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Acoustics Willis media, known as bianisotropic acoustic media, incorporate
additional coupling between pressure and velocity and between momentum
and volumetric strain in their constitutive equation. The extra coupling terms
have a significant influence on acoustic wave behavior. In this paper, the unusual
wave phenomena relevant to interfaces between homogeneous acoustic Willis
media are theoretically studied. We show that Willis media offer more flexible
control in wave front and energy flow when waves are transmitted through an
interface. Different from traditional acoustic fluid, Willis acoustic media support
edge and interface waves, for which the existence conditions and corresponding
wave features are systematically investigated. The study unveils more possibilities
for manipulating acoustic waves and may inspire new functional designs with
acoustic Willis metamaterials.

KEYWORDS

metamaterial, Willis medium, wavemanipulation, interface transmittance, interface wave

1 Introduction

In the past 20 years, with the emergence and development of metamaterials, the design
space of wave devices and other functionality structures has been enlarged unprecedentedly.
Metamaterials often exhibit abnormal material properties that natural materials usually do
not have, which can lead to many novel wave phenomena, such as negative refraction [1, 2],
super lens [3, 4], and wave cloaking [5–7], providing broad application prospects and
meanwhile appealing more sophisticated homogenization for the characterization of the
dynamic effective properties. In this background, the theory of Willis materials, initially
proposed by Willis [8] in the 1980s for the dynamic behavior of solid composite materials,
has regained much attention [9–12].

Acoustic Willis media (known as acoustic bianisotropic media) incorporate coupling
between pressure and velocity and between momentum and volumetric strain. It has been
found that the local Willis coupling is directly related to the local asymmetry of unit cells
[12]. Accordingly, different designs of acoustic Willis meta-atoms have been proposed, such
as the membrane unit [13, 14], folded channel [15], and Helmholtz resonators [16, 17]. The
extra degree of design freedom offered by the Willis coupling is utilized to realize various
novel wave functionalities. Several studies have observed asymmetric reflection [11, 18–20]
when waves are incident from different directions, based on which the unidirectional
absorber may be realized [21–23]. When Willis meta-atoms are used in metasurfaces [13,
24–26] or metagratings [15, 27, 28] for anomalous refraction or reflections, independent and
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more efficient control of transmission and reflection can be realized.
In addition, active mechanisms can be introduced to enhance the
significance and flexibility of the coupling effect [29, 30], with which
many non-reciprocal phenomena are demonstrated [30, 31].
Although remarkable progress has been made in recent years,
most of the research on acoustic Willis coupling concentrates on
the physical origin and design of Willis meta-atoms. Extended wave
functionalities are usually demonstrated in reduced dimensionality,
such as metasurfaces. Relatively, systematic theoretical study of wave
behaviors in continuous Willis media has not received much
attention. In recent works, some phenomena, such as sound
scattering [32], sound focusing [33], and the topological phase
transition [34] in Willis acoustic media, have been investigated.

In this paper, the unusual wave phenomena relevant to
interfaces between homogeneous acoustic Willis media are
theoretically studied. Section 2 discusses the general properties of
bulk waves in Willis media, such as slowness curves, wave modes,
and impedance. Section 3 explains the interface transmittance when
a wave is incident into aWillis medium, which exhibits more flexible
control in wave front and energy flow through material parameters.
Section 4 considers the edge and interface waves in Willis media,
partly demonstrated in [35]. Here, we present a more systematical
examination considering other possibilities along with the
corresponding parameter conditions and wave modes. Finally,
conclusions are drawn in Section 5.

2 General bulk wave properties

Assuming harmonic motion with circular frequency ω and time
convention e−iωt, the momentum and continuity equations of Willis
media are, respectively, as follows:

iωμ � ∇p and −iωε � ∇ · v , (1)
where p is the acoustic pressure, ε the volumetric strain, v the particle
velocity, and μ the momentum density. Distinct from traditional
acoustic fluid, the constitutive relations of Willis media are
characterized by

−p � κε + S · v,
μ � ρ · v + Sε,

{ (2)

where κ and ρ are the bulk modulus andmass density, respectively. The
density is in tensorial form and can be anisotropic. The vector S
represents the acoustic Willis coupling term, whose fundamental
physics originates from the locally monopolar–dipolar coupling and
non-local phase effects of acoustic scatterers [12]. Here, we assume that
the non-local effects could be ignored; hence, S is purely imaginary.

