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Spin–charge conversion (SCC) leads to the driving principle of spintronics devices,
such as non-volatile magnetic memory and energy harvesting devices from light,
sound, and heat to charge current. Recently, controllable SCCs have emerged in
materials with spatial- and time-reversal asymmetry as a new route for efficient
manipulation and realization of novel functionalities of future spintronics devices.
This study overviews the SCC from the fundamental mechanism to the recent
research progress in novel materials, such as topological magnets and atomically
layered materials. Additionally, we discuss the chiral organic materials from the
viewpoint of a new pathway for the emergence of spin functionalities.
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1 Research background and progress on the
spin–charge conversion

Spin and charge degrees of freedom can be converted by the spin Hall effect (SHE),
which was theoretically predicted by Dyakonov and Perel [1]. Approximately 3 decades later,
Hirsch re-predicted and introduced it as SHE [2]. Since the 2000s, high-quality film
preparation and microfabrication technologies for semiconductors and metals have been
developed, leading to the first observation of spin accumulation in GaAs by optical technique
in 2004 [3]. After the pioneering works, systematic experiments in semiconductors have
clarified the fundamental properties of SHE, such as carrier type [4], amount of dopant [5],
and intervalley transition dependence [6]. These findings might lead to the establishment of
fundamental technology for a novel integration platform that combines photonic, magnetic,
and electronic components.

Moreover, intensive experimental research on the SHE in metallic materials [7–10]
established the so-called spin–orbit torque (SOT) that enables switching magnetization and
driving magnetic domain wall for magnetic memory applications [11, 12] and auto-
oscillation for microwave generators [13], among others. Thus, SHE is currently one of
the indispensable phenomena in spintronic devices.

An essential characteristic of the SHE is that it can act as a spin source by producing the
flow of spin angular momentum (spin-current), perpendicular to the charge current, as
shown in Figures 1A, B. Thus, the SHE contributes to simplifying the device structure, for
example, ferromagnetic metal/spin Hall material bilayer for magnetization switching
[11–13]. It has also been developed to extract electrical charge current from heat, sound,
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and light using the inverse effect. Accordingly, this technique draws
attention from the standpoint of energy harvesting [14, 15].

The spin–charge conversion (SCC) efficiency, defined as the
ratio of the spin current density and the charge current density,
called the spin Hall angle, determines the performance of such SHE-
based spintronic devices. The SHE relies on spin–orbit interactions
and can be generated by intrinsic or extrinsic mechanisms. So far,
systematic theoretical and experimental works reveal that SHE in 4d
and 5d transition metals comes from the intrinsic mechanism based
on the degeneracy of d-orbitals via spin–orbit coupling (SOC)
[16–19]. However, the extrinsic SHE relies on scattering, namely,
skew scattering [20] and side jump [21] by impurities causing strong
spin–orbit interactions. However, the maximum conversion
efficiency of these materials is only in the range of a few tens of
percent [19] [11, 22, 23]. Thus, it was required to discover and
establish the technology for novel conversion phenomena to
improve efficiency.

Recently, as a new type of spin conversion principle instead of
the SHE, the Edelstein effect (EE) in the two-dimensional
electron systems with spin-splitting surface states has been
actively studied [24, 25]. Unlike the bulk SHE, this effect
generates spin accumulation via spin momentum locking
linked to the charge current flow at material interfaces. Such
spin-splitting surface and interface states caused by the spatial
inversion asymmetry have been observed at the surface of the
topological insulator and Rashba interface by means of angle-
resolved photoemission spectroscopy (ARPES) [26, 27]. In the
surface states, the polarization vector of electron spins depends
on the direction of electron flows, called spin-momentum locking
[27]. The application of an electric field gives rise to spin
accumulation at the interfaces, a behavior known as the
Edelstein effect (EE). The large spin splitting at the surface of
the topological insulator and Rashba interface realizes more

efficient SCC than transition metals, at several orders of
magnitude smaller current densities than for transition metals
[28–31].

These experimental demonstrations of SCCs via SHE and EE led
to the novel concepts of spintronics devices [32–36], such as a
racetrack memory driven by high-speed magnetic domain wall
motion [32] and a magnetoelectric spin–orbit (MESO) device
based on interfacial SCCs [33]. Since the first observation of SHE
in 2004 and EE in 2013, the number of studies on SCCs has been
increasing every year, as shown in Figure 1C. Thus, not only are
SCCs interesting as a fundamental science, but they also attract
attention in terms of applications and are expected to have practical
applications.

From such research backgrounds, to realize lower power
consumption and higher speed operation of spintronics devices,
it is desired to develop a method to control the spin polarization
vector and the conversion efficiency freely. This review article
overviews the recent research trend of the emergence of SCC
functionalities utilizing symmetry, such as space, time, and
chirality, as shown in Figure 2.

