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A coupled-channel S- and P-wave next-to-leading order chiral-unitary approach
for strangeness S = −1 meson-baryon scattering is extended to include the new
data from the KLOE and AMADEUS experiments as well as theΛπmass distribution
of the Σ(1385). The positions of the poles on the second Riemann sheet
corresponding to the Σ(1385) pole and the Λ(1380) and Λ(1405) poles as well
as the couplings of these states to various channels are calculated.We find that the
resonance positions and branching ratios are on average determined with about
20% higher precision when including the KLOE and AMADEUS data. Additionally,
for the first time, the correlations between the parameters of the poles are
investigated and shown to be relevant. We also find that the Σ(1385) has
negligible influence on the properties of the Λ states given the available data.
Still, we identify isospin-1 cusp structures in the present solution in light of new
measurements of π±Λ line-shapes by the Belle collaboration.
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1 Introduction

The resonances Λ(1380)1/2−, Λ(1405)1/2− and Σ(1385)3/2+ dominate low-energy
strangeness S = −1 meson-baryon scattering. This region is studied through a variety of
methods: chiral unitary coupled-channel approaches [1–24], amplitude analyses [25–35],
lattice QCD [36–40], and quark models [41–43], see, e.g., the reviews in Refs. [44–47] and the
recent review dedicated to the Λ(1405) [48]. We highlight the recent effort to simultaneously
analyze the three strangeness S = ±1, 0 sectors with a next-to-next-to-leading order (NNLO)
amplitude in unitarized chiral perturbation theory [49].

Knowledge of the two Λ states provides insight into the generation of the K−pp bound
state [50, 51] as demonstrated in Ref. [52] and into neutron stars, whose equation of state is
sensitive to the propagation of antikaons via the behavior of antikaon condensate [53, 54].
For recent reviews discussing these aspects, see e.g. Refs. [55, 56].

When the scattering amplitude is analytically continued to the second Riemann sheet,
the poles of the Λ(1380), the Λ(1405) and the Σ(1385) can be observed. Note that we have
already made explicit the remarkable two-pole structure in the region of the Λ(1405), which
was first observed in the context of chiral-unitary approaches in Ref. [21] and is now reflected
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in the listings in the Review of Particle Physics [57] (though not yet
in the summary tables). For a general review on such two-pole
structures in QCD, see [47]. Coming back to the poles under
consideration, the amplitude can be uniquely described by the
complex pole positions and residues, which are determined by
fitting models to data. The uncertainties on the pole predictions
and residues can be constrained by recently measured data from
AMADEUS [58] and KLOE [59]. Studying the impact of these new
data on the chiral unitary amplitudes and resonance poles is the
main motivation of this paper. In addition, we investigate the
influence of the Σ(1385). This resonance is sub-threshold with
respect to the �KN channel and there is a centrifugal barrier due
to its P-wave nature. Yet, it is not far from the �KN threshold and
could have an influence on low-energy �KN data through its finite
width. To estimate the influence, we include the line-shape data
from Ref. [60] in the analysis that warrants a physical mass and
width of the Σ(1385).

Furthermore, the predictions of the pole positions and residues
of the Λ(1380), the Λ(1405) and the Σ(1385) are correlated. Quoting
correlations is as relevant as quoting error bars to confine the
uncertainty region more meaningfully. For the first time, we
calculate the pole correlations for a meson-baryon system.

This manuscript is organized as follows: In Section 2 we briefly
discuss the underlying coupled-channel approach that is used to
analyze the data. The fit to the available data from antikaon-proton
scattering, kaonic hydrogen and the so-called threshold ratios are
displayed in Section 3.1. The investigation of the correlations
between the various pole parameters is presented in Section 3.2,
followed by the study of the impact of the new data from KLOE and
AMADEUS on the pole positions of the Λ(1380), the Λ(1405) and
the Σ(1385). In Section 3.4 we discuss the current solution in light of
the new π±Λ line-shape measurements by the Belle collaboration
[61]. We end with a summary and discussion in Section 4. Some
further results are displayed in the appendix.

2 Formalism

In this work we use an approach derived in a series of works [1,
62, 63] which has the correct low-energy behavior by including all
contact interactions from the leading (LO) and next-to-leading
(NLO) chiral Lagrangian, while it also fulfills two-body unitarity.
The latter issue is crucial for two reasons: first, it allows one to
formally access the resonance parameters from poles on the second
Riemann sheet; secondly, the re-summation of the interaction kernel
allows to extend the applicability region of the approach, which
indeed spans several hundred MeV in the present case. The
downside is that the re-summation procedure is not unique and,
thus, some model-dependence is introduced, with the
corresponding parameters being determined from experimental
data. Still, in a given scheme the procedure is systematically
improvable by including kernels of higher order as being
performed recently, see Ref. [49]. Finally, we note that since the
underlying degrees of freedom are the members of the ground state
meson and the ground state baryon octet, the Λ(1380), Λ(1405)
resonances are dynamically generated without being explicitly
introduced, so that their existence and properties can be
considered as genuine predictions.

In the following we recap the main steps in accessing observables
and relating them to the resonance parameters. The T-matrix is
defined in terms of the S-matrix as S � 1 − iT. The corresponding
meson-baryon scattering amplitude for the process M(q1)B (p − q1)
→M(q2)B (p − q2) is then a spinor function T( /q2, /q1;p), where total
four-momentum p conservation is already assumed. This quantity
can now be conveniently derived from the three-flavour CHPT
Lagrangian [64, 65] .

