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Valley photonic crystals (PCs) play a crucial role in controlling light flow and
realizing robust nanophotonic devices. In this study, rotated gradient valley PCs
are proposed to realize topological rainbow trapping. A topological rainbow is
observed despite the presence of pillars of different shapes, which indicates the
remarkable universality of the design. Then, the loss is introduced to explore the
topological rainbow trapping of the non-Hermitian valley PC. For the step-angle
structure, the same or different losses can be applied, which does not affect the
formed topological rainbow trapping. For a single-angle structure, the applied
progressive loss can also achieve rainbow trapping. The rainbow is robust and
topologically protected in both Hermitian and non-Hermitian cases, which is
confirmed by the introduction of perturbations and defects. The proposed
method in the current study presents an intriguing step for light control and
potential applications in optical buffering and frequency routing.
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1 Introduction

In recent years, topological photonic crystals (PCs) have attracted much attention due to
their practicability in robust waveguides [1–3], robust delay lines [4], high-Q cavities [5], and
high-performance lasers [6]. A valley, the energy extreme of a band structure, has been
widely studied in two-dimensional electric materials [7, 8] and it is introduced into the sonic
[9–13] and photonic [14–26] realms. The Dirac points of topological valley PCs will open
when the inversion symmetry is broken, and there are deterministic edge states within the
non-trivial band gap. For valley PCs with a triangular or honeycomb lattice, bulk bands show
valley characteristics around K and K′ points (the two non-equivalent Brillouin-zone
corners). Due to the time-reversal symmetry, the Berry curvature satisfies F(k) = -F(-k),
and the Chern number is zero [1]. However, the difference between the two valleys’ Chern
numbers, defined as ΔC � CK − CK′, is quantized [27]. The PCs with opposite non-zero ΔC
can be formed into supercells to generate topological edge states.

Rainbow trapping, which means different frequency components of a guided wave
stop at different spatial positions, has been realized in traditional systems [28, 29].
Various schemes are proposed to realize topological rainbows, such as the gradient of the
structural parameters in a photonic system [30], gradient rotation angle in an acoustic
system [13], and height gradient in an elastic wave system [31]. The combination of
topology with a rainbow [13, 30–38] has increased the possibility of designing
topologically protected devices, such as buffering, routing, and wave-matter
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interaction enhancement devices. The topological photonic
rainbow provides a full dais to realize the success of potential
applications akin to integrated photonic devices and high-speed
information processing chips [39].

Non-Hermitian systems have been actively studied recently
[40–45]. Loss or gain has been used to investigate non-Hermitian
systems is an all-purpose technique in photonics. In real cases,
generality of materials suffers from loss, which is a challenge in
practical applications. It is worth studying to explore the effect of
loss on the devices.

Structures based on rotated gradient valley PCs in the square
lattice are designed in this study to realize the topological rainbow
trapping. Different rotated angles correspond to different
topological edge modes, which ensures the realization of
topological rainbow trapping. The effect of introducing losses
on topological rainbows is discussed in this study. For a
structure with gradient angles, the same or different loss can be
applied to every pillar in a cell. The topological protection against
loss is demonstrated. For structures with only one rotation angle,
the loss gradient can achieve topological rainbow trapping. These
results show that the topological rainbow trapping can also be
realized in non-Hermitian systems. Moreover, the rainbow
trapping pattern in the Hermitian and non-Hermitian systems
is not significantly affected by the introduction of defects or
disorders, which further indicates the robustness of the
topological protection.