2 Spin conversion due to spatial
inversion asymmetry

At material interfaces, spin-splitting surface states appear due to
spatial inversion asymmetry. When an electric field is applied to
such an interface, non-equilibrium spin accumulation occurs [24,
25]. Edelstein predicted such spin accumulation in 1990 [24]. In the
2000s, by utilizing the spin-resolved ARPES technique, the surface
states were investigated intensively. In 2007, a large spin splitting of
~200 meV was observed in Ag/Bi surface alloys. Interestingly, it is
much larger than the Bi surface (~14 meV) [26, 37, 38]. Around the

FIGURE 1
Spin–charge interconversion and its applications. (A) Charge-to-spin conversion due to spin Hall and Edelstein effects. In both cases, spins
accumulate at the interface by applying the charge current. The spin accumulation gives rise to the spin–orbit torques (SOTs) to the adjacent
ferromagnet. It is the working principle for SCC-based spintronic devices, such as magnetic memory, spin-torque nano-oscillator, and spin-wave logic.
(B) Spin-to-charge conversion due to inverse spin Hall and inverse Edelstein effects. The inverse effects convert light, sound, and heat-to-charge
currents via spin currents. (C) The number of studies on SCCs and proposed spintronics devices as a function of year. Searches for keywords, such as
spin–charge conversion, spin Hall effect (SHE), Edelstein effect, and spin–orbit torque, on the Web of Science database. After the first experimental
observation of the SHE in 2004 and the Edelstein effect in 2013, the number of SCC studies increased yearly since fundamental research of SCCs began to
trigger novel spintronics device concepts and applications.
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same time, it was experimentally discovered that the linear Dirac
dispersion exhibits 100% spin polarization in the topological
insulator surface [27].

The spin accumulation at the surface state can exert SOTs
consisting of field-like and spin-transfer (anti-damping) torques
on adjacent magnets. Thus, effective utilization of EE-induced spin
accumulation has been desired for spintronics study. High-quality
thin film preparation technologies, including molecular beam
epitaxy and sputter deposition, are now ready to fabricate devices
for quantitative evaluation of spin generation at the interface. These
achievements have enabled low-power efficient magnetization
reversal [28, 31, 39, 40].

The amplitude of spin splitting, proportional to Rashba
parameter αR, characterizes the efficiency of the EE-induced
SCCs. Thus, the charge-to-spin conversion efficiency q and spin-
to-charge conversion λ are described by q = αR/(ħτsvF2) and λ = αRτs/
ħ, where ħ and τs are plank constant and spin relaxation time at the
surface state, respectively [25, 28, 31]. There is a trade-off relation
between conversion efficiencies q and λ through τs, which is
determined by the strength of the hybridization between bulk
and interface states [41]. Indeed, highly efficient spin-to-charge
conversion has been observed at the oxide interface of LaAlO3/
SrTiO3, as its interface exhibits a spin relaxation time several orders
of magnitude longer than metal interfaces due to weak hybridization
between bulk and interface states [42].

Since one of the origins of a large αR is known as the asymmetric
electron distribution at the interface [37, 43], the large αR can be
induced not only by the surface alloy such as Ag/Bi but also by many
kinds of material interfaces [41, 44–47]. From this point of view,
recently, novel SCCs have emerged by modifying the interfacial state
of metal/organic molecules depending on the molecular structure,
polarity, and arrangement. By utilizing the highly spin-to-charge

conversion at the molecule/metal interfaces, electrical detection of
ultra-thin molecules absorption less than a single layer has been
reported [41]. These research directions have drawn much attention
as a new aspect of molecular spintronics [41, 47].

Unique features of these interfacial SCCs are the realization of
highly efficient conversion, improvement of material selectivity, and
the ability to modulate the conversion efficiency by the external
electric field significantly. So far, several methods by utilizing an
external electric field have been reported for 1) Fermi level tuning
[48], 2) lattice strain [49], 3) oxygen transfer [50], and 4) electric
polarity reversal in ferroelectric materials [51]. Especially for the
latter two methods, it is possible to remain in the state even after the
external electric field is turned off (i.e., non-volatile control). These
modulation techniques are essential for future applications, such as
magnetoelectric spin–orbit (MESO) devices based on interfacial
SCCs [33].

Furthermore, spatial inversion asymmetry in crystals is also
important for the emergence of SCC functions. Figure 3B shows the
symmetry-dependent SOT magnetization switching in low-
symmetry crystals, such as CuPt. Notably, out-of-plane spin
polarization can be generated in such low-symmetry crystals by
breaking lateral mirror symmetry [52–55] but not the conventional
SHE in transition metals. In the inverse conversion (i.e., spin-to-
charge conversion), the spin polarization and the charge current are
parallel. In addition, the conventional conversion where the spin
polarization is orthogonal to the charge current has been
observed [56].

