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The oblique propagation of arbitrary ion acoustic solitary waves (IASWs) in
magnetized electron-positron-ion plasmas is investigated by employing
Sagdeev pseudopotential approach. Ions are assumed to be adiabatic having
anisotropic thermal pressure. Electrons and positrons are considered to be
isothermal, following Maxwellian distribution. In terms of electrostatic potential,
Sagdeev potential function is obtained and analyzed numerically in the context of
relevant plasma configuration parameters. The existence region of solitary pulses
is defined accurately. It is investigated how several plasma configuration
parameters, such as the positron concentration, parallel, and perpendicular ion
pressure affect soliton characteristics.
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1 Introduction

To understand the fundamental processes in the Universe, most of the researchers have
taken keen interest in the study of electron-positron-ion (e − p − i) plasma. Such plasmas are
thought to have most probable appearance in the early Universe [1]. Other regions of space
where such plasma is assumed to be found are atmospheres of Sun, neutron stars, active
galactic nuclei and pulsar magnetosphere [2–4]. The existence of ions in astrophysical
plasmas has some interior source, i.e., the processes of accretion, evaporation or seismic
processes on the surface of stars might be a source of ions [5]. Moreover in matter, intense
short laser pulse propagation can generate e − p − i plasma [6]. In laboratory experiments, the
production of such three component plasma is possible when positron were made to probe
particle transport in tokamaks, in which case the two-component electron-ion (e − i) plasma
becomes a three-component e − p − i plasma [7, 8]. Clearly the wave motion behavior should
be totally different in e − p − i plasma compared to the two component electron-positron (e −
p) and e − i plasmas. The existence of ions is necessary for various low-frequency wave
propagation which is other wise not possible in e − p plasma [9].

The ion-acoustic (IA) waves are the low frequency waves which have been investigated in
both linear and non-linear limits in e − i plasma [10–13]. Several researchers have
theoretically studied the linear as well as the non-linear wave phenomena in both
magnetized and unmagnetized e − p − i plasmas [14–18]. The IA solitary waves
(IASWs) were first investigated in unmagnetized e − p − i plasmas by Popel et al. [14]

OPEN ACCESS

EDITED BY

Gangwei Wang,
Hebei University of Economics and
Business, China

REVIEWED BY

Abdul Hamid Kara,
University of the Witwatersrand, South
Africa
Xiangpeng Xin,
Liaocheng University, China

*CORRESPONDENCE

Muhammad Khalid,
mkhalid_khan@yahoo.com

SPECIALTY SECTION

This article was submitted to
Mathematical Physics,
a section of the journal
Frontiers in Physics

RECEIVED 13 January 2023
ACCEPTED 09 February 2023
PUBLISHED 01 March 2023

CITATION

Almas, Ata-ur-Rahman, Khalid M and
Eldin SM (2023), Oblique propagation of
arbitrary amplitude ion acoustic solitary
waves in anisotropic electron positron
ion plasma.
Front. Phys. 11:1144175.
doi: 10.3389/fphy.2023.1144175

COPYRIGHT

© 2023 Almas, Ata-ur-Rahman, Khalid
and Eldin. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 01 March 2023
DOI 10.3389/fphy.2023.1144175

https://www.frontiersin.org/articles/10.3389/fphy.2023.1144175/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1144175/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1144175/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1144175/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1144175&domain=pdf&date_stamp=2023-03-01
mailto:mkhalid_khan@yahoo.com
mailto:mkhalid_khan@yahoo.com
https://doi.org/10.3389/fphy.2023.1144175
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1144175


by considering one dimensional perturbations. The solution of non-
linear equations was obtained in the form of a solitary pulse or
soliton. It was shown that positron concentration reduces the
maximum amplitude of the solitons. The study of IASWs in
magnetized e − p − i plasmas was made by Mushtaq et al. [18].
In their research work, they found that the increase values of
positron concentration leads to an increase in the amplitude of
the solitary structure which is the opposite behavior to the previous
study of these waves in an unmagnetized plasma [14].