TLO /q2, /q1;p( ) � AWT /q1 + /q2( ),
TNLO /q2, /q1;p( ) � A1−4 q1 · q2( ) + A5−7 /q1, /q2[ ] + A0DF

+ A8−11 /q2 q1 · p( ) + /q1 q2 · p( )( ) (2.1)

for a Minkowski four-momentum product (x · y) and commutator
[a, b] = ab − ba. Here the momentum/spinor structures are
conveniently separated from the channel-space matrices A as
encoded in the chiral Lagrangian. Specifically for strangeness
S = −1, we have 10 × 10 real-valued matrices with respect to the
channels S ≔ {K−p, �K0n, π0Λ, π0Σ0, π+Σ−, π−Σ+, ηΛ, ηΣ0, K+Ξ−,
K0Ξ0}, see the Appendix of Ref. [1] for explicit formulae.

So far, the usage of CHPT has allowed us to put constraints on
possible momentum and flavour structures of the scattering
amplitude (2.1). Including this into the so-called chiral unitary
approach is done by utilizing the Bethe-Salpeter equation (BSE)
in d space-time dimensions in Minkowski space,

Tij /q2, /q1;p( ) � Vij /q2, /q1;p( ) + i∫ dd
ℓ

2π( )d
Vik /q2 , /ℓ;p( )
ℓ
2 −M2

k + iϵ
1

/p − /ℓ −mk + iϵT
kj /ℓ, /q1;p( ),

for V /q2, /q1;p( ) ≔ TLO /q2, /q1;p( ) + TNLO /q2, /q1;p( ),
(2.2)

where i, j, k ∈ S and m/M are the mass of the baryon/meson in
each channel, respectively. The interaction kernel V of the above
integral Eq. 2.2 is restricted to the contact terms only, i.e., it
neglects the presence of the baryon exchange diagrams, the so-
called Born-terms. In general, such terms lead to more complex
analytical structures, e.g., left-hand cuts in various coupled
channels, see e.g. the discussion in [66] While the solution of
Eq. 2.2 is not known in such a case, it can be solved analytically (see
Refs. [2, 62]) when only contact terms are taken into account. For
more details on this issue and comparison to other approaches, see
the review [48]. The UV-divergence inherent to Eq. 2.2 is tamed by
dimensional regularization in the MS scheme setting tadpole
integrals to zero, which amounts to a BSE in the on-shell
factorization as discussed in Ref. [2]. While the natural size of
the associated regularization scale is discussed in Ref. [21], we note
that in the present model it accounts for the Feynman topologies
not included by the Bethe-Salpeter equation. The scales are,
therefore, regarded as free parameters channel-by-channel and
referred henceforth to as {ai|i = 1, 6}, neglecting isospin breaking.
These parameters accompany low-energy constants (LECs) {b0, bD,
bF, b1,. . ., b11} parametrizing matrices A1−4, A0DF, A5−7, A8−11,
respectively, as the free parameters of this model. Note that the
leading-order Weinberg-Tomozawa amplitude AWT only depends
on the pseudoscalar meson decay constant, which we fix together
with all relevant hadron masses to their physical values.

Having defined the scattering amplitude, we obtain partial waves
in the standard way [67]. Specifically, the partial-wave amplitudes
for a transition i → j reads
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fij
L± �

������
Ei +mi

√ �������
Ej +mj

√
16πW

Aij
L + W − mi +mj

2
( )Bij

L( )
−

������
Ei −mi

√ �������
Ej −mj

√
16πW

Aij
L±1 − W + mi +mj

2
( )Bij

L±1( ), (2.3)

whereW = p0 is the total energy in the center-of-mass system (CMS),
L±≔L ± 1/2 is the total angular momentum, the relative angular
momentum is L, the modulus of the three-momentum in the CMS is
qcms,i and Ei ≔

���������
m2

i + q2cms,i

√
. Finally, the quantities Aij

L and Bij
L are

the partial-wave projected invariant amplitudes, obtained from the
scattering amplitude (2.2) as Tij

on−shell � Aij + ( /q + /q′)Bij. Note that
we neglect the Coulomb interaction in the scattering processes
involving charged particles.

The definition (2.3) shows the relation between partial waves
and momentum structures of the scattering amplitude (2.2). This
leads to an interesting observation discussed in Refs. [68, 69] that
because the momentum structures are truncated as shown in Eq. 2.3
both f0+ and f1− partial-waves are indeed complete in the sense that
all partial-wave amplitudes Aij

L and Bij
L required for their calculation

are taken into account. In contrast, f1+ can only be partially
reconstructed as it lacks Aij

2 and Bij
2 terms. This presents a

challenge for predicting the pole position of the Σ(1385)3/2+, but
is overcome in Ref. [68] using the two-potential formalism [70]. It
allows one to include an explicit resonance to an existing unitary
approach without spoiling unitarity. There, we incorporate the
Σ(1385), modifying the isovector f1+ amplitude using the two-
potential formalism [70] extrapolated into the sub-threshold
region as

f1+ ↦ f1+ + fP
1+, for fP,ij

1+ � ΓiΓj W −m0
Σ −∑3

k�1
γkIMB,kΓk( )−1

with Γi � γi +∑3
k�1

γkIMB,kf
ki
1+,

(2.4)
for i, j, k ∈ {πΛ, πΣ, �KN}|I�1. Here, IMB,k is the meson-baryon loop
function [69], whereas γi = qcms,iλλi is the “bare vertex” with one free
fit parameter λ and the relative decay strengths λi to channels πΛ,
πΣ, and �KN fixed by the Lagrangian of Ref. [71], see also Ref. [72].
This is due to the fact that the available data on the Σ(1385) cannot
individually resolve these channels [73]. The bare massm0

Σ and bare
coupling λ are new fit parameters. Additionally, we include a factor
fΣ to scale the final-state πΛ → πΛ interaction to the process in the
experiment [60].