2 Topological rainbow trapping

2.1 The valley PC

The two-dimensional (2D) valley PCs with square lattices used
are shown in Figure 1A. Eight circular dielectric pillars of silicon
with n = 3.48 are embedded in an air background (n � 1), which is
taken as a unit cell to compose the square lattice. n is the refractive
index. In Figure 1A, the lattice constant a is 420 nm. The diameter d
of pillars is 40 nm. The length of the side of a square formed by
pillars is labeled by b, which is 200 nm. The band structure diagram
with a transverse magnetic (TM) mode is shown in Figure 1B. The
Brillouin zone (BZ) is shown in the inset. The high symmetry line is
Γ-X-M-Γ. The purple lines show the fourth and fifth bands of the
unit cell in Figure 1A. Two Dirac points are localized at D1 and D2,
labeled by red points. When the inversion symmetry of the unit cell
is broken by pillars rotating around the cell center by θ, the Dirac
points split, and a non-trivial gap is generated. The clockwise
rotation (anticlockwise rotation) is defined as θ > 0° (θ < 0°).
When θ = ±15°, the band diagram is shown as blue lines in
Figure 1B, and the cyan region indicates the band gap. The pillar
shape in the cell can be random, like all right triangles or rectangles.
In addition, it is also possible to have pillars with different shapes in
one cell. If the area of the pillars, the constant a, and b remain the
same, their band structure diagram remains unchanged compared
with Figure 1B.

FIGURE 1
(A) Unit cell schematic representation with θ = 15°. Purple represents silicon, and cyan represents air. (B) Band structure diagram. The dark lines are
the bands common to cells with θ= 0° and ±15°. When θ= 0°, the purple lines show the fourth and fifth bands, and degenerate points aremarked with red.
When θ=±15°, the blue lines show the fourth and fifth bands, and the cyan region is the corresponding band gap. The first BZwith high symmetry points is
shown in the inset. (C) Berry curvature distribution on BZ of the fourth band when θ = 15° and θ = −15°. (D) Supercell schematic representation. θ
above and below the orange dashed line is 10° and −10°, respectively. (E) Three pictures are the projected band structure of supercells with |θ| = 10°, 20°,
and 30°. The blue region represents the bulk band, and the red dotted line represents the edge states. The gray dotted line denotes the frequency of
0.840c/a.
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After degeneracy points split D2 and D2
′ two highly symmetric

positions in the momentum space, came the valley. The two valleys
have the same band morphology but different topological
characteristics. The topological invariant, the valley Chern
number, is calculated. The Berry curvature is defined as follows:

F12 k( ) � z1A2 k( ) − z2A1 k( ). (1)
It is integrated to give the valley Chern number CV. Aμ(k) is the
Berry connection defined as follows:

Aμ k( ) � 〈n k( ) zμ
∣∣∣∣ ∣∣∣∣n k( )〉, (2)

where | n(k)〉 represents the nth normalized eigenstates using the
Bloch wave vector k. Berry curvature distributions on the BZ of the
fourth band of unit cells with θ = ±15° are calculated numerically
here. The finite element method (FEM) is used to calculate
normalized eigenstates, in this case, the electric field. The BZ is
discretized to many cells, and the Berry curvature is calculated on
each cell. The numerical calculation process can be shown as follows:

Uμ kl( ) � 〈n kl( )∣∣∣∣n kl + δkμ( )〉
〈n kl( )∣∣∣∣n kl + δkμ( )〉∣∣∣∣∣ ∣∣∣∣∣ (3)

F12 kl( )δk1δk2 � ln
U1 kl( )U2 kl + δk1( )
U1 kl + δk2( )U2 kl( )( ) (4)

Based on these formulas, the Berry curvature at many kl points is
calculated, resulting in Figure 1C. As shown in this diagram, the
extreme value locations of the Berry curvature are near the band
valleys at D2 and D2

′. The opposite rotated directions correspond to
the opposite Berry curvature distributions. For the unit cell with θ = 15°,
the valley Chern number of D2 (CD2) is equal to 1, and CD2

′ is equal
to −1. On the contrary, the values of the unit cell with θ = −15° are the
opposite. ΔC � CD2 − CD2

′ is defined in this square lattice. Therefore,

ΔC of the unit cell with θ = 15° is 2, and the unit cell with θ = −15° is −2,
which exhibits these two cells’ different topological characteristics.

