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The multi-layer network topology structures directly affect the robustness of
network consensus. The different positions of edges between layers will lead to a
great difference in the consensus of double-layer chain networks. Finding the
optimal positions of edges for consensus can help to design the network topology
structures with optimal robustness. In this paper, we first derive the coherence of
double-layer chain networks with one and two connected edges between layers
by graph theory. Secondly, the optimal and worst connection edges positions of
the two types of networks are simulated. When there is one edge between layers,
the optimal edge connection position is found at 1/2 of each chain, and the worst
edge connection position is found at the end node of the chain. When there are
two edges between layers, the optimal edges connection positions are located at
1/5 and 4/5 of each chain respectively, and the worst edges connection positions
are located at the end node of the chain and its neighbor node. Furthermore, we
find that the optimal edge connection positions are closely related to the number
of single-layer network nodes, and obtain their specific rules.
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1 Introduction

In recent years, the research on complex networks has attracted extensive attention from
interdisciplinary scholars, such as physics, chemistry, ecology and information science [1, 2].
The study of complex networks has not only profound theoretical significance but also has a
wide range of practical applications.With the deepening of research, scholars have made new
progress in synchronization and propagation of complex networks [3, 4], consensus and
robustness [5–11], fractal networks [12, 13], cascading failures [14].

The traditional single-layer networks do not consider the interaction between networks,
which greatly reduces the applicability of single-layer network models. Therefore, the study
of multi-layer networks is one of the current research focuses [15–18], which breaks the
limitation of homogeneity of nodes and connected edges in single-layer networks, and
considers multiple types of nodes and their connected edge relationships. He studied the
additive coupling and Markov switching coupling to capture the synchronization of layered
connected multi-layer networks, and verified the effectiveness of the conclusions through
examples [16]. Li analyzed the synchronizability of the double-layer dumbbell networks
under different inter-layer coupling modes, and compared the synchronizability under three
inter-layer connection modes [17].

The topological structures of multi-layer networks are closely related to the robustness of
network consensus. The connection modes between nodes will affect the consensus of the
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network. The study of the influence of network topology structures
on consensus will help to better understand the robustness of
network consensus, and then design the network structures with
the optimal anti-interference ability. The consensus of the network
means that each node has a single state subject to noise. It is
measured by network coherence and Laplacian characteristic
spectrum [19]. Zhang analyzed the consensus of networks with
special structures under the influence of white noise, and obtained
an analytical expression for network coherence in the Sierpinski
gaskets [20]. Gao used the relationships between Laplacian
polynomial and determinant to obtain the coherence of weighted
corona networks [21]. Huang obtained the Laplacian spectrum of
several kinds of double-layer networks by graph operation, and
compared the advantages and disadvantages of the first-order
coherence of several kinds of networks [22].

The chain network is a classic network structure, which is widely
used in network monitoring [23], system control [24], etc. The
research usually abstracts the physically composed networks into
double-layer chain networks, and selects the appropriate nodes for
interference to get the optimal control with the same cost. Wu
analyzed the synchronizability of double-layer chain networks with
two connected edges between layers, and found the optimal
positions of the two connected edges [25]. Deng studied the
synchronizability of two different types of multi-layer chain
networks using the master stability function method, and
obtained the main factors affecting the synchronizability of the
two types of networks [26]. At present, the research on multi-layer
chain networks mainly focuses on synchronization, and there is less
research on consensus. This paper firstly obtains the coherence of
double-layer chain networks with one and two connected edges
between layers. Furthermore, through conjecture, calculation,
simulation and analysis of the consensus of two types of
networks, the optimal and the worst inter-layer edges connection
modes are obtained. We summarize the novelty and main
contributions as follows.

1. This paper presents double-layer chain network model with
partial inter-layer connection, which is different from the
inter-layer fully connected network in that it will save more
costs and have more practicability.

2. Since the Laplacian spectrum of partially connected double-layer
chain network is difficult to solve, we apply the new method to
obtain the analytic formula of the coherence of the double-layer
chain networks.