We note that besides the pioneering work of the Munich group
[74] and the current model, the P-wave inclusion into chiral unitary
formalism was also discussed recently in Ref. [75].

3 Results

3.1 Fits

The fits performed here represent a considerable step forward
for two reasons. First, because the model confronts highly
anticipated, recently measured data from the AMADEUS [58]
and KLOE [59] collaborations. These data consists of |fπ−Λ→K−n

0+ |
at W ≈ 1400 MeV and {σK−p→π0Λ, σK−p→π0Σ0 } at W ≈ 1438MeV,
respectively. Second, we study the impact of the older data from Ref.

[60] on the invariant mass distribution for the (Λπ+) final state in the
K−p → (Λπ+)π− reaction. To our knowledge this data has not been
considered before in this context. In addition, we also include the
following, previously considered data:

• The six channels with available total cross section data for
I(JP) � 0(12−), S = −1 meson-baryon interaction with
thresholds close enough to sizeably contribute to the �KN
amplitude around its threshold: K−p → K−p, K−p → �K0n,
K−p → π0Λ, K−p → π0Σ0, K−p → π+Σ−, K−p → π−Σ+ [76–79].

• The differential cross section data for the K−p → K−p and
K−p → �K0n channels [80] with energies where the CHPT
kernel is a good approximation.

• The measurements of the energy shift and width of kaonic
hydrogen performed by the SIDDHARTA collaboration, see
Ref. [81]. These are related in Ref. [82] to the complex �KN
scattering lengths at the threshold including isospin breaking.

• The decay ratios γ = (K−p→ Σ−π+)/(K−p→ Σ+π−), Rn = (K−p→
Λπ0)/(K−p → Λπ0, Σ0π0), Rc = (K−p → charged particles)/
(K−p→ all final states) from Refs. [83, 84]. All ratios are taken
at the K−p threshold.

The summary of all considered data can be found in Table 1.
Note that the old data are discussed in detail in the dedicated review
[48] including links to an open GitHub repository containing these
data in sorted, digital form.

In order to isolate the impact of the recently measured data in
comparison to that of the established data set, we consider four
different data fit scenarios. Scenario F1 includes all data discussed
above, i.e., old and new ones from Refs. [58, 59]. Scenario F2

includes the same data except the KLOE data [59]. Scenario F3

includes all data except the AMADEUS data [58]. Case F4 includes
all of the older data but neither of the recent measurements [58, 59].
For each of these cases, the weighted χ2 according to

χ2dof �
∑aNa

A ∑aNa( ) − n( ) ∑
A

a�1

χ2a
Na

with χ2a � ∑Na

i�1

fa
i

�ℵ( ) − f̂
a

i

Δf̂a

i

⎛⎝ ⎞⎠2

(3.1)
is minimized with respect to n = 23 free parameters collected in the
vector �ℵ � (a1, .a6, b0, bD, bF, b1, ., b11, m0

Σ, λ, fΣ). The number of
data for an observable a ∈ {1,., A} is denoted by Na, and f̂

a

i are
the data with uncertainties Δf̂a

i . The present choice of χ2dof takes
account of the very unequal distribution of number of data points in
different observables, giving more weight to observables with
fewer data.

Our fitting procedure involves finding the parameters for case
F1 by minimizing χ2dof starting with randomly generated free
parameters. We found one set of parameters having a χ2dof an
order of magnitude smaller than all other χ2dof , comprising our fit
result F1. Subsequently, we use these parameters as starting
parameters for the minimization of χ2dof for other scenarios. The
result of this procedure for all fit scenarios is summarized in Table 1,
while the best fit parameters are relegated to the Appendix, see
Table A1.

In summary, we observe that the new data [58, 59] do indeed
provide a non-negligible constraint on the coupled-channel
formalism, e.g., individual contributions χ2a/Na of these data are
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substantially larger than those of the older data, see F2−4. There is,
however, enough elasticity in the current chiral unitary approach,
providing an adequate description of all data, see F1. A more
detailed discussion of the impact of the new data on the various
fits and their results is provided below.

3.2 Amplitudes and poles

The scattering amplitudes for the K−p→ K−p transition in S-wave is
shown in the left column of Figure 1 for the four fit scenarios. For fitF1

that contains all new data, we determine the statistical 1σ uncertainty
region through re-sampling [85]. In that, we first perform a fit to the
original data. Then, the data is varied randomly with respect to provided
statistical uncertainties and a new fit starting with the original one is
performed. This procedure is then repeated sufficiently many times, and
is done for each fit scenario. However, we refrain from showing the
resampling for the other fits to keep the figures simple. As the figure
shows, the amplitude is not very sensitive to (ex-)inclusion of the newdata
from Refs. [58, 59] within statistical uncertainties except for F2 that is
very different.The less known K−n→ K−n amplitude, shown in the right
column, shows comparable variations, especially below the �KN
thresholds. This is also the region where the sub-threshold
AMADEUS data [58] is measured. All the partial waves for �KN

scattering in both isospin channels are collected in Figure A1 in the
Appendix. For the P-waves, we observe a similar pattern as for the
S-waves: The fitsF2,F3, andF4 stay within the uncertainty band ofF1

up to slightly larger deviations in some occasions. In Figure A1 to the
upper left we also observe the superposition of the Λ(1380) and Λ(1405)
poles. Still, the Σ(1385) couples very weakly to the �KN channels and its
effect is unresolved in the �KN amplitudes but can be observed distinctly
in other channels, such as π0Λ → π0Λ and πΣ channels as discussed
below. .We also observe a considerable influence of theΣ(1385) in the πΣ
channel As we fit πΣ data with mixed isospin, changes in I = 1 amplitude
modify the I = 0 amplitude (to get the same data description). This
explains that despite having different isospin, the Σ(1385) has some
limited influence on the Λ(1380) parameters as discussed below.