Combining Eqs 1, 2 gives the wave equation of Willis acoustic
media:

κ − STρ−1S( )−1 €p � ∇ · ρ−1 + κ − STρ−1S( )−1 ρ−1S( ) ⊗ ρ−1S( )( ) · ∇p( ).
(3)

The wave equation is quite complex, and to simplify the
analysis and highlight the Willis coupling effect, we consider in
this section the isotropic density ρ, i.e., ρ � ρI. According to [32],
a dimensionless real vector W � iS/

��
κρ

√
is introduced for the

Willis coupling for the sake of convenience. For a plane wave

p � p̂ exp(ik · r) with p̂ and k being the complex amplitude and
the wave vector, respectively, the dispersion equation is

1 +W2( )k2 − W · k( )2 � ρ

κ
ω2, (4)

where W = |W| and k = |k|. Eq. 4 has been formulated by [32]. In a
two-dimensional (2D) case, the scenario of involved directions
regarding the bulk wave propagation is depicted in Figure 1A,
where ϕ is the azimuthal angle of W and ϕ′ is the angle between
W and k.

Eq. 4 clearly shows that the slowness curve is an ellipse because
of W. This is a natural consequence because the coupling vector
brings directionality. Without loss of generality, align the x-axis with
W, then Eq. 4 is simplified as

kx
2 + 1 +W2( )ky2 � ρ

κ
ω2. (5)

Figure 1C shows the slowness curves of Willis media with
different values of W. The major axis of the ellipse is collinear
with the direction of W, and the ellipse tends to be flatter as W
becomes larger. Compared with ordinary medium (W = 0), the
phase velocity parallel to W remains unchanged, whereas the phase
velocity perpendicular to W increases.

To further characterize the particle movements in Willis media,
we investigate the velocity field of plane waves. Expressing the
velocity field in the medium as v � v̂ exp(ik · r), the complex
amplitude v̂ can be derived as

v̂ � v‖
v⊥

( )
� 1
ωρ

k
1
0

( ) − W2

1 +W2
k cos ϕ′ cosϕ′

sinϕ′( ) − i

�
ρ

κ

√
ω

W

1 +W2

cosϕ′
sinϕ′( )[ ]p̂,

(6)
where the velocity components are decomposed in directions
parallel to and perpendicular to the wave vector, represented by
subscripts “‖” and “⊥,” respectively. Eq. 6 reveals that waves in
the Willis acoustic medium are generally elliptically polarized,
and because |v⊥|≥ |v‖|, the long axis of the ellipse is collinear with
the wave vector direction. This is a typical feature different from
the traditional acoustic media that only supports the longitudinal
wave. A pure longitudinal wave (v⊥ � 0) only happens when the
coupling vector is collinear with the wave vector (ϕ′ � 0 or π). A
typical wave picture is shown in Figure 1B, where the grid points
of solid lines represent the real-time positions of particles,
different colors represent their phases, and the dotted grid
points represent their initial positions. For a wave propagating
to the right, particles rotate clockwise around their equilibrium
position in an elliptical orbit.

In the aforementioned discussion, ρ and κ are assumed to have
positive values. As the Willis medium is often used to characterize
metamaterials, it is reasonable to allow the negative values as well. If
one of ρ and κ is negative, the definition ofW should be modified as
W � iS/

����−κρ√
. As a result, Eq. 5 changes to

k2x + 1 −W2( )k2y � ρ

κ
ω2. (7)

In Eq. 7, if W ≤ 1, the medium does not support any traveling
waves as no real solution of k exists. However, ifW > 1, it is possible
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to find a real solution of k. In that case, the media have hyperbolic
slowness curves, as shown in Figure 1D. The real axis of the
hyperbola is perpendicular to W, and its eccentricity increases
with W.