3. We obtained the optimal and worst connected edge positions of
the double-layer chain networks based on the analytic formula of
the coherence, and the results are very regular and verified by
experiments.

In Section 2, the preliminaries required in this paper are
given. Section 3 deduces the first-order coherence of the double-
layer chain networks, and gives some conjectures about the
networks coherence. Section 4 shows the numerical
simulation experiment and analysis.

2 Preliminaries

2.1 The definition of first-order network
coherence

The network dynamics model with v nodes is described as
follows [12]:

_x t( ) � −Lx t( ) + φ t( ), (1)
where L is the Laplacian matrix of the network, φ(t) ∈ Rv represents
the interference of Gaussian white noise at time t. The network
coherence is defined as robustness to noise:

H 1( ) � 1
v
∑v
i�1

lim
t→∞

var xi t( ) − 1
v
∑v
j�1

xj t( )⎧⎨⎩ ⎫⎬⎭. (2)

The output of system (1) is written as follows:

y � Sx, (3)
where S is the projection operator, S � I − 1

v 11
T , 1 is the v-vector of

all ones.
By Formula 1, Formula 2, Formula 3,

H 1( ) � 1
v
tr ∫∞

0
e−L

TtSe−Ltdt( ). (4)

According to the literature [12], the first-order coherence is
measured by H(1),

H 1( ) � 1
2v

∑v
κ�2

1
λκ
. (5)

2.2 The double-layer chain networks

A double-layer chain network is composed of two chains with n
nodes. In this paper, the double-layer chain network Gs is shown in
Figure 1 a, where one edge is connected between layers of the
network model. We assume that the ith (1 ≤ i ≤ n) node pair has a
connected edge. The double-layer chain model Gd is shown in
Figure 1 b, where two edges are connected between layers of the
network model. We assume that the ith and jth (1 ≤ i < j ≤ n) node
pairs are connected to edges, the edge connection method is
abbreviated as i@j.

2.3 Lemma of correlation

Lemma 1 [17] Let M, N be n × n square matrices, then

M N
N M

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ � |M +N‖M −N|.

Lemma 2 [10] Let the corresponding characteristic polynomial
of matrix Qn be Qn(λ) = qnλ

n + qn−1λ
n−1 + / + q1λ + q0,
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Qn �

2 −1
−1 2 −1

−1 2 −1
−1 2

1
2 −1
−1 2 −1

−1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

then q0 = (−1)n (n + 1), q1 � (−1)n−1n(n+1)(n+2)6 , q2 �
(−1)n−2(n−1)n(n+1)(n+2)(n+3)120 .

3 The first-order coherence and
conjectures

3.1 The first-order coherence H(1s) of Gs

Let the Laplacian matrix of Gs be L1, L1 � A B
B A

( ), B = diag

(b11, b22, . . . , bnn), bii = −1, bjj = 0 (1 ≤ i ≤ n, j ≠ i),

A + B �

1 −1
−1 2 −1

−1 2 −1
−1 2

1
2 −1
−1 2 −1

−1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

According to lemma 1, the characteristic polynomial of Gs is

P1 λ( ) � |λI2n − L1| � |λIn − A − B‖λIn − A + B|.
We expand determinant |λIn − A− B| by the first row and the nth

row, and determinant |λIn − A+ B| by the ith row,

|λIn − A − B| � Qn λ( ) + 2Qn−1 λ( ) + Qn−2 λ( ),
|λIn − A+ B| = Qn(λ) + 2Qn−1(λ) + Qn−2(λ) − 2 [Qi−1(λ)

+ Qi−2(λ)][Qn−i(λ) + Qn−i−1(λ)].
Let 0 = θ1 < θ2 ≤ / ≤ θn and 0 < ρ1 ≤ ρ2 ≤ / ≤ ρn be the

Laplacian eigenvalues of |λIn − A− B| and |λIn − A+ B|, respectively.
By formula (5),

H 1s( ) � 1
4n

∑n
κ�2

1
θκ

+∑n
l�1

1
ρl

⎛⎝ ⎞⎠. (6)

For the sake of calculation, let Qm (0), Qm (1), Qm (2) be the
constant term, first-order coefficient and quadratic coefficient of the
characteristic polynomial of Qm(λ).