In regard of the amplitudes with πΛ final states, the result of all four
fit scenarios is shown in Figure 2. There, we also include data points
calculated from the total cross section data [59, 73] assuming S-wave
dominance and isospin symmetry.We emphasize that this is only done to
guide the eye, all relevant fits include this data as cross sections directly. In
the right panel of the same figure we show the results of the line-shape in
the πΛ→ πΛ channel compared to the data from Ref. [60]. We observe
no statistically noteworthy impact of the inclusion of the newdata [58, 59]
on the πΛ line-shape. However, the K−p → π0Λ amplitude does change
significantly when including these data. Especially, the datum by the
AMADEUS collaboration [58] does have a dramatic effect.

TABLE 1 Individual and total χ2 for the fit strategyF1 , . . . ,F4. The individual contributions to the χ2 are the χ2a which contributes to the χ2dof as in Eq. (3.1). Predicted
observables (not included in χ2) are put in parentheses. Bottom part of the table collects the predicted pole positionsW* ∈ C. Uncertainties on pole positions are
shown separately.

Observable # data F1 (all new data) F2 (new amp) F3 (new cs) F4 (no new data)

SIDDHARTA 2 2.09 2.24 1.57 1.06 Old data

γ, Rc, Rn 3 2.15 0.38 1.66 0.10

σK−p→K−p 32 56.60 63.71 60.22 69.15

σK−p→ �K0n 37 66.57 63.52 66.87 70.19

σK−p→π+Σ− 39 50.32 42.16 46.39 35.99

σK−p→π−Σ+ 41 82.63 65.52 72.93 55.95

σK−p→π0Λ 3 0.80 0.30 1.21 0.24

σK−p→π0Σ0 3 0.42 0.26 0.50 1.01

dσ/dΩ(K−p → K−p) 153 311.86 326.24 327.93 351.40

dσ/dΩ(K−p → �K0n) 60 73.63 71.06 72.93 69.97

Σ(1385) line-shape [60] 38 28.42 26.07 28.377 24.89

σK−p→π0Λ [59] 1 0.63 (19.18) 0.89 (15.20) New data

σK−p→π0Σ0 [59] 1 1.78 (3.74) 1.76 (5.08)

|fπ−Λ→K−n
0+ | [58] 1 0.04 0.02 (2.88) (5.63)

∑aχ
2
a 677.98 687.46 685.00 705.92

χ2dof 1.19 1.06 1.26 1.13

Wp
Λ(1405)[GeV] (1.430 − 0.023i) (1.431 − 0.029i) (1.431 − 0.018i) (1.427 − 0.017i)

Wp
Λ(1380)[GeV] (1.355 − 0.036i) (1.300 − 0.019i) (1.346 − 0.029i) (1.347 − 0.027i)

Wp
Σ(1385)[GeV] (1.385 − 0.019i) (1.385 − 0.019i) (1.385 − 0.020i) (1.383 − 0.019i)
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Our fits lead to poles on the second Riemann sheet [++ −−−− + +
++] corresponding to the Λ(1380), Λ(1405) and the Σ(1385)-
resonances. The coupling of these resonances to a meson-baryon
channel i is extracted using following expansion fii

L±(W) �
g2
i /(W −W*) +O(W0) with W* being the resonance pole

position. The quality of the fits and central results for the pole
positions of the four fit scenarios are given in Table 1 while best
fit parameters are relegated to the Appendix, see Table A1. These
parameters define a scattering amplitude which satisfies an analyticity
constraint—eschewing poles on the first Riemann sheet. In practice,
we do not search for poles farther than 150 MeV from the real axis.
The uncertainties of the pole positions are determined in a re-
sampling routine. A detailed analysis of the re-sampled points is
given in Figure 3 and Figure 4. Our central result—fit scenario F1

corresponding to all-data fit—yields the following predictions for the
pole positions and couplings

Wp
Λ 1405( ) � 1.430 6( ) − i0.023 4( ) GeV

g2 �

−0.101 98( ) − i0.193 69( ) K−p

−0.090 98( ) − i0.171 60( ) �K
0
n

+0.048 24( ) + i0.039 29( ) π0Σ0

+0.055 26( ) + i0.036 31( ) π+Σ−

+0.041 23( ) + i0.040 26( ) π−Σ+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)

Wp
Λ 1380( ) � 1.355 16( ) − i0.038 14( ) GeV

g2 �

−0.038 209( ) + i0.146 135( ) K−p

−0.036 147( ) + i0.144 209( ) �K
0
n

−0.110 37( ) + i0.103 56( ) π0Σ0

−0.118 36( ) + i0.102 55( ) π+Σ−

−0.102 38( ) + i0.101 54( ) π−Σ+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