The group velocity can be determined by calculating the time-
averaged intensity of power flow I � Re(p†v)/2. For different sign
combinations of ρ and κ, fromEqs 5, 7, respectively, they are expressed as

Ix

Iy
⎛⎝ ⎞⎠ � p̂

∣∣∣∣ ∣∣∣∣2
2ωρ

kx
1 +W2

ky

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, for ρ> 0, κ> 0( )or ρ< 0, κ< 0( ),
Ix

Iy
⎛⎝ ⎞⎠ � p̂

∣∣∣∣ ∣∣∣∣2
2ωρ

kx
1 −W2

ky

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, for ρ> 0, κ< 0( )or ρ< 0, κ> 0( ).
(8)

The corresponding directions of group velocity are also plotted
in Figures 1C,D for elliptic and hyperbolic slowness curves. For a
medium with ρ < 0 and κ > 0, the group velocity points to the outer
normal of the hyperbola, whereas for a medium with ρ > 0 and κ < 0,
the group velocity points to the inner normal, as depicted in
Figure 1D. If both ρ and κ are negative, Eq. 5 remains
unchanged, so the slowness curve is elliptic. However, v changes
in the opposite direction, as well as I. Hence, the group velocity

points to the inner normal of the ellipse, as depicted in Figure 1C.
The directions of group velocity can also be derived from the
gradient of Eq. 5 or Eq. 7, but the causality constraint must be
considered as in [36]. Further analysis shows that allowing the
density to be anisotropic only changes the eccentricity of the ellipse
or hyperbola (see Supplementary Material S1).

3 Interface transmittance and abnormal
refraction

Having been acquainted with the wave properties, we consider
in this section the transmittance of acoustic waves through the
interface between an ordinary acoustic medium (Medium I) and a
Willis medium (Medium II), as presented in Figure 2A. A plane
wave is incident from the left side, and the incident, reflection, and
refraction angles are θi, θr, and θt, respectively. The parameters on
both sides are marked in the figure.

The reflected wave is on the side of the ordinary medium, and
the reflection angle follows θr � θi. On the other hand, the refraction
angle in the Willis medium can be determined by the continuity of
the tangential wave vector on the interface (kII sin θt � kI sin θi) as
well as Eq. 4, where kI and kII are wave numbers on both sides,
respectively. The refraction angle θt is ruled by

FIGURE 1
(A) Schematic representation of directions of the coupling vector and wave vector in theWillis acoustic medium. (B) Particle motion of a plane wave
in the Willis acoustic medium. (C) Slowness curve of the positive or double negative Willis medium, k0 � ω

���
ρ/κ

√
. The purple arrows denote the group

velocity of themediumwith ρ > 0 and κ > 0, and the red arrows denote the group velocity of themediumwith ρ < 0 and κ < 0. (D) Slowness curve of a single
negativeWillismedium, k0 � ω

����−ρ/κ√
. The red arrows denote the group velocity of themediumwith ρ < 0 and κ > 0, and the purple arrows denote the

group velocity of the medium with ρ > 0 and κ < 0.
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������������������������
1 +W2 −W2(cos (θt − ϕ))2( )√

sin θi �
���
κ0ρ

κρ0

√
sin θt. (9)

As it is a transcendental equation, in general, θt can only be
calculated numerically. However, for normal incidence (θi = 0), it is
obvious that θt = 0, regardless of the magnitude and direction of the
Willis coupling vector. In this case, the impedance of the Willis
medium in the normal direction of the interface is Zn � p/v‖.
Substituting Eq. 6 and noting that ϕ′ = ϕ, we get

Zn � ±
��
κρ

√ �����������
1 +W2sin 2 ϕ

√
± iW cos ϕ( ). (10)

Therein, “±” represents the different signs when propagating to
the positive or negative direction of the x-axis. In comparison to
traditional acoustic fluid, an extra factor
( �����������

1 +W2sin 2 ϕ
√

± iW cos ϕ) is added to the impedance. As the
absolute value of this factor is greater than 1, the presence of Willis
coupling will always increase the impedance, regardless of its
azimuthal angle. The impedance matching condition at the
interface is ����

κ0ρ0
√ �

����������
κρ 1 +W2( )√

and cos ϕ � 0 , (11)

which indicates that the direction of the coupling vector must be
perpendicular to the wave vector if the full transmission is
required.