Claim 1

∑n
κ�2

1
θκ

� n2 − 1
6

. (7)

Proof. Let 0 = θ1 < θ2 ≤/ ≤ θn be the Laplacian eigenvalues ofQn(λ)
+ 2Qn−1(λ) + Qn−2(λ), according to Vieta theorem and lemma 2,

∑n
κ�2

1
θκ

� −Qn 2( ) + 2Qn−1 2( ) + Qn−2 2( )
Qn 1( ) + 2Qn−1 1( ) + Qn−2 1( ) �

n2 − 1
6

.

Claim 2

∑n
l�1

1
ρl
� n2

2
− ni + n + i2 − i. (8)

Proof. Let 0 < ρ1 ≤ ρ2 ≤/ ≤ ρn be the Laplacian eigenvalues ofQn(λ)
+ 2Qn−1(λ) + Qn−2(λ) − 2 [Qi−1(λ) + Qi−2(λ)][Qn−i(λ) + Qn−i−1(λ)],
according to Vieta theorem and lemma 2,

∑n
l�1

1
ρl
� −Qn 1( ) + 2Qn−1 1( ) + Qn−2 1( ) − 2F 0( )H 1( ) − 2F 1( )H 0( )

Qn 0( ) + 2Qn−1 0( ) + Qn−2 0( ) − 2F 0( )H 0( ) ,

where F (0) = Qi−1 (0) + Qi−2 (0), F (1) = Qi−1 (1) + Qi−2 (1), H
(0) = Qn−i (0) + Qn−i−1 (0), H (1) = Qn−i (1) + Qn−i−1 (1), then

∑n
l�1

1
ρl
� n2

2
− ni + n + i2 − i.

Theorem 1 Let the number of single-layer chain network nodes inGs

be n, if the edge connection position is located at i, then the first-
order coherence of Gs is

H 1s( ) � 1
4n

4n2 − 1
6

− ni + n + i2 − i( ).
Proof. By formula 6, formula 7, formula 8, theorem 1 can be easily
obtained.

FIGURE 1
(A) Schematic diagram of a double-layer chain network Gs. (B) Schematic diagram of a double-layer chain network Gd.

Frontiers in Physics frontiersin.org03

Gao et al. 10.3389/fphy.2023.1141396

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141396


3.2 The first-order coherence H(1d) of Gd

Let the Laplacian matrix of Gd be L2, L2 � C D
D C

( ), D = diag

(d11, d22, . . . , dnn), dii = djj = −1, drr = 0 (1 ≤ i < j ≤ n, r ≠ i, j),

C +D �

1 −1
−1 2 −1

−1 2 −1
−1 2

1
2 −1
−1 2 −1

−1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

According to lemma 1, the characteristic polynomial of Gd is

P2 λ( ) � |λI2n − L2| � |λIn − C −D‖λIn − C +D|.
|λIn − C −D| � |λIn − A − B| � Qn λ( ) + 2Qn−1 λ( ) + Qn−2 λ( ),
|λIn − C + D| = Qn(λ) + 2Qn−1(λ) + Qn−2(λ) − 2 [Qj−1(λ)

+Qj−2(λ)][Qn−j(λ) + Qn−j−1(λ)] − 2 [Qi−1(λ)
+ Qi−2(λ)]{Qn−i(λ) + Qn−i−1(λ) − 2Qj−i−1(λ)
[Qn−j(λ) + Qn−j−1(λ)]}.