Wp
Σ 1385( ) � 1.385 1( ) − i0.019 1( ) GeV

g2 �
+0.118 15( ) − i0.047 7( ) π0Λ
+0.010 4( ) + i0.008 3( ) π+Σ−

+0.010 4( ) + i0.008 2( ) π−Σ+

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.4)

with 1σ error bars from the re-sampling procedure reported as, e.g.,
+1.234 (56) = +1.234 ± 0.056 etc. Couplings obtained in other fit

scenarios are collected in Table A2. The Λ pole positions compare
well to those quoted in the PDG [57], particularly to those
determined in chiral unitary models of the same type. For a
discussion of chiral unitary model types see [48]. Comparing the
Λ pole positions to the recent precision determination in Ref. [49],
the (narrower) Λ(1405) poles agree, but there is only marginal
overlap for the Λ(1380), that is heavier and wider in the NNLO
analysis of Ref. [49] than in the present analysis. It would be
interesting to study the impact of the new data using that
amplitude as well. The pole position of Σ(1385) agrees well with
the Breit-Wigner corrected determination [86] quoted by the PDG
[57] (1379–1383)(1) − i (17–23)(2) MeV. The g2 for the Σ(1385) to
the �KN channel are not shown because they are of the order of 10–4

which is about two orders of magnitude smaller than the other
couplings. We found that the reason lies in partial cancellations of
terms in Γ �KN in Eq. 2.4. The influence of the Σ(1385), being a
P-wave, sub-threshold resonance is a priori small, and its impact is
further reduced by the tiny residue to �KN.

As discussed in our previous work [68] correlations between real
and imaginary part of the pole positions can be substantial, such that
any reasonable theoretical estimate should also provide
corresponding correlation matrices. One reasonable way to
provide such information is depicted in Figure 3 for our central
resultF1. The ellipses show the reduced confidence region when the
correlation between the real and imaginary positions of each pole is
accounted for. Additionally to this, we have observed a new type of
correlations between Λ(1380) and Λ(1405). This is depicted in the
top panel of Figure 3 using hue gradient of re-sampled solutions.
Specifically, each of the re-sampled solutions consisting of three
complex-valued numbers {Wp

Λ(1380),W
p
Σ(1385),W

p
Λ(1405)} is assigned

a hue ordering those with respect to Im Wp
Λ(1380). Obviously this

means that there will be hue gradient in the point-cloud of the
Λ(1380) poles. A hue gradient in the point-clouds of the Λ(1405) or
Σ(1385) poles would show correlations between those poles and that
of Λ(1380) because the colors of these poles correspond to the same
sample as the corresponding Λ(1380) pole. Indeed, we observe that
Λ(1380) and Λ(1405) poles are highly correlated. The colors in the
top row visualise the relationship between poles. Each point of a

FIGURE 1
Scattering amplitudes for physical channels. Here, the K−n → K−n amplitude is determined assuming isospin invariance. Vertical dashed lines
represent the positions of the relevant two-body thresholds.
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FIGURE 2
Comparison of the best fit results to the new data. Different line-shapes correspond to fit strategiesF1−4 with 1σ band plotted only for the all-data fit
F1. Experimental results are represented by the black empty symbols referring to Baubillier84 [60], AMADEUS [58], KLOE [59] and Kim69 [73]. The latter
two measure cross sections and are included as such into the corresponding fits. In the figure, those are used to estimate partial-waves amplitudes
(assuming isospin symmetry and S-wave dominance) to guide the eye.

FIGURE 3
Summary of the all-data fit (F1) results with respect to predicted resonance parameters. Top: Confidence regions of the pole positions. Each point
corresponds to a pole from a re-sampling solution. Points of the same hue belong to the same sample. The ellipses show 1σ uncertainty regions of each
pole. Bottom: Covariance and correlation matrix between pole parameters. These parameters are the real and imaginary positions of each pole as well as
the couplings to channels. Redder pixels correspond to more positive values and bluer pixels to more negative values.
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given hue is from the same fit-sample visualizing cross-correlations
between different poles. The fact that for the Λ(1380) and Λ(1405),
see top panel of Figure 4, there is a definite hue gradient in the points
(e.g. blue points lie close to each other) indicates that the positions of
the two poles are highly correlated. In contrast, the distribution of
the points for the Σ(1385)-resonance does not have any noticeable
pattern. This indicates that the correlation of the positions of the
Σ(1385) with the positions of the Λ(1380) and the Λ(1405) poles is
negligible.

The covariance matrix, shown on the bottom panel of Figure 4,
contains information about the precision of the fit parameters. The

correlations are calculated from the covariance matrix as depicted also
in the bottom panel of Figure 4. Both matrices use a heatmap
visualization, i.e., the redder the pixel the more positive the
correlation and the bluer the pixel the more negative the correlation.
Indeed, we observe large off-diagonal elements only for
{Re Wp

1380, Im Wp
1380,Re Wp

1405, Im Wp
1405} which confirms the

point distribution plots in the top row of the figure. The tilts of the
ellipses show that the real and imaginary positions of theΛ(1380) have a
strong negative correlation and the real and imaginary positions of the
Λ(1405) show a weaker negative correlation. Furthermore, both the
matrix and the coloring of the pole positions indicate that the real part

FIGURE 4
Comparison of all fit strategies. Left column: Correlations between the pole positions of the Λ(1380) and Λ(1405) resonances for different fit
strategies. Each point corresponds to a pole from a re-sampling solution. Points of the same hue belong to the same sample. Right column: Correlations
between pole positions and couplings. The redder the square the stronger the positive correlation and the bluer the square the stronger the negative
correlation.
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of theΛ(1380) is negatively correlated with both the real and imaginary
part of the Λ(1405). But the imaginary position of the Λ(1380) is
positively correlated with both components of the Λ(1405) position.