Various techniques, such as the reductive perturbation and the
Sagdeev pseudopotential are used to examine non-linear waves in
plasma. Reductive perturbation technique (RPT) is applied to study
small amplitude non-linear waves in unmagnetized/magnetized
plasmas in the form of Korteweg-de Vries (KdV) equation,
modified KdV equation and Zakharov-Kuznetsov (ZK) equation
etc. For the very first time SWs in plasmas were studied by Washimi
and Taniuti [19] through RPT and derived the KdV equation for
IASWs [20]. However with this technique large amplitude
excitations can not be studied. To overcome the limitation of
small amplitude approximations, Sagdeev pseudo-potential
method [21], usually called the mechanical-motion analog,
provides an exact approach to the problem of finding arbitrary
amplitude SWs. This method provides non-linear solutions for a
plasma model which can be considered as candidates for SWs. The
method basically modifies the Poisson’s equation which results into
general energy equation of the form

dϕ/dx( )2 + 2G ϕ( ) � 0

The first term of the energy equation corresponds to kinetic energy,
while the second term corresponds to potential energy. The equation
basically represents a moving classical particle of unit mass in one
dimensional potentialG(ϕ) at time x. This method has been adopted
for studying wave phenomena in various plasma environments like
dusty plasmas, e − p − i plasmas and magnetospheric plasmas
[22, 23].

The presence of an external magnetic field causes the
collisionless plasma to behave in an anisotropic manner. As a
result, according to the Chew-Goldberger-Low (CGL) theory,
pressure differs in directions that are parallel and perpendicular
to the magnetic field [24]. Therefore two equations of states are
necessary to evaluate ion pressure i.e., the parallel ion pressure p‖
and perpendicular ion pressure p⊥ relative to the external
magnetic field. Magnetic compression and expansion
generated by plasma convection in some space regions might
be one of the reason of this anisotropic behavior of plasma [25].
The CGL theory can be applied to such anisotropic plasma in the
case when, the coupling between degree of freedom is ignorable
[26]. While in the isotropic plasma the strong coupling between
the degree of freedom gives rise to a simplified description due to
wave-particle interaction, and hence ionic pressure can be
evaluated using single equation of state [25].

IASWs in magnetized e − i plasma using Sagdeev
pseudopotential method have been investigated by Chatterjee
et al. [27]. They used quasi neutrality condition to discuss the
existence conditions, shape and speed of SWs. The same
approach was used by Sultana et al. [28] to analyze the oblique
propagation of IASWs in a magnetized plasma in the presence of

excess superthermal electrons. Oblique IA excitations in a
magnetoplasma having κ-deformed Kaniadakis distributed
electrons have also been discussed using Sagdeev’s potential
approach [29]. The same technique has also been used by
various researchers to discuss the SWs in e − p − i
magnetoplasma [15, 30, 31].

The role of ion pressure anisotropy on the propagation
characteristics of IA solitary structures in magnetized plasmas can
not be ignored. Choi et al. used the Sagdeev potential approach and
investigated the effect of anisotropy of ions on dust ion acoustic
solitary waves (DIASWs) and double layer structures [32]. Adnan
et al. [33] have examined the influence of pressure anisotropy on
IASWs in superthermal magnetized e − p − i plasma by applying RPT.
It has been shown that the solitary structures are affected by
superthermality of electrons and positrons, pressure anisotropy of
ions as well as the positron concentration. Similarly pressure
anisotropy effect on DIASWs in a nonthermal plasma in Ref. [34]
have also been investigated. The oblique propagation of electrostatic
SWs in non-Maxwellian e − i plasma in the presences of ion pressure
anisotropy with Sagdeev approach are studied in Ref. [35]. Khalid
et al. [36] used Maxwellian electrons to investigate the modulation of
multidimensional waves in anisotropic e − i plasma. Similarly,
Alyousef et al. have also used Sagdeev approach to study the
IASWs in magnetoplasma [37]. In [38] Sagdeev approach is
utilized and IASWs in magnetized e-i plasma in the presences of
pressure anisotropy is discussed. The results have revealed that the
model supports only positive potential non-linear structures.
Furthermore, the effect of relevant plasma parameters on the
characteristics of IA solitary structures is evaluated. However, to
the best of authors knowledge, the non-linear IASWs in the
presence of pressure anisotropy in magnetized e − p − i plasma
has not been explored, so for. We aim to considered anisotropic e −
p − i plasma with Maxwellian electrons and positrons to study these
waves.

The following is a breakdown of how this paper is
structured. The model equations are presented in Section 2.
The linear wave analysis is covered in Section 3. The Sagdeev
pseudopotential technique is used to analyze large-amplitude
electrostatic excitations in Section 4. The soliton existence
domain for propagation of IASWs is discussed in Section 5.
In Section 6, a parametric investigation is carried out to examine
the effect of various relevant parameters on the solitary wave
characteristics. The summary of the present study is given in
Section 7.