Let 0 < σ1 ≤ σ2 ≤ / ≤ σn be the Laplacian eigenvalues of |λIn −
C + D|, by formula 5,

H 1d( ) � 1
4n

∑n
κ�2

1
θκ

+ ∑n
p�1

1
σp

⎛⎝ ⎞⎠. (9)

Similar to the proof of lemma 4, we have

∑n
p�1

1
σp

� n + n − j( ) n − j + 1( ) + i i − 1( )
2

− n

4 j − i + 1( )
+ j − i − 1( ) j − i( )

6
. (10)

Theorem 2 Let the number of single-layer chain network nodes in
Gd be n, if the edges connection positions are located at i and j, then
the first-order coherence of Gd is

H 1d( ) � 1
4n

n2 − 1
6

+ n + n − j( ) n − j + 1( ) + i i − 1( )
2

[ ]
+ 1
4n

j − i − 1( ) j − i( )
6

− n

4 j − i + 1( )[ ].
Proof. By formula 7, formula 9 and formula 10, theorem 2 can be
easily obtained.

3.3 Conjecture

Conjecture 1 The conjectures for the effect of edge connection
position i (1 ≤ i ≤ n) on the consensus of Gs are as follows:

(1) When n = 2k + 1 (k ≥ 1), the optimal edge connection position is
located at k + 1, the worst edges connection positions are located
at 1 and 2k + 1.

(2) When n = 2k (k ≥ 1), the optimal edges connection positions are
located at k and k + 1, the worst edges connection positions are
located at 1 and 2k.

Conjecture 2 The conjectures for the effect of edge connection
method i@j (i < j)on the consensus of Gd are as follows:

(1) The worst edges connection methods are 1@2 and n − 1@n.
(2) When i is fixed, given the symmetry of the double-layer chain

network, we assume that 1 ≤ i ≤ [n/2]. The worst edge
connection method is i@i + 1. When n = 4k, n = 4k + 1, n =
4k + 2, n = 4k + 3, the optimal edges connection methods are i@
3k + [(i + 3)/4], i@3k + [(i + 6)/4], i@3k + 1 + [(i + 5)/4], i@3k +
2 + [(i + 4)/4], respectively.

Conjecture 3 For the impact of the number of nodes n on the
consensus of Gd, the conjectures are as follows:

When n = 5k, the optimal edges connection methods are k@4k
and k + 1@4k + 1, n = 5k + x (x = 1, 2, 3, 4), the optimal edge
connection method is k + 1@4k + x.

4 Numerical simulation experiment and
analysis

In this section, the three conjectures proposed in Section 3
are numerically simulated to verify the rationality of the
conjectures.

4.1 The influence of edge connection
position i on the consensus of Gs

When n = 15, 30, 40, 50, 65, Figure 2 shows the relationships
between the first-order coherence H(1s) and i. With the increase of i,
H(1s)

first decreases and then increases, and reaches the minimum
value at [i = (n + 1)/2], and the maximum value at i = 1 and i = n.
Since the consensus of the network is inversely proportional to the
first-order coherence, the optimal edge connection position of Gs is

FIGURE 2
The relationship between the coherence of Gs and the edge
connection position i.
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located at [i = (n + 1)/2], and the worst edges connection positions of
Gs are located at i = 1, n. It is consistent with the conclusion of
conjecture 1.

4.2 The influence of edge connection
method i@j (i < j) on the consensus of Gd

When n = 20, 1 ≤ i ≤ 10, i + 1 ≤ j ≤ 20, Figure 3 traverses all the
connection methods i@j of Gd. It is found that H(1d) reaches its
maximum at i = 1, j = 2. Therefore, Gd has the worst consensus at
the edges connection methods 1@2 and n − 1@n.