3.3 New data impact: Poles and correlations

Taking a step back, we turn now to a comparison of different fit
strategies with respect to the pole positions and couplings. In
Figure 5 we compare pole positions and correlations for the I =
0 case {Λ(1380), Λ(1405)}. As in Figure 4, the ellipses give the
uncertainty regions and the hues show the correlations. The
correlations between the different cases are similar but not
identical. One notable difference is that the error ellipse for the
Λ(1405) in case F4 has a slight positive tilt whereas in the other
cases, the Λ(1405) ellipse has a slight negative tilt. The error ellipse
for the Λ(1380) in F2 is significantly different from the ones of the
other fits. Discrepancies for this fit from the others were already
observed for the K−p → K−p amplitude in Figure 1.

The correlation matrix for each case is shown in the right
column of Figure 5. It shows that the coupling for each pole to a
given channel is very strongly correlated with all other couplings
to that pole. The strongest correlation between positions and
couplings is the negative correlation between its imaginary
position and the couplings to the Λ(1405). This means that if
the imaginary part of the pole position moves further from the
real axis, its residue is likely to increase. In all four fit strategies
there is a negligible correlation between the pole position (not
considering the residues) of the Σ(1385) and either isoscalar
pole. In each fit strategy, there are 8 possible correlation
coefficients between the pole positions of isovector to the
isoscalar resonances for each of the four fits. These are all
small enough that they could be explained by random
variation in the bootstrap samples, even without any
relationship between the positions of the resonances.
However, the residue of the Σ(1385) to the πΛ channel has
stronger correlations with the Λ(1405). In Fit F1, the

correlations to the imaginary pole position is 0.46, the
correlation to the �KN residue is −0.25, and the correlation to
the πΣ residue is −0.33. In fit F3, these correlations respectively
are 0.51, −0.52, and −0.47, and in fit F4, they are 0.32, −0.36, and
−0.33. These correlations are all statistically significant. On the
other hand, there is no notable relationship between the Σ(1385)
and the Λ(1380).

The question arises whether or not it is necessary to include
the Σ(1385) in the fit, at all. To test this, we perform a refit starting
with the parameters of F1, called F1′, in which we exclude the
resonance by removing the pole term of Eq. 2.4 as well as the
Σ(1385) line-shape data [60]. This results in the following values.
There, the square bracket no longer indicate uncertainties but by
how much the values in F1′ changed compared to F1 quoted in
Eqs. 3.2, 3.3:

Wp
Λ 1405( ) � 1.431 +1[ ] − i0.023 +0[ ] GeV

g2 �

−0.103 −2[ ] − i0.195 −2[ ] K−p

−0.092 −2[ ] − i0.177 −6[ ] �K
0
n

+0.051 +3[ ] + i0.038 −1[ ] π0Σ0

+0.056 +1[ ] + i0.036 +0[ ] π+Σ−

+0.044 +3[ ] + i0.040i +0[ ] π−Σ+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

Wp
Λ 1380( ) � 1.357 +2[ ] − i0.038 +0[ ] GeV

g2 �

−0.031 +7[ ] + i0.144 +2[ ] K−p

−0.028 +8[ ] + i0.142 +2[ ] �K
0
n

−0.110 +0[ ] + i0.103 +0[ ] π0Σ0

−0.119 −1[ ] + i0.101 +1[ ] π+Σ−

−0.103 −1[ ] + i0.100 −1[ ] π−Σ+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.6)

These values are very similar and well within the error bars of the
previous values. This indicates that the inclusion of the Σ(1385) has
very limited impact on the Λ(1380) and Λ(1405) and it is not
necessary to include the former in a determination of the latter.

The determinant of the covariance matrix, det C, is the
generalized variance which is proportional to the square of the
volume V of the combined uncertainty region for fit parameters or
extracted quantities [87],

V � Kπ( )n/2
Γ n

2 + 1( )
�����
det C

√
, (3.7)

where K is a constant related to the confidence level, n is the
dimension of the space, C is the covariance matrix and Γ(x)
Euler’s gamma-function. This volume accounts for all possible
correlations and is therefore a more accurate measurement than
any uncertainty calculation that treats parameters independently.
The size of this term is equivalent to the combined uncertainty in the
values of the pole parameters which is given in the first row of
Table 2. This bulk measure confirms that the new data is useful for a
precise determination of the pole parameters.

The 2nd to 4th rows of Table 2 give the generalized variances
calculated from the reduced covariance matrices. For example, setting all
off-diagonal values of the covariance matrix to 0 yields the values quoted
in the 2nd row, i.e., neglecting all correlations. This isolates the effects of
the correlations. The uncertainty region is reduced by a factor of������������������������(1.62 × 10−59)/(2.12 × 10−73)√

≈ 9 × 106. We emphasize that this
very large increase in precision scales up with the number of

FIGURE 5
Cross sections (containing S- and P-waves) for different initial
states to the π0Λ final state with respect to fit scenario F1 (all data fit).
Dashed vertical lines show positions of K−p and �K

0
n thresholds, while

the black arrows indicate the positions of the possible isovector
resonances from Ref. [61].
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predicted resonance parameters. Thus, comparing such quantities
between models requires full knowledge of pole positions and
couplings to different channels. Since this is hard to achieve in
practice, we also determine the generalized variance considering only
the positions of the Λ(1380) and Λ(1405) (real and imaginary part
thereof) as predictions of the model. This is quoted in third row and
neglecting correlations in the fourth row of Table 2. In case F1 the
correlations result in a decrease in the uncertainty region by a factor of������������������������(2.56 × 10−17)/(7.96 × 10−19)√

≈ 6. In summary, a reasonable
comparison of the uncertainties between different models requires one
to determine correlations between predicted resonance parameters.

