiveK dataset [37],
which consists of 5,000 photos retouched by five experts, to adjust
the global tone. It has been widely leveraged in the LLIE field. We
applied GladNet [38] to the normal-light images retouched by MIT-
Adobe FiveK dataset’s Expert E to obtain synthetic LL images. We
separate 4,000 paired NL-LL images from it to prepare for training

and 1,000 paired images to prepare for validation. Then we resize the
images to 600 × 400 resolution. Besides, we adopt the DARK FACE
dataset (4,000 for training, 1,000 for validation) [39], which consists
of 6,000 images obtained under real-world nighttime conditions, as
the real-world low-light references.

Let us now turn our attention to the main framework. The
network is assigned random weights initially. The Adam method
(with momentum and weight decay set to be 0.9 and 0.001,
respectively) is adopted to update the network’s parameters.
Besides, the learning rate is assigned to be 0.0001 initially and
then is halved every ten epochs. During the whole training
procedure, we maintain a batch size of 16. We carry out all the
evaluation experiments on the NVIDIA GeForce GTX3090 and
NVIDIA GeForce GTX1080Ti with PyTorch.

4.2 Ablation studies

Before conducting comparison experiments with recently
competing methods, we carried out a variety of ablation
experiments to delve into diverse loss functions as well as the
proposed framework.

4.2.1 Effect of loss functions
We carry out a variety of trying outs for diverse loss functions

and figure out the quantitative outcomes on the widely adopted
metrics, i.e., PSNR and SSIM, along with LPIPS. During the
computation of LPIPS, we extract features of input images
through AlexNet [40] to calculate the distance between them. A
small LPIPS value means a high similarity. Table 1 displays the
quantitative outcomes.

Firstly, let us analyze the effect of each loss function. We can find
from the 3rd, 4th, 5th row that in comparison to being supervised by
the reconstruction loss and adversarial loss, adding SSIM loss boosts
the performance on PSNR, SSIM, and LPIPS metrics with 3.871dB,
0.0654dB, and 0.1177dB, respectively, and adding perceptual loss
improves the performance on the three metrics with 3.19dB,

FIGURE 3
The proposed Reverse Domain-Distance Guided strategy. It facilitates the Enlightening Network to be more attentive to the less realistic regions of
the input LL images.
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0.0195dB, 0.0338dB, respectively. It indicates the effectiveness of
both SSIM loss and perceptual loss in reconstructing texture and
details of contents.

Secondly, we can find from the 1st and 2nd row that the best
performance is achieved under the settings of using merely content
loss, which includes reconstruction loss and SSIM loss. Note that
content loss aims at reducing the distance between input images.
Therefore, training with them equals supervised learning, which
easily achieves better performance in comparison to adversarial
training. Nevertheless, our method, which contains adversarial
learning for fitting with real-world low-light image distributions,
achieves similar quantitative results with supervised learning. In
specific, our method performs second best on PSNR and SSIM and
obtains rank third on LPIPS with a difference of only 0.028dB,
0.0054dB, and 0.0075 dB with the rank first scores.

As shown qualitatively in Figure 4, our method generates images
with sufficiently low exposure levels and correct white balance.
Therefore, we can conclude that the LL images generated by our
method keep contents consistent with LL images from the existing
dataset but closer to the ones captured under poor light conditions.
We finally chose ωcol � 1, ωssim � 1, ωper � 0.02, and ωadv � 0.02 for
the weight parameters of each loss function.

4.2.2 Effect of the darkening network
4.2.2.1 Comparisons of LL images

We adopt a generative adversarial network to generate pseudo-
LL images so that they are close to LL images from the existing
dataset in terms of contents while in compliance with the
distribution of real-world LL images. Figure 4 presents the
contrast between the MIT-Adobe FiveK dataset [37] and pseudo-
LL images synthesized by our method.We can find in the 2nd row of
the panel (A) and (B) in Figure 4 that the white balance of several
images in the existing low-light dataset is going wrong, where white
areas of the original NL images appear orange in the existing low-
light dataset. This may lead to the color shift in the enhanced images
enhanced, which is further proven in Figure 5. Besides, the 2nd row
of Figure 4B suggests that the illumination level is not low enough to
simulate night lighting conditions. In contrast, the proposed
Darkening Network maintains the correct white balance and
decreases the illumination level sufficiently in LL versions, as
displayed in the 3rd row of the panel (A) and (B) in Figure 4,
which facilitates the lightening network to generalize better to the
real-world low-light condition.