We learn in Section 2 that the direction of energy transmissionmay
differ from the wave vector in the Willis medium. Even for the normal
incidence, the energy flow direction may still deviate. Using Eq. 4, the
reflection power (R � |Ir|/|Ii|) and the two components of the
transmitted power flux (Tx � Itx/|Ii|; Ty � Ity/|Ii|) are calculated.
Figure 2B presents the variation of transmission and reflection
power versus the azimuthal angle ϕ under normal incidence. Other
parameters are set as ρ = ρ0, κ = 0.5κ0 (ρ0 = 1.2 kg/m3, κ0 = 1.4 × 105Pa,
here and after), and W = 1 so that when ϕ = 90° or ϕ = 270°, the
impedance matching conditions are satisfied. The calculated frequency
is 7,000 Hz. Figure 2B shows that at these two points, the full
transmission happens. When W points to other directions, there will
be energy flow in the y direction and reflection. In Figure 2C, the
deflected energy propagation for the case ofWillis coupling with ϕ = 60°

(as indicated by the dot in Figure 2B) is verified by finite element

method (FEM) simulation considering the normal Gaussian beam
incidence. All FEM simulations in this paper study are carried out
via COMSOL software. The energy flux component in the y-direction
corresponding to ϕ = 60° is negative. Correspondingly, it is observed
that the wave beam deflects downward after passing through the
interface.

For oblique incidence and considering negative parameters,
more interesting phenomena can be obtained, as exemplified in
Figure 3, wherein panels in the first row are the refractive patterns
drawn from the slowness curve analysis, whereas the second row
presents the results of FEM simulations of wave beams with
7,000 Hz. As shown in Figures 3A,D, we use a Willis medium
with ρ > 0 and κ < 0, whereas in Figures 3B,E, we use a Willis
medium with ρ < 0 and κ > 0. The used material parameters are
given in Figures 3D,E. Because of the hyperbolic slowness curve,
the wave number ky of the incident wave cannot be less than a
certain critical value to get a real wave number for the refraction
wave, which is opposite to the case of positive parameters. Taking
the 60° incident angle as an example, as indicated by the ki arrow,
the refractive kr is determined from Figures 3A,B. The group
velocity must have a positive x component to ensure energy
always goes forward. For κ < 0 cases, as the group velocity points
to the inner normal of the hyperbolic, negative refraction of
phase velocity and positive refraction of group velocity are
predicted, as shown in Figure 3A. Conversely, for the ρ <
0 case, as shown in Figure 3B, group velocity points to the
outer normal of the hyperbolic. Thus, positive refraction of
phase velocity and negative refraction of energy flow are
predicted. From the FEM simulations in Figures 3D,E, the
aforementioned analysis is confirmed by observing the
refracted wave beam and wave front. As shown in Figures
3C,F, we use a Willis medium with ρ < 0 and κ < 0. The
typical negative refraction is realized like the double ordinary
doubly negative medium.

4 Edge and interface waves

When boundary condition is considered in solving the wave
equation, it is possible to find surface modes, for example, the

FIGURE 2
(A) Problem setup of the wave transmission across an interface between ordinary acoustic and Willis media. (B) Transmission and reflection power
vary with ϕ for normal incidence. (C) FEM simulation of a normal incident Gaussian beam, corresponding to the dot in (B).
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well-known Rayleigh surface wave for solids. For an ordinary
acoustic fluid, surface modes are not supported. However, in the
realm of acoustic metamaterials, surface modes can be found in
acoustic media with negative parameters [3, 37] or with
gyrotropic mass [38]. In [35], we have partly demonstrated
the existence of interface waves at the interface of two Willis
media. Here, we present a more systematic examination of the
edge and interface waves of Willis media.

4.1 Edge waves with sound hard boundary

As sketched in Figure 4A, we consider a semi-infinite of
Willis acoustic medium, and the Cartesian coordinate system is
established to make the open edge along the y-axis. Considering
acoustic field explicitly expressed by p � p̂ exp(ikxx + ikyy), for a
possible edge mode, the field is traveling along the y-direction
and attenuated away from the surface. Thus, ky must be real, and
kx must have a positive (negative) imaginary part when the
surface is on the left (right).