2 Basic equations

The goal of the present study is to propose a model for the
propagation of IASWs in a magnetized plasma made up of
Maxwellian electrons (ne) and positrons (np) as well as
adiabatically heated ions (ni). The ions are considered to be
inertial exhibiting pressure anisotropy relative to the external
magnetic field. The external magnetic field is assumed to be
uniform and is taken along x-axis, i.e., B � B0x̂. In the presence
of ion pressure anisotropy, the ion fluid equations are,

ztni + ∇. niui( ) � 0, (1)
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ztui + ui.∇( )ui � −Ze
mi

∇ϕ + Ze

mic
ui × B0x̂( ) − 1

mini
∇.~Pi, (2)

where ui, ϕ, mi, e and Z stand for ion fluid velocity, electrostatic
potential, ion mass, magnitude of electron charge and ionic charge state
(for simplicity Z = 1 is chosen), respectively. Owing to the plasma
anisotropy because of a strong external magnetic field B0, the plasma
behaves differently in the parallel and perpendicular direction (s).
Thereby the pressure tensor ~(Pi) is divided into two components,
i.e., the parallel (p‖i) and perpendicular (p⊥i) pressure components
[24, 25], thus

~Pi � p⊥i Î + p‖i − p⊥i( )x̂ x̂, (3)
where Î represents unit tensor and x̂ shows the unit vector along B0.
The expressions for p‖i and p⊥i are

p‖i � p‖i0
ni
ni0

( )3

and p⊥i � p⊥i0
ni
ni0

( ). (4)

In Eq. 4 p‖i0 = ni0kBTi‖ and p⊥i0 = ni0kBTi⊥ which are, respectively,
the equilibrium values of parallel and perpendicular pressure
functions, where ni0 is the unperturbed ion density. In case of
ion pressure isotropy, we have p‖i = p⊥i and ∇.~Pi � ∇pi.

The electrons and positrons are assumed to follow the
Boltzmann distributions under the electrostatic potential
perturbation, and their number densities are given as

ne � ne0 exp
eϕ

Te
( ), (5)

and

np � np0 exp
−eϕ
Tp

( ). (6)

The system of evolution equations is closed via Poisson’s equation

∇2ϕ � 4πe ne − np − ni( ), (7)

where Te and Tp are, respectively, the electron and positron
temperatures, while ne0 (np0) is the unperturbed electron
(positron) number density. We consider ne0 = ni0 + np0 at
equilibrium i.e., the quasineutrality condition does hold.

2.1 Evolution equations

We have considered two dimensional perturbation in the xy-
plane, by setting zz � 0. Thus, the above system of equations can be
written as follows;

ztni + zx niuix( ) + zy niuiy( ) � 0, (8)
ztuix + uixzx + uiyzy( )uix � − e

mi
zxϕ − 3p‖i0

min3io
nizxni, (9)

ztuiy + uixz + uiyzy( )uiy � − e

mi
zyϕ +Ωiuiz − p⊥i0

min0ni
zyni, (10)

ztuiz + uixzx + uiyzy( )uiz � −Ωiuiy, (11)
z2xϕ + z2yϕ � 4πe ne − np − ni( ). (12)

HereΩi � eB0
mic

is ion gyro-frequency, while uix, uiy, and uiz denote the
fluid velocity components.

2.2 Scaled evolution equations

To normalize the above system of equations, we normalize the
number density variables ns (s = e, i, p) by the unperturbed ion
density ni0, the electrostatic potential ϕ by Teφ/e, the ion fluid
velocity components by the ion acoustic speed (Te/mi)12. The
time and space variables are scaled by the inverse ion plasma
frequency ω−1

pi � (4πni0e2/mi)12 and electron Debye radius
λDe � (Te/4πne0e2)12, respectively. The normalized equations
obtained by applying the mentioned normalization to Eqs 5, 6
and to Eqs 8–12 are:

ztni + zx niuix( ) + zy niuiy( ) � 0, (13)
ztuix + uixzx + uiyzy( )uix � −zxφ − p‖nizxni, (14)

ztuiy + uixzx + uiyzy( )uiy � −zyφ +Ωuiz − p⊥

ni
zyni, (15)

ztuiz + uixzx + uiyzy( )uiz � −Ωuiy, (16)
ne � exp φ( ), (17)

np � exp −σφ( ), (18)
z2xφ + z2yφ � ηne − γnp − ni. (19)