The generalized variance can also be used to compare how
constrained the different fits are. The full generalized variances for
all fit scenarios read.

det CF1
� 2.12 × 10−73, det CF2

� 1.36 × 10−59, (3.8)
det CF3

� 2.52 × 10−71, det CF4
� 3.24 × 10−70. (3.9)

We note that fit F2 has a much larger generalized variance than the
others which potentially means that a different local minimum has
been found. This larger uncertainty region can be seen from the pole
positions in Figure 5. With the other three fits, the addition of data
points constrains the uncertainty region. Including both new data
sets reduces the uncertainty region by a factor of�������
det CF4

√
/

�������
det CF1

√
≈ 39.

The χ2a in F4 for the new σK−p→π0Λ and |fπ−Λ→K−n
0+ | data are

15.20 and 5.08, respectively (F4 is not fit to these points). In F3,
these values are reduced to 0.89 and 1.76, however, this reduction in
χ2a involves an increase in the total χ2dof showing a bit of tension. Fit
scenario F2 has the best χ2dof ≈ 1.06, however, this fit is also not
ideal. The generalized variance of this fit, shown in Table 2, is
16 orders of magnitude larger than the other fits and the generalized
variance for only pole positions of the Λ(1380) and Λ(1405) is two
orders of magnitude larger. This much larger uncertainty region can
be seen in the larger ellipses and weaker correlations in Figure 5. The
large uncertainty for F2 could be due to over-fitting the point
|fπ−Λ→K−n

0+ | which has a partial χ2a of only 0.02, reduced from 5.63 in
F4. Fit F1 which considers both new sets of data has a better
χ2dof ≈ 1.19 and a smaller generalized variance. This supports the
importance of including both new data sets [58, 59]. In conjunction,
the two new data sets allow for a fit that simultaneously describes all
(old and new) data and more tightly constrains the pole positions of
the Λ(1380), Λ(1405) and Σ(1385).

3.4 Belle π±Λ line-shape data

The Belle collaboration recently measuredΛπ+ andΛπ− line-shapes
fromΛ+

c → Λπ+π+π− decays[61].Forthefirst time,narrowstructuresat
the �KN thresholdsareresolvedthatappearassmallenhancementsontop
of the right shoulder of the large Σ(1385) resonance. These isospin I = 1
structures appear at slightly different masses for the two line-shapes,
potentially reflecting the different thresholds coming from mass
differences within kaon and nucleon multiplets, respectively. Note that
suchisospin-1structureswerefirstconsideredinRef.[21]inthecontextof
chiral-unitary approaches.

The present amplitude explicitly contains the Σ(1385) with realistic
mass and width fitted to πΛ line-shape data [60] as shown in Figure 3.

Note that in that picture we do not show our total cross section but only
the squa\red P-wave amplitude (i.e., no S-wave with potential cusps). In
fact, our isospin-1 amplitudes exhibit S-wave threshold cusps in πΛ.
Some transitions incuding both S-wave and P-wave are shown in
Figure 5. For the πΣ → π0Λ transitions we observe a similar pattern
as in the new Belle data [61], i.e., small cusp structures with peaks at
slightly differentmasses, on top of the large shoulder of theΣ(1385). For
the π0Λ→ π0Λ transition, the Σ(1385) is so dominant that the S-wave
cusps disappear entirely, as the figure shows.

We leave the comparison at this qualitative level, because a more
quantitative analysis requires to formulate our amplitude for total
charges Q = ±1 while here we have it only available at Q = 0. In
addition, the actual data will be described by a superposition of the
processes shown in the figure, including even other ones not shown,
such as K−n → π−Λ and �K0p → π+Λ. This involves new fit
parameters, similarly as needed in the description of other line-
shape data [88]. We leave this to future work.

4 Conclusion

Weanalyse the impactofnewdata fromtheKLOEandAMADEUS
experiments. We also include other, previously not used data, putting
stringent constraints on the line-shape ofΣ(1385). Using these data we
re-fit the chiral NLO unitary coupled-channel model. The new pole
positions for theΛ(1380),Λ(1405), andΣ(1385) are consistentwith the
pole positions of previous analyses quoted by the current edition of the
particle data group review.

The impact of each set of new data is studied in detail in fit
scenarios that exclude them, showing their effect on the poles of the
Λ(1380), Λ(1405), and the Σ(1385). The new data do not further
constrain the pole positions of the two Λ states much. However, the
overall uncertainty of pole parameters (including residues), as
encoded in the generalized variance, is reduced by a factor of 40.
This would be equivalent to a reduction of the uncertainty of pole
parametersby20%onaverageby thenewKLOEandAMADEUSdata.

As for the Σ(1385), there are some correlations of its coupling
with some parameters of the two Λ states. However, that does not
mean that this resonance must be included in the analysis. Indeed,
by omitting it and the associated line-shape data, the pole
parameters of the Λ states change only well within uncertainties
(pole positions by less than 2 MeV).