When i is fixed, H(1d) decreases first and then increases with
the increase of j, and reaches its maximum value at j = i + 1. The
worst edge connection method is i@i + 1. Figure 3 shows that
H(1d) will reach the minimum value with the increase of j, and j is
not only related to i, but also related to the value of n. Through
the analysis of MATLAB, it is found that the value of j is related to
[3n/4] and [(i + x)/4](x = 0, 1, 2, 3). When n = 4k, n = 4k + 1, n =
4k + 2, n = 4k + 3, H(1d) will reach the minimum value at j = 3k +
[(i + 3)/4], j = 3k + [(i + 6)/4], j = 3k + 1 + [(i + 5)/4], j = 3k + 2 +
[(i + 4)/4], respectively. It is consistent with the conclusion of
conjecture 2.

4.3 The influence of the number of single-
layer nodes n on the consensus of Gd

The values of i and j corresponding to the minimum coherence
H(1d) are obtained by MATLAB software, and the edges connection
methods i@j of Gd with n (5 ≤ n ≤ 104) are calculated ergodically
when the consensus is optimal, and the correctness of conjecture 3 is
verified.

FIGURE 3
The relationship among the coherence of Gd and the edge
connection position i,j.

FIGURE 4
The optimal edge connection positions i and j vary with the number of single-layer network nodes n. (A) n = 5k; (B) n = 5k + 1; (C) n = 5k + 2; (D) n =
5k + 3; (E) n = 5k + 4.

Frontiers in Physics frontiersin.org05

Gao et al. 10.3389/fphy.2023.1141396

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141396


Figure 4 shows the variation of the optimal edges connected
positions i, j and n and their linear fitting lines under the condition
that n = 5k + x (1 ≤ k ≤ 20, x = 0, 1, 2, 3, 4).

From Figure 4A, when n = 5k, there exist two cases of optimal
edges connection methods, and the corresponding i and j are
distributed on the lines i = k, j = 4k and i = k + 1, j = 4k + 1.
Therefore, n = 5k, the edges connection methods k@4k and k + 1@
4k + 1 have optimal consensus.

From Figures 4B–E, when n = 5k + x (x = 1, 2, 3, 4),
the optimal edge connection method is unique.
The corresponding i and j are distributed on i = k + 1,
j = 4k + 1, j = 4k + 2, j = 4k + 3 and j = 4k + 4, respectively.
Therefore, when n = 5k + x (x = 1, 2, 3, 4), the edge connection
method k + 1@4k + x have the optimal consensus. The above
simulation results are consistent with the conclusion of
conjecture 3.

5 Conclusion

In this paper, using the relationship between the Laplacian
eigenvalues and characteristic polynomials, we calculate the
coherence of double-layer chain networks with one and two
connecting edges between layers. On this basis, the numerical
simulations are carried out for the optimal/worst connection
positions of the consensus of double-layer chain networks. If
there are n nodes in a single layer, the optimal edge connection
position of double-layer chain networks with one edge between
layers is in the middle, and the worst edge connection position is
located at the end node of the chain. The optimal edges
connection positions of double-layer chain networks with two
edges between layers are located at near n/5 and 4n/5 of each
chain respectively, and the worst edges connection
positions are located at the end node of the chain and its
neighbor node. When i (1 ≤ i ≤ [n/2]) is fixed, the optimal
edge connection method i@j (i + 1 ≤ j ≤ n) of double-layer chain
networks with two edges between layers is near i@3n/4 + i/4, and
the worst edge connection method is i@i + 1. Further, when the
number of nodes n is subdivided into 5k, 5k + 1, 5k + 2, 5k + 3,
5k + 4, in the case of n = 5k, the optimal edges connection
positions are k and 4k, k + 1 and 4k + 1. In the case of n = 5k + x
(x = 1, 2, 3, 4), the optimal edges connection positions are k + 1
and 4k + x.

At present, the research on the optimal inter-layer
connection position of double-layer networks mostly adopts
numerical methods, and it is difficult to get the results in
theory. In this paper, we get the optimal edge connection
method when the number of double-layer chain networks
between layers is 2. However, when the number of edge
connections between layers is greater than 2, how the optimal
edge connection method changes in position is worthy of our in-
depth study.
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