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As the product of a circuit’s voltage and current, apparent power (S) is of paramount
necessity and importance in electrical utilities, electronics, communication, and
neural network systems. Based on the existing AC power analysis on the two-
terminal passive elements (i.e., R, L, and C), some in-depth research on AC apparent
power calculations for second-order memory elements and memristive systems is
introduced to help with revealing their complex and unique non-linear phenomena.
This paper derives the forms of real power, reactive power, and apparent power for
the proposed second-order memory elements (i.e.,MR,MC, andML) and reveals the
difference between ideal memory elements and traditional passive ones (i.e., R, C,
and L). For all involvedmemory elements, harmonic values and an extra termoccur in
the expression of powers to represent their memory characteristics. Especially, the
real power is a function of a circuit’s dissipative elements (usually resistances R), but
not exactly the memristor (MR). Then, the corresponding curves could be depicted,
which demonstrate the differences between R/C/L andMR/MC/ML and verified that
harmonic values existed in SMR/SMC/SML, meaning that it would perpetually supply
energy when operated with an alternating current.
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1 Introduction

Since the memristor was founded by L. O Chua in 1971 [1] and fabricated by HP
Laboratories in 2008 [2,3], the notion of the MR was expanded to encompass ‘memristive
systems’ and has demonstrated that the existence of a fingerprint (known as the ‘pinched
hysteresis loop’) is the sufficient condition of a memory system [1,4]. Subsequently,
memcapacitor (MC, abbreviation of ‘memory capacitor’) and meminductor (ML,
abbreviation of ‘memory inductor’) were postulated in 1978 [2,3]. Up to now, plenty of
memristive systems with different memory elements have been implemented. In the field of
neural systems and networks, in 2015, both single-associative memory and multi-associative
memories based on a memristive Hopfield network have been realized with memristors and
memristive systems [5]. In 2019, a novel synaptic unit with double identical memristors and its
neural network circuit architecture was built to update the weight matrices [6]. In 2020, C Y Lin
and his co-workers demonstrated one resistive random-access memory with a novel memristor
to mimic biological synapses, which offered a multi-bit functionality and synaptic plasticity for
simulating various strengths in neuronal connections [7]. In 2021, spiking and burst
phenomena were successfully simulated based on memristor circuits [8]. In 2022, Juan
Pablo Carbajal and his co-workers introduced a training algorithm for a memristor
network, which has been implemented in the hardware [9]. Also, Yi and his team reported
an activity-difference-based training on co-designed tantalum oxide analog memristor
crossbars, which has been termed memristor activity-difference energy minimization and
trained one-layer and multilayer neural networks that can classify Braille words with high
accuracy [10]. Then, Sun and his team proposed a multimode generalization and differentiation
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circuit for the Pavlov associative memory based on memristors [11].
Also, LiaoM et al. realized the associative memory neural network and
the gradual learning, gradual forgetting, and gradual transferring
processes of emotions and designed a memristor-based circuit of
the affective associative memory neural network [12]. Based on the
memristive Hopfield neural network, neural bursting and
synchronization have been imitated by modeling two neural
network models [13]. Moreover, the famous Hodgkin−Huxley
neuron model with a memristor [14] and firing mechanism for
both single memristive neuron and double memristive coupled
neurons [15] have been built. From the aforementioned works, it
has been widely recognized that memristors have been successfully
employed to configure neurons and synapses in a series of
neuromorphic circuits.

In the field of emulator and oscillation circuits, the following non-
linear behaviors have been founded, such as spiking and bursting
oscillation [8,16], coexistent and hidden attractors [17,18], two-
parameter bifurcations [8,19], chaotic dynamics [20,21], memristive
diode bridge-coupled oscillator [22], neural oscillation [23,24], and the
unified floating and grounded mem-element emulator [3,3].
Furthermore, there are some other applications. For example, in
memory computing, both charge-based and resistance-based
memory devices are used to analyze their physical attributes [25]. In
the machine learning and neuromorphic hardware, the memristor has
been applied for proving the effectiveness for edge detection [16]. In the
privacy protection of medical data [26], image encryption [27], and
audio encryption application [28], multi-scroll memristive Hopfield
neural networks have played an important role. In 2011, D Biolek et al.
presented is a proof that the ‘non-crossing-type pinched hysteretic
loops’ phenomenon cannot occur in ideal memory elements, which are
defined axiomatically via corresponding constitutive relations or via
other equivalent characteristics and pointed that the ‘crossing-type
hysteretic loop’ is one of their typical fingerprints [29,30]. In 2020,
Guo Z et al introduced a phasor analysis method for memory elements
to help with the understanding of complex non-linear phenomena in
circuits with a memristor, memcapacitor, meminductor, and second-
order memristor [31]. In 2021, the expression of equivalent admittance
and impedance connected in parallel and seriesmemristive circuits were
derived [32], which are still in their infancy. Also, these existing
researches have opened new realms for non-linear circuit investigations.

The second-order memristor, such as the ideal HP memory
elements, could be considered as one of the most closely related
ways to reflect the constitutive relationship of a physical memristor
and are also the keys to developing a new generation of intelligent and
neuromorphic devices. There are few pieces of literature that involve
power analysis for these memory elements. Although some effort has
been applied and published inAC circuit analyses, they are not sufficient
in obtaining entry characteristics for an electric circuit in practical
engineering. For the sake of the completeness of the non-linear electric
circuit theory, power analyses and calculations should be given more
and more attention. In this paper, based on constitutive relationships,
some in-depth research on AC power calculations for memory elements
are introduced to help in revealing their complex and unique non-linear
phenomena andmemory features. The difference between ideal second-
order memory elements (i.e.,MR,MC, andML) and traditional passive
ones (i.e., R, C, and L) is presented according to the forms of apparent
powers for them. For all involved memory elements, harmonic values
and an extra term occur in the expression of apparent power to
represent their memory characteristics. Especially, the real power

equals the apparent power for a resistor (R), which is the positive
value, but this result is not available for the memristor (MR) in the unit
of Ohm (Ω). Moreover, observed from the curves of PR/QC/QL and SMR/
SMC/SML, harmonic values exist in all expressions of apparent power.
These harmonic (and negative) values represent that it would
perpetually supply energy when operated with an alternating current.