4.2.2.2 Comparisons of enhancement results
Furthermore, the effect of the proposed Darkening Network is

investigated in this subsection. We train the Darkening Network both
using pseudo-LL-NL pairs xg , yr{ } and existing paired dataset xr , yr{ },
and compare the outcomes in terms of quality and quantity. Figure 5
shows qualitative comparisons. As shown in Figure 5A, we can clearly
see that the enhanced outcomes of the existing LL dataset suffer from
the color shift. This is because the input LL images are of imperfect
white balance, as shown in Figure 4 previously. Besides, as shown in
Figure 5C, it easily appears over-exposure, which hinders some regions
(e.g., regions in the dark color such as hair, ribbon, skin, and so on.)
from retaining semantic darkness, unfortunately. This is due to the
insufficient illumination level in existing LL images. Moreover, the
enhanced results of the backlit image (in the 5th row of Figure 5C) suffer
from artifacts severely. In contrast, as shown in Figures 5B, D, the
enhanced results of pseudo-LL images are of correct white balance and
appropriate exposure level with good preservation of semantic
information, as well as much fewer artifacts introduced to backlit
images. Therefore, we confirm that the Enlightening Network can
produce superior enhancement results collaborated with the Darkening
Network, which fully reflects the effect of the Darkening Network.

Next, we display quantitative comparison results in Table 2.
We can clearly find that training with pseudo-LL-NL pairs

xg , yr{ } achieves better scores on PSNR, SSIM, and LPIPS, which
exceeds the GT LL-NL pairs xr , yr{ } to a great extent. More
specifically, training with xg , yr{ } achieves considerably higher
scores on PSNR and SSIM than training with xr , yr{ }, both with
and without the Reverse Domain-Distance Guided strategy. More
specifically, as shown in column2 and 4, training with xg , yr{ }
exceeds training with xr , yr{ } by 16.252 dB (= 35.276–18.751 dB)
on PSNR and by 0.1022 dB (= 0.9696–0.8674 dB) on SSIM. It
demonstrates that the synthesized pseudo-LL-NL pairs are more
suitable for real-world LLIE than GT LL-NL pairs from the existing
dataset. The reason is that the proposed Darkening Network aims to
address the domain gap via adversarial training so that the pseudo-
LL images match the real-world distribution in terms of exposure
level, hue, noise, and so on. However, the existing procedure of
synthesizing low-light images assumes simple degradations fromNL
images, which is far from the complex degradations of the real
world. Therefore, we confirm that by adequately taking advantage of
target domain data during the training process, the proposed
Darkening Network makes a significant contribution to the
improvement of enhancement quality.

TABLE 1 Ablation study of diverse loss functions and corresponding image quality evaluations.

Recons. SSIM Adv Percept PSNR↑ SSIM↑ LPIPS↓

√ × × × 20.107 0.7704 0.1023

√ √ × × 20.028 0.7772 0.0960

√ × √ × 15.761 0.6995 0.2218

√ √ √ × 19.632 0.7649 0.1041

√ × √ √ 18.951 0.7190 0.1880

√ √ √ √ 20.079 0.7718 0.1035

Recons., Adv., and Percept. indicate reconstruction loss function, adversarial loss, and perceptual loss, respectively. Scores marked in bold indicate the highest scores on the corresponding

metric.
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FIGURE 4
The comparison of LL images from the existing dataset and pseudo-LL ones synthesized by ourmethod. (A) The comparison of white balance of LL-
images; (B) The comparison of illumination level. The 1st, 2nd, and 3rd in both (A) and (B) show original normal-light images, LL images from the existing
dataset, and pseudo-LL ones generated by our method, respectively. The images in the 3rd row of each panel are in line with the distribution of the real
world in terms of illumination level and white balance.
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FIGURE 5
Qualitative comparison of the enhancement results of Darkening Network trained with GT LL-NL pairs xr , yr{ } and pseudo-LL-NL pairs xg , yr{ }. (A,C)
shows the enhanced results by GT LL-NL pairs xr , yr{ }, (B,D) shows the enhanced results by pseudo-LL-NL pairs xg , yr{ }. The proposed Darkening
Network performs better by retaining semantically dark regions and correct white balance.
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4.2.3 Effect of reverse domain-distance guided
strategy

To verify the effectiveness of the Reverse Domain-Distance
Guided strategy, we conduct ablation studies with the settings of
training with xg , yr{ }, and xr , yr{ }. Table 2 and Figure 6 show
quantitative and qualitative results, respectively. For convenient
comparison, the quantitative outcomes are displayed in Table 2.
We can easily discover that adopting the Reverse Domain-Distance
Guided strategy improves the PSNR and SSIM with a certain
magnitude of 1.981 dB (=37.257–35.276 dB) on PSNR and
0.0035 dB (= 0.9731–0.9696 dB) on SSIM when training with
xg , yr{ }. The reason is that domain distances between pseudo-LL
images xg and real-world LL images xr are taken full advantage of at
the enhancement stage. Specifically, the Enlightening Network is
driven to emphasize the regions that are not in compliance with the
real world by allocating greater weight to them during the training
process. Therefore, it is easy to understand that the collocation of the
Reverse Domain-Distance Guided strategy and the proposed
Darkening network is beneficial to the reconstruction of texture
and details with the pseudo-LL-NL pairs xg , yr{ }.

Let us investigate the effect of the Reverse Domain-Distance
Guided strategy. We can find from Figure 6 that those semantically
dark regions maintain their semantic darkness during the
improvement of illumination level without under-exposure for
other regions, which facilitates the images to appear more
realistic. Therefore, the proposed Reverse Domain-Distance
Guided strategy is of significance for the generalization of LLIE
to the real world.