2.2 Rainbow trapping in the valley PC

Topological edge states can be formed between structures with
different topological invariants. The supercell is constructed as
shown in Figure 1D, of which the orange dashed line has 10 cells
on each side. Unit cells above and below the orange dashed line
rotate in opposite directions. When |θ| are 10°, 20°, and 30°, the
projected band structures of supercells are exhibited in Figure 1E.
There are two edge state lines in each relationship diagram, marked
in red. The upper edge dispersion states are studied in this paper.
When the angles increase, the dispersion curves of edge modes move
to a higher frequency region. Therefore, the forbidden frequency of
each edge mode can be trapped in the graded structure by stacking
the supercells by continually increasing the angle in the propagation
direction. For example, the light with a frequency of 0.840c/a is in
the bulk state for rotating 10°, at the edge mode for rotating 20°, and
at the band gap for rotating 30°. The change of the dispersion
relationship as the angle increases makes it possible to realize the
topological rainbow. In Figure 2A, the group velocity of the upper
edge state is calculated as a function of frequency. The zero-group
velocity points are at the conversion of positive and negative group
velocities, labeled by dark dashed circles. As the angle increases, the
frequency, where the group velocity is zero, increases. Although
there are also zero-group velocity positions at frequencies between
0.845c/a and 0.860c/a, the corresponding edge states extend to the
bulk, making themmeaningless. The edge states in the gap and zero-
group velocity are the keys to realizing the topological rainbow.

A gradient structure design is conceived to achieve rainbow
trapping, as shown in Figure 2B. From right to left, |θ| are increased

FIGURE 2
(A) Group velocity of upper edge states of supercells with different rotated angles. The red dashed line is where the group velocity is zero. Black
dashed circles indicate the zero-group velocity positions. (B) Configuration used to implement the topological rainbow. The rotated angle of the
supercell increases the degree one by one from the right to the left. Light is incident from the right through a waveguide. (C) |E|2 field distribution of
different frequencies. (D) Unit cells with other shaped pillars are used to realize a topological rainbow. The corresponding |E|2 distribution along the
red dashed line of (B) is shown on the left side of the cells. The yellow lines at different positions represent different frequencies. i represents a frequency
of 0.801c/a, and ii represents 0.811c/a. i’ is 0.712c/a, and ii’ is 0.722c/a. The blue and gray parts show the regions of existence and non-existence of the
edge states.
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from 0° to 30°. The red dashed line denotes the middle line of this
structure. Every pillar above and below the red dashed line has the same
rotation angles but in opposite directions. When light is incident from
right through a waveguide, waves with different frequencies are
localized at different positions, as shown in Figure 2C. In the second
diagram, the energy with a frequency of 0.840c/a, diffused at the
position with 10° (the white wireframe), is localized at the position
around 20° (the orange wireframe) and is forbidden by the position with
30° (the yellow wireframe). This phenomenon is consistent with the
dispersion relationships and the group velocity diagram. We also
calculate the energy distribution for other pillar-shaped structures.
We give the |E|2 distributions on the middle line of the gradient
structure for two-unit cells, as shown in Figure 2D. The results are
shown on the right of the corresponding unit cell. The blue and gray
parts exhibit the regions of existence and non-existence of the edge
modes. Photonic states with different frequencies are localized at
different positions. Because of the different pillar areas of these unit
cells, the frequency range of the rainbow is different. According to the
results, the internal pillar shape does not affect the rainbow-trapping
realization, which shows our design’s university.

2.3 Rainbow trapping in the non-Hermitian
valley PC

For the non-Hermitian case, we introduce loss in the valley PC
to explore the topological rainbow trapping, so the material’s

refractive index has an imaginary part. The pillars’ refractive
index is set to n � 3.48 + i × nl (nl > 0). nl stands for the loss of
the material. The eigenfrequency solver is used for this calculation
by using the FEM.

As shown in Figure 3A, for the structure with |θ| increasing from
0° to 30°, a certain loss is applied to each pillar. There are two cases
considered. In the first case, the same loss nl � 0.5 is applied to each
pillar in a unit cell. In the second case, different losses
(nl � 0.2 ~ 0.9) are applied on each pillar. Pillars with different
losses are denoted with different colors. The |E|2 distribution profiles
are shown below the unit cells correspondingly. The introduction of
the same or different losses in a unit cell does not destroy the
realization of the topological rainbow, which shows a good
application prospect.