Additionally, spatial inversion asymmetry in the magnetic
materials is also interesting because current-induced
magnetization reversal has been observed in a single magnetic
layer i.e., a spin source layer like Pt is unnecessary for
magnetization control [57–61]. It might be caused by “self-

FIGURE 2
Explore spin–charge conversion functionality by focusing on spatial asymmetry, time-reversal asymmetry, and chiral symmetry.
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induced SOT,” which is induced by current-induced spin
accumulation inside the magnetic material due to spatial
asymmetry. For example, such self-induced SOTs have been
observed in the gradient composition magnet in Figure 3C
[57–59] and low symmetry van der Waals magnetic crystal
Fe3GeTe2 [60]. In particular, in the F3GeTe2, the critical current

density for magnetization reversal is approximately two orders of
magnitude smaller than that in the conventional transition metal/
ferromagnetic metal bilayer. Thus, the elucidation of the mechanism
has attracted attention [61].

These fundamental research developments regarding the SCC
functionalities induced by spatial inversion asymmetry are

FIGURE 3
Emergence of SCCs due to spatial inversion symmetry breaking. (A) Spin-to-charge conversion at Ag/Bi Rashba interface in [44]. The bottom figure
corresponds to FMR and spin pumping spectra in NiFe/Ag, NiFe/Bi, and NiFe/Ag/Bi films. A clear enhancement appears due to spin-to-charge conversion
at Ag/Bi. (B) CuPt/CoPt Hall devices for symmetry-dependent SOT-induced magnetization switching in [52]. Plane view of the L11 hexagon projected
along the [111] direction, where the Pt atomic layer (grey color) is sandwiched between two Cu (Co) atomic layers. The polarity of magnetization
switching (clockwise and anti-clockwise) depends on the current angle θl from the low-symmetry axis [1–10] of CuPt. (C) Self-induced SOT switching in a
single ferromagnetic layer in [57]. A composition gradient exists in FePt along the thickness direction.

FIGURE 4
Emergence of SCCs due to time-reversal symmetry breaking. (A) Spin-AHE in ferromagnetic metal (FM)1/non-magnetic metal (NM)/FM2 tri-layer
structure magnetic damping constant in FM2 is modulated by SOT due to spin-AHE in FM1 in [74]. (B) Tilting spin polarization vector about the magnetic
moment in ferromagnetic metal in [76]. (C) Spin accumulation in the non-collinear antiferromagnet Mn3Sn due to magnetic SHE in [79]. The chemical
potential measurement detects the current-induced spin accumulation via a voltage drop across NiFe and Cu electrodes. Polarity changes of the
magnetoresistance loop indicate the sign change of the accumulated spin polarization vector.
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promising to contribute to more efficient and faster magnetization
control in spintronics devices.

3 Manipulation of spin conversion due
to time-reversal asymmetry

This study focuses on SCCs in magnetic materials with time-
reversal asymmetry. Magnetic materials have also been studied using
the same experimental methods for non-magnetic metal such as
non-local spin valves, spin-torque ferromagnetic resonance (FMR),
and spin pumping, among others [62, 63]. So far, SHE and ISHE on
magnetic materials have been investigated regarding a correlation
with the anomalous Hall effect (AHE) because SHE shares the
scattering mechanism, such as skew scattering and side jump
with AHE [64, 65]. From this point of view, utilizing scattering
enhancement due to spin fluctuation near the magnetic phase
transition temperature is also a promising way to attribute the
amplitude of SHE [66–71].

Recently, there have been remarkable developments in
experimental research on the magnetization direction-dependent
SHE [70–82]. Figure 4A shows the SHE caused by AHE in a
ferromagnet, which was first predicted by theoretical study and
demonstrated experimentally later [72, 73, 75], called spin-AHE. In
addition, spin precession along a ferromagnetic moment was found
to tilt a spin polarization vector inside the ferromagnet shown in
Figure 4B [76] and at the ferromagnetic/non-magnetic interface
[77]. The spin polarization vector can be controlled by adjusting the
magnetic moment in these phenomena.

Furthermore, this concept has been extended to SHE in
antiferromagnets [78–82]. Notably, the non-collinear
antiferromagnets Mn3X (X = Sn, Ge) draw much attention as a
candidate material for next-generation ultra-fast spintronic devices.
It is a Weyl magnet displaying a huge response comparable to

ferromagnets at room temperature [83]. Such a non-collinear
antiferromagnet has a tiny magnetization, approximately 1/
1,000 of a ferromagnet, so the time-reversal symmetry is broken,
and the spin structure of the Mn3X can be reversed by a small
external magnetic field or electric current via SOT [83–85].