For sound soft (free) boundary, the requisite boundary
condition is p (x = 0) = 0, which holds only for p̂ = 0. Then,
the velocity v̂ vanishes at the same time, and it is concluded that
no edge mode is supported on the sound soft boundary. For
sound hard boundary, it is required that the normal velocity on
the boundary vanishes, that is, vx (x = 0) = 0. Combining the
boundary condition and the requirements of the wave vectors, we
can conclude that surface waves may exist on the hard
boundaries, and the parameter conditions for their existence
are (Supplementary Material S2)

ρyy
κ

> 0 and i Sxρyy − Syρxy( )> 0, when the surface is on the lef t,

ρyy
κ

> 0 and i Sxρyy − Syρxy( )< 0, when the surface is on the right.

(12)

FIGURE 3
Interface refraction of Willis media with negative parameters. (A), (B), and (C) Slowness curves of the medium on the incident side (the gray dashed)
and the refractive side (yellow solid). Blue and green arrows are the incident and refractive wave vectors, with equal tangential components indicated by
the red dotted line. The red or purple arrows indicate the direction of group velocities. (D), (E), and (F) Corresponding FEM simulations of the cases of (A),
(B), and (C), respectively, (pressure field).

FIGURE 4
(A) Schematic representation of the surface mode of a semi-
infinite Willis medium. (B) Typical wave pattern of edgemode for Willis
acoustic media with isotropic density.
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The wave number along the surface is ky � ± ω
�����
ρyy/κ

√
. For the

case of isotropic density and ρ > 0, κ > 0, the aforementioned
condition reduces to be simply

Wx > 0, when the surface is on the lef t,
Wx < 0, when the surface is on the right.

(13)

Eq. 13 has an obvious geometric meaning that the vectorW has
to point away from the edge to find the edge wave. In this case, the
wave mode can be analytically expressed as

p � p̂ exp ikxx + ikyy( ),
vy � ±

1��
κρ

√
1 +W2

y( ) − iWy��
κρ

√
1 +W2

y( )⎡⎢⎣ ⎤⎥⎦p̂ exp ikxx + ikyy( ),
kx � ±

WxWy

1 +W2
y( )ω ���

ρ/κ√
+ iWx

1 +W2
y( )ω ���

ρ/κ√
, ky � ± ω

���
ρ/κ√

.

(14)
In Eq. 14, kx is purely imaginary only when W is

perpendicular to the boundary (Wy = 0), and the wave is
exponentially attenuated away from the boundary. In other
cases, kx has both real and imaginary parts, which means that
the edge wave is oscillatory attenuated away from the boundary
(see Supplementary Material S3). In addition, non-zero Wy will
make the imaginary part of kx smaller. Hence, the attenuation will
slow down further. It is also noticed that, unlike the bulk wave,

the edge wave is linearly polarized, and particle velocity possesses
only components along the interface. The wave pattern of the
edge mode is shown in Figure 4B. The grid points on the solid
lines represent the real-time position of particles, and the colors
represent their phases. The dotted lines represent their initial
positions.

FEM simulations are performed to verify the surface wave on the
hard boundaries, as shown in Figure 5. Material parameters of the
Willis medium are ρ = ρ0, κ = κ0, and W = 1. Two directions of the
coupling vector, ϕ = 0° (Figure 5A) and ϕ = 180° (Figure 5B), are used
here. The calculated frequency is 5,000 Hz. A pair of point sources
with a half wavelength distance and opposite phases is set on the
hard boundary to form a dipole, which can stimulate the surface
mode more efficiently. In Figure 5A, the condition that W points
away from the surface is satisfied. Correspondingly, the edge wave is
observed along the y-axis. When W points to the surface, as in
Figure 5B, no surface mode exists, and only the bulk mode is excited.
Figure 5A shows that, for large W perpendicular to the edge, the
wave vectors of edge mode and bulk mode differ much, so they are
not easily coupled with each other. For edge waveguides having
corners not so sharp, the edge wave can pass through without
obvious scattering into the bulk, showing some robustness, as
depicted in Figure 5C.