4.3 Evaluations of generalization on the real-
world dataset

The Exclusively Dark dataset [41] is proposed to facilitate better
detection under poor visibility conditions for nighttime systems and
applications. It contains a total of 7,363 images of 12 specified object
categories. Some images were sub-sampled from existing large-scale
datasets, includingMicrosoft COCO, PASCALVOC, and ImageNet.
We carry out evaluations for the generalization capacity on the
Exclusively Dark dataset and DARK FACE dataset. Figure 7 shows a

TABLE 2 Ablation studies of Darkening Network and Reverse Domain-Distance Guided strategy with the settings of both pseudo-LL-NL pairs and GT LL-NL pairs
from the existing dataset.

xr , yr{ } xg, yr{ }

Reverse domain-distance guided strategy √ × √ ×

PSNR↑ 18.796 18.751 37.257 35.276

SSIM↑ 0.8618 0.8674 0.9731 0.9696

LPIPS↓ 0.1764 0.1674 0.1587 0.1547

The scores marked in bold indicate the highest scores on the corresponding metric.

FIGURE 6
Qualitative comparison of the enhancement results without and with Reverse Domain-Distance Guided strategy. The texture and details are better
reconstructed with the propsed strategy.
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visual representation of enhancement results. Numerous outcomes
demonstrate that the proposed approach can greatly boost the
visibility of objects under extremely poor or significant
variational illumination conditions. Therefore, we can confirm
that the proposed approach can generalize well to extremely dark
light conditions in the real world. Furthermore, our method can
potentially facilitate subsequent computer vision systems for night
vision surveillance since the performance of object-focused works
usually drops when the given images are degraded [42, 43].

4.4 Comparative experiments with state-of-
the-arts

Let us conduct comparative experiments with recent competing
LLIE approaches on the DARK FACE dataset [39]. Figure 8 displays

the qualitative contrastive results of different competing approaches,
including EnlightenGAN [22], DSLR [44], DRBN [45], TBEFN [46],
RRDNet [47], and MBLLEN [48]. Qualitative results show that all
the methods can effectively enhance the LL images captured under
severely real-world low-light nighttime environments in terms of
illumination level. However, some methods introduce side effects.
Specifically, it can be clearly found that the overall hue of the image
is distorted in EnlightenGAN. Besides, DRBN, TBEFN, and
MBLLEN introduce distinct artifacts to local areas. It can be
concluded that DSLR, RRDNet, and our method attain the top
three best performances. Let us further investigate their differences
in detail. It can be clearly found that DSLR and RRDNet tend to
generate blur artifacts, i.e., structural details cannot be clearly
reconstructed. Besides, RRDNet cannot sufficiently improve the
illumination level. In contrast, our method improves visibility
without introducing blurriness and shows a better reconstruction

FIGURE 7
Evaluation of generalization capability on real-world datasets, i.e., (A) Exclusive Dark dataset and (B)DARK FACE dataset. In both (A,B) panels, the 1st
row indicates input LL images, and the 2nd row shows enhanced results by the proposed framework. Our method has superior generalization capability
to extremely low-illumination real-world conditions.

Frontiers in Physics frontiersin.org10

Chen et al. 10.3389/fphy.2023.1147031

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1147031


FIGURE 8
Vivid qualitative enhancement outcomes of recently competing network structures and our framework on the DARK FACE dataset. We present the
results of SOTA methods on two specified images. We further compare the three most competing methods marked with boxes by zooming in on the
local area of their enhanced results. Our method achieves the more superior enhancement results for real-world LL images than SOTA methods in
respect of structural details and visibility.
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of details, as shown in the zoomed-in comparison results. Therefore,
we can confirm that our approach works most effectively relative to
other recently competing LLIE methodologies.

Finally, we give a conclusion in Section 5.

5 Conclusion

This paper introduces domain adaptation to the LLIE field.
Unlike previous methods that directly adopt existing synthetic low-
light datasets, we propose the Domain-Gap Aware Framework,
which addresses the dilemma of domain-gap lying between
pseudo-LL and real-world LL domain. To eliminate the domain
gap, we employ adversarial training to the Darkening Network in the
first stage and obtain domain distance maps. In the second stage, we
put forward a Reverse Domain-Distance Guided (RDDG) strategy,
which further drives the enhancement network to focus on the
regions that are not consistent with real-world distribution. In the
second stage, we put forward a Reverse Domain-Distance Guided
(RDDG) strategy, which further guides the Enlightening network to
be attentive to the regions that are not consistent with real-world
distribution. We objectively validate the effect of our framework on
real-world LL datasets and conduct comparative experiments with
other methods. Prominent experimental outcomes present that our
framework outperforms other competing network structures.

In our future endeavors, we will explore more contributory
approaches for the LLIE field. In addition, we will introduce LLIE
methods to subsequent computer vision tasks and systems for diverse
applications, such as driving assistant systems and nighttime surveillance.
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