The loss can affect the frequencies of the edge modes, which
can also lead to the rainbow trapping. As shown in Figure 3B, |θ|
is fixed, which equals 15°. Loss applied on each pillar in one cell is
the same. For the whole structure, nl gradually increases from 0 to
0.3 from the right to the left. The |E|2 distribution profiles are
shown below the unit cell. We can see that different frequencies
of light are localized at different locations. The topological
rainbow based on losses is realized. Most materials in the real
world have intrinsic losses. The topological protection against
loss is demonstrated, which means the topological rainbow
trapping can also be realized in non-Hermitian systems. This
property helps the structure to be more easily used in practical
applications.

FIGURE 3
(A) Angle of the structure is gradually increasing (|θ|= 0°~30°). A certain loss is applied on each pillar of a cell. Two cases are calculated. The same loss
(nl = 0.5) and different losses (nl = 0.2~0.9) are applied to each pillar in a cell separately. The |E|2 distribution profiles are shown below the unit cells,
correspondingly. (B) Angle of the structure is certain (|θ| = 15°). The gradient loss (nl = 0~0.3) applied on the structure is used to achieve topological
rainbow trapping. The |E|2 distribution profiles are shown below the unit cells.
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2.4 Verification of robustness

In order to further investigate the robustness of the topological
rainbow, defects and disorders are introduced into this
configuration, whose position is chosen randomly. The detailed
defects and disorders are framed in the boxes of Figure 4. The black
dashed graphics are the original appearance of the pillars. For the
valley PC, three cases are given. The pillar’s shapes and disturbances
differ between the three cases. In Figure 4A, the pillars’ shape is a
circle, and several are missing. In Figure 4B, the pillars come in three
shapes, and two are dislocated from the original centers. The
parameters of the displacement are a*(± 1

42,±
1
42), respectively. In

Figure 4C, all the shapes of the pillars are equilateral triangles, and
two pillars’ area is enlarged to 6/5 of their original size. The |E|2 field
distributions are shown below the corresponding structures,
showing that these disturbances do not destroy the rainbow
trapping.

For the non-Hermitian valley PC, defects and disorders are
introduced into each of the three constructs mentioned in Section
2.3, as shown in Figures 4D–F. Defects and disorders are framed
in red and ginger on the structure separately. Defects are realized
by two pillars missing from each of the two cells. The
corresponding |E|2 field distributions are shown below the red
boxes. The pillars are moved a*(± 1

42,±
1
42) from their original

position to introduce disorders. The field distributions are shown
below the detailed disorders, and the rainbow trapping is yet to be
realized.

Defects and disorders are placed in the middle of the structure,
i.e., in the unit cells near the light transmission path, but these do

not prevent light trapping. To sum up, the results shown in
Figure 4 demonstrate the design’s robustness and topological
protection. The ability of anti-interference both in Hermitian
and non-Hermitian systems makes our design a good
application prospect.

3 Conclusion

In conclusion, topological rainbow trapping based on gradient
valley PC is proposed in this study. Lights with different
frequencies are spread, separated, and finally trapped at
different positions from the gradient structure. For Hermitian
valley PC, topological rainbow trapping can be realized for the
arbitrary pillars’ shape, which provides flexibility in practical
applications. For non-Hermitian valley PC, the same or
different loss applied in a unit cell does not influence the
rainbow trapping. Moreover, for a loss gradient structure,
rainbow trapping can be realized. For Hermitian and non-
Hermitian systems, the robustness of the formed topological
rainbow trapping is further demonstrated by introducing
defects and disorders.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

FIGURE 4
Defects and disorders are introduced in the structures, as shown in the dotted boxes. The black dashed graphics are the original appearance of
pillars. (A–C) are the three cases of the Hermitian system. The pillar’s shapes and disturbances are both different between them. (D–F) are the non-
Hermitian cases, which are the results of introducing defects and disorders into the structure mentioned in Section 2.3. Defects are framed in red, and
disorders are framed in ginger. The corresponding |E|2 field distribution diagrams are shown below the detailed structures.
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