To design a waveguide with more robustness, we can utilize a
medium supporting edge wave that does not allow bulk waves. A
simple choice is to use a single negative medium with isotropic

FIGURE 5
FEM simulations of surface waves on hard boundaries of Willis media (pressure field). (A)Wpoints away from the surface. (B)Wpoints to the surface.
(C) Waveguide for the edge wave with possible leaking into bulk. (D) Edge wave without bulk leaking using an anisotropic density. (E) Robust edge
waveguide with sharper corners using an anisotropic density.
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density. However, such a medium does not possess edge mode
because Eq. 12 cannot be satisfied, so we seek the possibility in the
Willis medium with anisotropic density. The derived condition for
the Willis medium that does not support bulk waves is (see
Supplementary Material S4)

κ

S2yρxx − 2SxSyρxy + S2xρyy + κ ρ2xy − ρxxρyy( )< 0 and

ρxxρyy − ρ2xy( ) S2y + S2x − κρxx − κρyy( )> 0. (15)

If a set of material parameters can satisfy Eq. 12 and 15 at the
same time, the edge wave transmission would be very stable. In
the example in Figure 5D, we choose a set of parameters as
ρxx = – ρ0/2, ρyy = ρ0, ρxy = 0, κ = κ0, Sx � −i ����

κ0ρ0
√

, and Sy = 0 so
that Eqs 12, 15 are simultaneously met for the edge on the left.
All energy is concentrated at the boundary without any bulk
waves. Moreover, in this exclusively edge-mode medium, a
single monopole source is enough to excite the edge wave
without matching its mode. In Figure 5E, a waveguide
containing corners with the right angle is established using
two different Willis media to meet the corresponding
parameter requirements on the boundary of different
orientations. Therein, Medium I is the same as that in
Figure 5D, and Medium II is simply obtained by rotation
from Medium I. The edge wave transmits through the
designed route without energy leaking into the bulk.

4.2 Interface waves between two media

In practice, if the impedance of the Willis and adjacent media
significantly differs, their interface can be treated as an ideal soft or
hard boundary. For other cases, further analysis is required to
estimate whether interface modes exist.

Consider the problem shown in Figure 6A. The ordinary
acoustic medium (Medium I) on the left side and the Willis
medium (Medium II) on the right side form an interface along
the y-axis. In order to simplify the problem, the discussion is limited
to Willis media with isotropic density and ρ > 0, κ > 0. The density

and bulk modulus of the ordinary medium are ρ0 and κ0,
respectively. The parameters of the Willis medium are ρ, κ, and
W. For an interface wave, the pressure fields on the two sides can be
written as pI � p̂ exp(ikIxx + iksy) and pII � p̂ exp(ikIIxx + iksy),
respectively, where ks is the tangential wave vector along the
interface. It must be continuous and real on both sides. kIx and
kIIx are normal wave vectors, which should satisfy Im(kIx)< 0 and
Im(kIIx )> 0 to ensure attenuation in the direction away from the
interface. The conditions for the existence of interfacial waves are as
follows (see Supplementary Material S5):

Wx > 0,
�ρ

�κ
> 1,

W2
x

�κ2
+ �ρ

�κ
1 +W2( )> �ρ

�κ
( )2

1 +W2( ) 1 +W2
y( ), (16)

where �ρ � ρ/ρ0 and �κ � κ/κ0. The interface mode is difficult to be
expressed analytically, so we demonstrate it with a specific numerical
example in Figure 6B. The parameters are set as �ρ � 0.2, �κ � 0.1,W = 1,
and ϕ = 0°. The grid points in Figure 6B represent the real-time positions
of the particle. Due to the non-zero normal velocity, particles near the
interface rotate in an elliptical trajectory around their equilibrium
positions, which is very different from the edge mode. At the
interface, only the normal velocity maintains continuity. The two
media have a relative slip in the tangential direction. The FEM
simulation of the interface wave is shown in Figure 7A with the
same parameters. The influence of the material parameters on the
robustness of interface waves is analyzed in SupplementaryMaterials S6.