For the first time, we determine correlations between resonance
parameters, in particular of the two Λ(1405) states. These

TABLE 2 The generalized variance, det C, calculated from the covariance
matrices for F1. The second to fourth rows show generalized variances
calculated for covariance matrices that have been reduced to isolate the
effects of various correlations. Number of predicted resonance parameters is
denoted Npred.

Npred F1

det C 18 2.12 × 10–73

det C|no correlations 18 1.62 × 10–59

det C|pole positions 4 7.96 × 10–19

det C|pole positions|no correlations 4 2.56 × 10–17
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correlations are as important as error bars, and we show that for a
proper comparison of different models it is necessary to include
them. Indeed, the generalized uncertainty

����
detC

√
decreases by a

factor of six if correlations of pole positions are taken into account.
In addition, we made an initial comparison with recently

measured Belle line-shape data for the π±Λ final states. We
observe cusp structures at the �KN thresholds on top of the right
shoulder of the Σ(1385). Future work with the amplitude formulated
in non-zero net charge will allow for quantitative studies.

Comparing our pole position of the Λ(1380) with the NNLO
results of Ref. [49] we observed some tension. It would be interesting
to update that work using the new data from KLOE and AMADEUS
which would also allow for a better determination of the systematics
of chiral unitary approaches.
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Appendix Further results

FIGURE A1
Isospin channels of the S- and P-wave amplitudes in the four fit scenarios.
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TABLE A1 Best fit parameters for the four fit scenarios. These parameters are accessible in digital form in auxiliary arXiv-files.

Parameter F1 (all new data) F2 (new amp) F3 (new cs) F4 (no new data)

a1 +0.2543 +0.7631 +0.1916 +0.2910

a2 +1.1890 +1.6767 +1.1655 +1.6867

a3 +0.1158 −0.2048 +0.1674 +0.1612

a4 −1.5820 −0.3661 −0.8428 −0.7976

a5 −2.5870 −3.2600 −2.2306 −1.7103

a6 −1.3710 −1.7491 −1.3372 −1.2320

b1 −0.3813 −0.3567 −0.3753 −0.3554

b2 +1.3979 +0.6008 +1.3035 +0.9854

b3 −0.2878 −0.2332 −0.2958 −0.2828

b4 −0.3012 −0.2162 −0.2798 −0.2476

b5 +0.2502 +0.1186 +0.2910 +0.2514

b6 −0.7228 −0.4414 −0.8125 −0.7952

b7 −0.8582 −0.4403 −1.0135 −1.0332

b8 +0.0436 +0.0447 +0.0508 +0.0857

b9 −0.4800 −0.2879 −0.5488 −0.4557

b10 −0.0314 +0.0094 −0.0283 +0.0044

b11 +0.4471 +0.1048 +0.4591 +0.3926

b0 −0.8892 −1.0699 −0.8799 −0.8550

bD +0.2775 +0.4028 +0.2714 +0.3562

bF −0.0001 −0.3473 −0.1323 −0.2446

λ[GeV−1] +2.2982 +2.5776 +2.4062 +3.3518

m0
Σ[GeV] +1.5660 +1.6592 +1.5857 +1.8961

fΣ +0.6378 +0.5285 +0.5362 +0.3975
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TABLE A2 Individual and total χ2 for the fit strategyF1 , . . . ,F4. The individual contributions to the χ2 are the χ2a which contributes to the χ2dof as in Eq. 3.1. Predicted
observables (not minimized χ2a contributions) are put in parentheses. Bottom part of the table collects the predicted pole positionsW* ∈ C and the pole residues
g2. Uncertainties on the pole parameters in F1 can be determined from the covariance matrix given in the auxiliary arXiv-files as described in Section 3.2.

F1 (all new data) F2 (new amp) F3 (new cs) F4 (no new data)

Λ(1380) g2
K−p −0.038 + 0.146i −0.373 + 1.407i −0.052 + 0.1133i −0.076 + 0.107i

g2
�K0n

−0.036 + 0.144i −0.375 + 1.480i −0.052 + 0.116i −0.076 + 0.111i

g2
π0Σ0 −0.110 + 0.103i −0.098 + 0.480i −0.101 + 0.104i −0.096 + 0.094i

g2
π+Σ− −0.118–0.102i −0.106 + 0.469i −0.111 + 0.103i −0.108 + 0.092i

g2
π−Σ+ −0.102 + 0.101i −0.093 + 0.478i −0.091 + 0.102i −0.085 + 0.092i

Λ(1405) g2
K−p −0.101–0.193i −0.040–0.283i −0.097–0.133i −0.085–0.103i

g2
�K0n

−0.090–0.171i −0.025–0.243i −0.081–0.124i −0.066–0.095i

g2
π0Σ0 +0.048 + 0.039i +0.077 + 0.007i +0.031 + 0.036i +0.027 + 0.032i

g2
π+Σ− +0.055 + 0.036i +0.081–0.001i +0.034 + 0.035i +0.030 + 0.030i

g2
π−Σ+ +0.041 + 0.040i +0.072 + 0.015i +0.027 + 0.038i +0.023 + 0.033i

Σ(1385) g2
π0Λ0 +0.118–0.047i +0.130–0.047i +0.129–0.053i +0.147–0.006i

g2
π+Σ− +0.010–0.008i +0.003–0.003i +0.007–0.005i +0.004–0.003i

g2
π−Σ+ +0.010–0.008i +0.003–0.003i +0.007–0.005i +0.004–0.003i
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