In contrast to the ferromagnetic dipole, the spin structure of the
Mn3X generates a magnetic octupole moment consisting of multiple
Mn spins. In the Mn3X, octupole direction-dependent SHE and
ISHE caused by the momentum-dependent spin polarization
produced by the non-collinear magnetic order were discovered
and named magnetic SHE (MSHE) and magnetic ISHE, as
shown in Figure 4C [79].

In the MSHE, the spin-polarization vector is perpendicular to
the direction of the magnetic octupole moment. Very recently,
unconventional SOT and field-free magnetization switching of
adjacent ferromagnets due to the MSHE in non-collinear
antiferromagnets have been reported [80–82].

Compared with the spatial asymmetry-induced SCC
functionalities, the SCCs caused by the time-reversal asymmetry
can be tuned more freely by controlling the magnetization direction
by an external magnetic field. This section focused on SCCs
generating a steady spin state in magnetic materials. The
emergence of novel functionalities of SHE under magnetization
dynamics might be an attractive research topic in the near future
[66, 86].

4 New pathway for the emergence of
spin functionalities due to chiral
symmetry

Chirality is a common property in wide branches of science,
such as biology, chemistry, physics, and cosmology, for the
emergence of any functionality. Molecular chirality is essential to

FIGURE 5
Molecular chirality-induced spin functionalities. (A) Chirality-dependent current perpendicular to the plane magnetoresistance against the external
perpendicular magnetic field. Charge current flows in the chiral molecules in [94]. (B) Magnetic impurity-like state in superconductor induced by chiral
molecules in [101]. (C) Chirality-dependent current-in-plane magnetoresistance in ferromagnetic metal/chiral molecule bilayer without bias charge
current in the chiral molecule in [104]. Magnetoresistance decrease with decreasing the measurement temperature.
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induce spin functionalities in organic materials. Indeed, the spin
polarization of electrons passing through chiral molecules such as
DNA chains has been observed [87], implying an interaction
between chiral structure and passing electron spins. This
property is called chiral-induced spin selectivity (CISS), of which
phenomena have been investigated using various experimental
techniques, such as photoelectron spectroscopy, conductive
atomic force microscope (AFM), and magnetoresistance
measurement [87–96]. Surprisingly, a considerably large spin
polarization [90, 91] comparable to that of ferromagnets such as
Fe (~0.4) appears at room temperature despite the weak SOC of light
elements in chiral organic molecules.

However, the physical origin of the large spin polarization due to
CISS remains elusive. In particular, significantly large SOC of
approximately several 100 meV, which is several orders higher
than that of organic materials such as graphene (~10 μeV [97]),
is necessary to realize such large spin polarization [90–92]. Recent
theoretical work revealed that the geometric SOC due to molecule
structure, such as curvature, gives rise to large SOC even in organic
materials such as DNA [98]. Furthermore, as another degree of
freedom, the contribution of orbital texture in chiral molecules has
also been discussed [99, 100]. Quantitative and systematic
experimental and theoretical works are indispensable to reveal
the microscopic origin of large spin polarization due to CISS in
molecules.

Conversely, several experimental studies have recently reported
the CISS-like effect without bias current in chiral molecules
[101–104]. For instance, a chiral molecule adsorbed on a
superconductor surface exhibits Shiba states similar to the
magnetic impurity-induced state in the tunneling spectra, as
shown in Figure 5B [103]. Moreover, a chirality-dependent
effective magnetic field has occurred at room temperature [101,
102]. Remarkably, no bias charge current flows through the chiral
molecules, implying that spontaneous spin polarization may emerge
in the chiral molecules. More recently, current-in-plane MR (CIP-
MR) effects have been observed in chiral molecule/ferromagnetic
metal bilayers at room temperature, as shown in Figure 5C [104].
The temperature dependence of the MR suggests the existence of
thermally driven spontaneous spin polarization in the chiral
molecules [104–107].

Recently, in the chiral inorganic crystals, systematic experiments
regarding the CISS effect have been reported [108, 109]. Spin
polarization due to the CISS effect has been observed by applying
a charge current along the c-axis in chiral crystal CrNb3S6. The
inverse CISS has also been detected in the same device, confirming
the CISS effect’s reciprocal relationship [108]. Furthermore, exciting
phenomena beyond conventional spintronics physics, such as

chirality-induced spin polarization over millimeters, have been
reported in the chiral crystals despite the strong SOC (chiral)
materials [109]. It is highly desirable to comprehensively
understand such chirality-induced spin phenomena across a
range of materials and scales.

5 Conclusion

We have reviewed recent SCCs research regarding the
emergence of novel functionality caused by spatial asymmetry,
time-reversal asymmetry, and chiral symmetry. These symmetries
enable us to control the conversion efficiency of the SCCs and the
spin polarization vector. Importantly, such a concept for the
emergence of SCCs functionality incorporates the viewpoint of
symmetry will progress remarkably the design of the material,
device, and its function [104].
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