Here p‖ � 3p‖i0
nioTe

and p⊥ � p⊥i0
nioTe

represent the normalized parallel and
perpendicular pressures, respectively, and are normalized by the
thermal pressure in the relevant directions, with Ωi

ωpi
� Ω being the

dimensionless parameter. Furthermore, σ � Te
Tp
, η � ne0

ni0
, and γ � np0

ni0
signify the electron to positron temperature ratio, unperturbed
electron-to-ion density ratio and positron-to-ion density ratio,
respectively. The over all charge neutrality in normalized form is
η − γ = 1.

3 Linear wave analysis

To derive the dispersion relation (DR), we employ Poisson’s Eq.
19 instead of plasma approximation, although plasma
approximation will be used in Section 5 for non-linear analysis.
The DR while using Eqs 13–19 is obtained as

ω4 − k2

k2 + η + γσ( ) + k2xp‖ + k2yp⊥ +Ω2( )
ω2 + p‖ + 1

k2 + η + γσ( )( )Ω2k2x � 0, (20)

where kx = k cos θ and ky = k sin θ are the wave numbers in the
parallel and perpendicular directions to the magnetic field, re
spectively, and k2x + k2y � k2. It can be noticed from Eq. 20 that
DR depends on the ion pressure anisotropy. Also, the magnetic field
dependence is visible through the frequency ratio Ω. By solving Eq.
20, we get

ω2
± � 1

2
k2

k2 + η + γσ( ) + k2xp‖ + k2yp⊥ +Ω2( )[
±

























































k2

k2 + η + γσ( ) + k2xp‖ + k2yp⊥ +Ω2( )2

− 4 p‖ + 1

k2 + η + γσ( )( )Ω2k2x

√ ⎤⎥⎦.
(21)

Equation 21 gives two modes i.e., ω− and ω+, representing slow
and fast electrostatic modes, respectively. An acoustic mode is
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obtained by setting, ky → 0 and kx = k and considering k≪ 1. Thus,
the phase speed parallel to the magnetic field is calculated as

ω−
k

� cos θ













1

η + γσ( ) + p‖

√
. (22)

This is called phase speed of acoustic mode which is independent of the
magnetic field Ω and perpendicular pressure p⊥. By inserting γ = 0
(i.e., in the absence of positron) and taking p‖ = 0, Eq. 22 reduces to the
result of Ref. [29]. In Figure 1 Eq. 22 has been plotted for various values
of obliqueness of the propagation direction, manifested via α (= cos θ).
Increasing obliqueness (lowering α) results in a decrease in wave
frequency and, consequently, in the phase speed of themagnetized IAW.

4 Arbitrary amplitude solitary wave
analysis

We are now interested to investigate the existence of large
amplitude solitary waves in Maxwellian plasmas with the
inclusion of ion pressure anisotropy. The fluid variables in the
evolution equations are considered to be transformed into a
single variable via the transformation

ξ � αx + βy −Mt, (23)
to a moving frame (here M is the Mach number indicating the
normalized pulse propagation velocity) where the solitary pulses are
stationary. The parameters α � kx

k � cos θ and β � ky
k � sin θ,

respectively, imply the direction cosines along x − axis and y-axis
subject to the condition that α2 + β2 = 1. By utilizing Eq. 23 in Eqs
13–18 we obtain a set of dimensionless non-linear differential
equations in the co-moving co-ordinate (ξ). The transformed
equations can be expressed as,

−Mdξni + αdξ niuix( ) + βdξ niuiy( ) � 0, (24)
−M + αuix + βuiy( )dξuix + αdξφ + αp‖nidξni � 0, (25)

−M + αuix + βuiy( )dξuiy + βdξφ −Ωuiz + βp⊥
1
ni
dξni � 0, (26)

−M + αuix + βuiy( )dξuiz + Ωuiy � 0. (27)

By integrating Eqs 24–27 and implementing the appropriate
boundary conditions, i.e., ni → η − γ = 1, uix,iy → 0 and φ → 0
at ξ → ±∞, we obtain