In the problem setup shown in Figure 6A, if the two domains are
both Willis media, the analysis of the interface wave is more
complex, so the general situation is not studied. However, if the
two media meet some specific conditions, the problem will become
intuitive. In Section 4.1, we use the boundary condition that the
normal velocity is zero to derive the existence condition Eq. 12 for
edge waves and the corresponding edge wave number
ky � ± ω

�����
ρyy/κ

√
. The derivation is reversible; that is, if ky �

± ω
�����
ρyy/κ

√
and Eq. 12 holds, the normal velocity on the

boundary must be zero. Thus, we conclude that, in the current
problem of two Willis domains, if the tangential wave numbers on
both sides of the interface are the same and Eq. 12 holds for each
side, the continuity condition of the interface will always be met. In
this situation, the media on both sides are mutually sound hard

FIGURE 6
(A) Schematic representation of the interfacemode between an ordinary medium (Medium I) and aWillis medium (Medium II). The interfacemode is
a traveling mode along the surface and evanescent away from the interface. (B)Wave mode of the interface wave, where the interface expands at a finite
width to clearly display the particle motion on both sides. The insets show typical particle orbits on each side.
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boundaries to each other, so the interface wave can be supported. On
the premise that ρIyy/κ

I � ρIIyy/κ
II, an existence condition for the

interface wave reads

ρIyy/κI � ρIIyy/κII > 0, i SIxρ
I
yy − SIyρ

I
xy( )< 0, i SIIxρ

II
yy − SIIyρ

II
xy( )> 0.

(17)
An FEM example is shown in Figure 7B. For convenience, the

parameters of Medium II are obtained by the mirror symmetry
operation of Medium I about the y-axis, so if Eq. 17 holds on one
side, it also holds on the other side. The parameters are ρI = ρII

(components are marked in Figure 7B), κI = κII = κ0, SIx � i
����
κ0ρ0

√
,

SIIx � −i ����
κ0ρ0

√
, and SIy � SIIy � 0. Additionally, the parameters in

Figure 7B satisfy Eq. 15, so a pure interface wave is excited
without bulk leaking.

When the density is isotropic, ρ > 0, and κ > 0, Eq. 17 reduces to

ρI/κI � ρII/κII, WI
x < 0,WII

x > 0. (18)
Similarly, Eq. 18 implies that vectorsW on both sides point away

from the interface. An example is shown in Figure 7C. The
parameters in Medium I are ρI = 5ρ0, κ

I = 5κ0, W
I = 1, and ϕI =

180°, and those inMedium II are ρII = ρ0, κ
II = κ0,W

II = 1, and ϕII = 0°.
The density and bulk modulus of the Willis medium on the left side
are both five times those on the right side, so the tangential wave
vector is continuous on the interface. The coupling vector point
away from the interface on both sides. An interface wave is observed
as Eq. 18 is satisfied.

5 Conclusion

In this study, unusual wave phenomena relevant to interfaces
in the homogeneous acoustic Willis media are studied
theoretically. We show that the media exhibit anisotropic
features due to the Willis coupling vector terms, and the
slowness curve can be tuned between elliptical and hyperbolic
shapes. The interface transmittance can be adjusted by the
magnitude and direction of the coupling vector, which offers
more flexible control in the compared with the traditional

acoustic fluids. The Willis acoustic media support edge waves
at acoustic hard boundaries and interface waves at interfaces
between an ordinary acoustic fluid and a Willis medium or
between two Willis media. Particularly, the edge modes may
also exist in certain Willis media that do not support bulk modes,
in which case they can achieve high transmission.

The study unveils more possibilities for manipulating acoustic
waves and may inspire new functional designs with acoustic Willis
metamaterials. It should be noted that this theoretical study
assumes continuous acoustic media already with Willis
coupling. On the experimental side, designing metamaterials
with the wanted coupling effect is still an ongoing and
challenging task. Especially for those wave phenomena calling
for a strong S vector and negative density or modulus, the
experimental demonstration may necessitate a more
sophisticated design.
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