αuix + βuiy � M ni − 1( )
ni

, (28)

uix � α

M
− η + γ

σ
( ) + ∫nidφ + 1

3
p‖ n3i − 1( ){ }, (29)

uiy � M

β

ni − 1( )
ni

− α2

Mβ
− η + γ

σ
( ) + ∫nidφ + 1

3
p‖ n3i − 1( ){ }. (30)

The combination of Eq. 28 with Eqs 26, 27 results in

−M
ni
dξuiy + βdξφ − Ωuiz + βp⊥

1
ni
dξni � 0, (31)

−M
ni
dξuiz + Ωuiy � 0. (32)

Substituting the value of uiy from Eq. 30 into Eq. 32 one obtains

dξuiz � niΩ
β

1 − 1
ni

( )
− α2Ω
M2β

−ni η + γ

σ
( ) + ni∫nidφ + 1

3
p‖ni n3i − 1( ){ }, (33)

Differentiating Eq. 31 with respect to ξ and using Eqs 30 and 33
and after simplification, we have

dξ dξ
M2

2
n−2i + α2p‖

2
n2i +β2p⊥ log ni[ ]+φ( )[ ]

�Ω2 ni 1+ α2

M2 η+ γ

σ
( )( )[ −1− α2

M2ni∫nidφ− α2

3M2p‖ni n3i −1( )]
(34)

Multiplying Eq. 34 by dξ(M2

2 n
−2
i + α2p‖

2 n2i + β2p⊥ log[ni] + φ) and
integrating once under the boundary conditions φ→ 0 and dξφ→ 0
at ξ → ±∞, we obtain the energy integral equation for the
electrostatic potential φ, in the form

1
2

dξφ( )2 + ψ φ( ) � 0, (35)

where ψ(φ) is the Sagdeev pseudopotential, which is written as

ψ φ( ) � Ω2 φ − 1 + α2

M2 η + γ

σ
( ) + α2p‖

3M2{ }δ1 φ( )[
+ α2

2M2δ2 φ( ) − α4p‖
3M2 −

α2p‖
3M2{ }δ3 φ( )

− M2 + α2 η + γ

σ
( ) + α2p‖

3
{ }δ4 φ( ) + M2

2
δ5 φ( ) − α2φ + α2δ6 φ( )

+α
2p‖
3

δ7 φ( ) − α2p‖
3

+ α4p‖
3M2 η + γ

σ
( ) + α4p2

‖
9M2{ }δ8 φ( ) + α4p‖

3M2δ9 φ( )
+ α4p2

‖
18M2δ10 φ( ) − β2p⊥ + α2β2p⊥

M2 η + γ

σ
( ) + α2β2p⊥p‖

3M2{ }δ11 φ( )
+β2p⊥δ12 φ( ) + α2β2p⊥

M2 δ13 φ( ) − α2β2p⊥

M2 δ14 φ( )+α2β2p⊥p‖
12M2 δ15 φ( )]

× 1 −M2δ16 φ( )[ + α2p‖δ17 φ( )+β2p⊥δ18 φ( )]−2.
(36)

FIGURE 1
Plot of ω vs. k defined in Eq. 22 for different values of α i.e., α =
0.70 (solid curve), 0.80 (dashed curve) and 0.90 (dot-dashed curve)
with p‖ = 0.2, γ = 0.2 and σ = 0.1.
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Equation 35 is a well known pseudoenergy conservation
equation of an oscillating particle of unit mass, with velocity dξφ
and position φ in a potential well ψ(φ). In Eq. 36 the potential
functions δ1(φ), δ2(φ) · · · δ18(φ) are given in the Appendix.

5 Soliton existence conditions

Solitary wave solutions are allowed by Eq. 35, if the following
constraints are fulfilled [21]:

1. ψ|φ�0 � dφψ|φ�0 � dφψ|φ�φm � 0,
2. ψ(φ) < 0 at 0 < φ < φm,
3. d2φψ|φ�0 < 0

where φm represents the maximum amplitude of SWs. The origin
at φ = 0 defines the equilibrium state, which should represent a local
maximum of the Sagdeev pseudopotential ψ(φ). From Eq. 36, it is
clear that both ψ|φ=0 = 0 and dφψ|φ=0 = 0 holds at equilibrium. We
have to investigate d2φψ|φ�0 < 0, from which one can specify a range of
velocity values in which SWs may occur. Using the procedure
explained in Refs. [28, 39], the third condition takes the form

d2
φψ|φ�0 � Ω2 M2 −M2

1

M2 M2 −M2
2( )< 0, (37)

with

M1 �| α |











1
η + γσ

+ p‖

√
≤ 1, (38)

and

M2 �
























1
η + γσ

+ α2p‖ + 1 − α2( )p⊥

√
, (39)

where M1 and M2 are the lower (threshold Mc) and the upper
(maximumMmax) limits of the Mach number. It is clear from Eq. 38
that the lower Mach number does not depends on p⊥, while upper
Mach number does depend on both p‖ and p⊥. While keeping α = 1,
both the equations reduce to the true acoustic phase speed of IAWs
given in Eq. 22. Eq. 37 is satisfied for Mach number values in the
range

M1 <M<M2, (40)
i.e.,

α< M

M2
< 1. (41)

In other words, the inequality in Eq. 37 is valid if α = cos θ ≤ 1.
Because we employed the neutrality hypothesis rather than Poisson’s
equation, our results are valid in the long wavelength limit. To
examine the polarity of the non-linear structures, we have to check
third derivative of Sagdeev potential ψ(φ) at φ = 0 and M = Mc. If
d3φψ > 0, then only positive structures (solitons or shocks) can exist
otherwise, the plasma system can then support negative structures as
well. It is found that,

d3
φψ | φ�0,M�Mc

� Ω2 2( + γ 1 + σ( ) 5 + σ + 3γ 1 + σ( )( ) + 4 η + γσ( )3p‖
1 − α2( ) 1 + η + γσ( )p‖( ) 1 + η + γσ( )p⊥( ) ,

(42)

which indicates that the current model can only support
compressive (positive potential) solitary pulses. By keeping γ = 0
and neglecting p‖ and p⊥ we can retrieve the result of Ref. [29].

In order to emphasize the soliton existence region, we have
plottedM1 andM2 in Figure 2 for different values of p‖ = 0.20 (solid
curve), 0.30 (dashed curve) and 0.40 (dot-dashed curve).
Considering, p⊥ = 0.1, α = 0.8 and σ = 0.1, it can be seen that M
decreases with the increasing values of γ while both limits of Mach
numbers increase with increasing values of p‖.

6 Parametric study

The Sagdeev potential ψ(φ) depends on a number of
important physical parameters in addition to the electric
potential φ, including the excitation speed M, positron
concentration γ, electron to positron temperature ratio σ, the
obliqueness of propagation (via α = cos θ), parallel ion pressure p‖
and perpendicular ion pressure p⊥. In this study, we specifically
focus to assess the effect of γ, p‖ and p⊥. Therefore, the effect of
these three parameters is studied on propagation characteristics
of solitary structures.

In Figure 3, the variation of Sagdeev potential ψ(φ), the
resulting electrostatic potential φ and the associated electric
field profile E have been shown for various values of positron
concentration γ, while considering other fixed values M = 0.9, σ =
0.1, Ω = 0.3, α = 0.8, p‖ = 0.2 and p⊥ = 0.1. We note that as γ

increases, the depth and root of the Sagdeev potential increases. It
is clear from Figure 3B that, the amplitude of the solitary pulse
increases while its width decreases with higher value of γ.
Therefore, solitary structure gets taller and narrower with the
increase of positron concentration in a magnetized anisotropic
e − p − i plasma. The same effect has been shown in Ref. [30] while
studying these waves in unmagnetized isotropic plasma. It is
clearly seen that in the absence of positron concentration γ = 0,
the amplitude of solitary structure reduced as shown in Figure 3 by
solid orange curve.

FIGURE 2
Variation of Mach number M vs. positron concentration γ for
different values of p‖= 0.20 (solid curve), 0.30 (dashed curve) and 0.40
(dot-dashed curve) with α = 0.80, p⊥ = 0.1 and σ = 0.1.
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To study the effect of pressure anisotropy on the solitary waves,
we have shown the variation of Sagdeev potential ψ(φ) along with
the corresponding electrostatic potential and electric field profiles
with p‖ = 0.20 (solid curve), 0.25 (dashed curve) and 0.30 (dot-
dashed curve) while considering M = 0.9, γ = 0.2, Ω = 0.3, α = 0.8,
σ = 0.1, and p⊥ = 0.1in Figure 4. It has been noted that the ion
parallel pressure p‖ variation is quite effective (i.e., a minor change
in p‖ causes a significant changes in the Sagdeev potential).
Thereby increasing values of p‖ result in the decrease of depth
and root of Sagdeev potential as well as in the amplitude of

associated soliton pulses. The changing values of perpendicular
ion pressure p⊥ have no discernible influence on the amplitude of
the solitary waves as shown in Figure 5. In Figure 6 we have
considered three different cases, mainly p‖ = p⊥ = 0, p‖ > p⊥ and
p⊥ > p‖ with fixed values of M = 0.85, γ = 0.1, Ω = 0.3, α = 0.8, σ =
0.1. For p‖ > p⊥ the amplitude of solitary pulse decreases while in
case of p⊥ > p‖ the amplitude of solitary pulses is not significantly
effected as compared to p‖. In the absence of pressure anisotropy
p‖ = p⊥ = 0, the amplitude of soliton increases as shown in Figure 6
by orange solid curve. We can infer from this Figure 6 that, in

FIGURE 3
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different values of γ = 0.00 (solid curve),
0.05 (dashed curve) and 0.10 (dot-dashed curve) withM=0.9,Ω=0.3,
p‖ = 0.2, p⊥ = 0.1, α = 0.80, and σ = 0.1.

FIGURE 4
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different values of p‖ = 0.20 (solid curve),
0.25 (dashed curve) and 0.30 (dot-dashed curve) withM=0.9,Ω=0.3,
γ = 0.2, p⊥ = 0.1, α = 0.80, and σ = 0.1.
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comparison to p⊥, the characteristics of IASWs are more sensitive
to variations in p‖ as compared to p⊥. Similar results have been
demonstrated in Ref. [35].

7 Conclusion

We have presented a study of the properties of arbitrary
amplitude non-linear IASWs, propagating in a magnetized plasma
characterized by anisotropic ions and Maxwellian distributed

electrons and positrons. The linear analysis gives two modes, the
IA and the ion-cyclotronmodes, whose characteristics depends on the
Maxwellian electron and positron and on the pressure anisotropy of
the ions. We have shown that the frequency of the acoustic mode
decreases with increasing obliqueness of propagation. In the non-
linear regime, Sagdeev approach is used for the investigation of the
properties of arbitrary amplitude IASWs. A parametric analysis was
carried out for studying the characteristics of these waves, which can
be summarize as follows.

FIGURE 5
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different values of p⊥= 0.1 (solid curve), 0.5
(dashed curve) and 0.9 (dot-dashed curve) with M = 0.9, Ω = 0.3, γ =
0.2, p‖ = 0.2, α = 0.80, and σ = 0.1.

FIGURE 6
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different pressure anisotropy cases p‖ =
p⊥ = 0 (solid curve), p‖ > p⊥ (dashed curve) and p⊥ > p‖ (dot-dashed
curve) with M = 0.85, Ω = 0.3, γ = 0.2, α = 0.80, and σ = 0.1.
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• The amplitude of solitary pulses increases with rising values of
positron concentration γ.

• The amplitude of solitary pulses reduced with higher values of
parallel ion pressure p‖.

• Finally, we found that the characteristics of IASWs are more
sensitive to the parallel ion pressure p‖ than perpendicular ion
pressure p⊥.

These results are general and might be applied to astrophysical
plasma environments like the polar cups region of pulsars and near
active galactic nuclei, where magnetized e − p − i plasma and ions
with aniotropic pressure can exist.
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Appendix: Potential functions used in
Eq. 36 are given as

δ1 φ( ) � ηeφ + γ

σ
e−σφ − η + γ

σ
( )

δ2 φ( ) � ηeφ + γ

σ
e−σφ( )2

− η + γ

σ
( )2

δ3 φ( ) � η4

4
e4φ − 4η3γ

3 − σ
e 3−σ( )φ + 6η2γ2

2 − 2σ
e 2−2σ( )φ−

4ηγ3

1 − 3σ
e 1−3σ( )φ − γ4

4σ
e−4σφ
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− 4η3γ
3 − σ
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2 − 2σ
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− γ4

4σ
( )

δ4 φ( ) � ηeφ − γe−σφ( )−1 − η − γ( )−1
δ5 φ( ) � ηeφ − γe−σφ( )−2 − η − γ( )−2
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e−σφ( ) ηeϕ − γe−σφ( )−1 − η + γ

σ
( ) η − γ( )−1
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