The remainder of this paper is organized as follows: in Section II,
the background on the apparent power for basic 2-terminal passive
elements (i.e., R, L, and C) and a brief introduction on ideal memory
elements are presented. Then, three apparent power models for an
ideal memristor (MR), memcapacitor (MC), and meminductor (ML)
are derived in Section III. In Section V, the apparent power for the
combination of memory elements is fully studied and analyzed.
Finally, the conclusions are summarized in Section VI.

2 Background

2.1 AC power analysis of R, L, and C

Based on the circuit theory, instantaneous power (P(t)) could be
defined as the product of the instantaneous voltage v(t) across the

FIGURE 1
Instantaneous voltage and instantaneous power in the time
domain. (A) Instantaneous voltage in the time domain. (B) Instantaneous
power in the time domain.
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element and instantaneous current i(t) through the load element. The
combination of real power and reactive power is called apparent
power, without a reference to the phase angle. In a simple circuit with
the passive element, the applied current i(t) � I cos(ωt + θi) through
R, L, or C, instantaneous apparent power (SR(t), SC(t), or SL(t)), and
relations between the voltage and current are characterized by the
following representation:

vR t( ) � RI cos ωt + θi( )

vC t( ) � I

ωC
cos ωt + θi − π

2
( )

vL t( ) � ωL cos ωt + θi + π

2
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
and

SR t( ) � PR t( ) � RI2

2
1 + cos 2ωt + 2θi( )[ ]

SC t( ) � QC t( ) � I2

2ωC
cos 2ωt + 2θi − π

2
( )

SL t( ) � QL t( ) � ωLI2

2
cos 2ωt + 2θi + π

2
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(1)

where variables vR, vC, and vL present the voltages; SR, SC, and SL are
the apparent powers; PR, QC, and QL stand for the real power for a
resistor (R) and reactive powers for both the capacitor (C) and
inductor (L), respectively.

Then, considering a current source (i) is applied as the input
excitation, setting the parameters (I = 1A, ω = 0.002 rad/s, θ = π/6, R =
2Ω, C = 40F, and L = 30H), the following curves of instantaneous
voltage (vR(t), vC(t), or vL(t)) and instantaneous power (PR(t),QC(t), or
QL(t)) are drawn in Figure 1.

From Figure 1, the instantaneous real power (PR(t)) is always
positive, and reactive power (QC(t) and QL(t)) may be positive or
negative values.

Next, AC power analysis should be present, which is of paramount
importance that involves the transmission of power from one point to
another. It could be considered as a basic and useful technique for
analyzing circuits with AC signals.

Recalling from physics, the phasor-domain representation of
impedances for passive elements (i.e., R, L, and C) can be given as
follows:

ZR

· � R

ZC

· � 1
jωC

� 1
ωC

∠ −π
2

( )
ZL

· � jωL � ωL∠
π

2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (2)

We consider a practical circuit network, which is the arbitrary
combination of passive elements under sinusoidal excitations, as
shown in Figure 2.

Both the voltage and current at the terminals of the network can be
described as follows:

i t( ) � I cos ωt + θi( ) and v t( ) � U cos ωt + θv( ) , (3)

where both variables I and U present amplitudes (or peak values); θi
and θv stand for phase angles of the voltage and current, respectively.

Thus, instantaneous power for the network is computed as follows:

P t( ) � 1
2
UI cos 2ωt + θv + θi( ) + cos θv − θi( )[ ]. (4)

From Eq. 4, there are two terms in the form of instantaneous
power. The first part is a sinusoidal function whose frequency is 2ω,
which is twice the angular frequency of the voltage or current, plus the
sum of the phase of the voltage and current. The second one is time
independent, which depends upon the phase difference between the
voltage and current.

Practically, instantaneous power is difficult to measure. Also, the
value measured by the wattmeter is the average power, which shows
the average of instantaneous power over a period of time and is
given by

Pavg � UI

2T
∫ T

0
cos 2ωt + θv + θi( )dt + 1

2
UI cos θv − θi( ), (5)

where Pavg means the average of power. It has two integrals. The first
integral is a sinusoid. The average of this sinusoid over a period of time
is zero. The second integral term is constant. Thus, average power can
be denoted as Pavg � 1

2UI cos(θv − θi).
Subsequently, based on the concept of the effect value or the root

of the mean of the square of the AC signal, the effect value of power
(Prms) can be written as follows:

Prms � U	
2

√ I	
2

√ cos θv − θi( ) � UrmsIrms cos θv − θi( ). (6)

Moreover, in order to clearly show the related concepts on load
impedance (Z � R + j(ωL − 1

ωC)) in an AC circuit, apparent power (S)
and reactive power (Q) can be presented as follows:

S � I2rms · Z � P + jQ
P � Re S( ) � UrmsIrms cos θv − θi( )
Q � Im S( ) � UrmsIrms sin θv − θi( )

⎧⎪⎨⎪⎩ , (7)

where real power (P = Prms = Pavg) is delivered to a load in watts, which
is the only useful and actual power dissipated by the load. Reactive
power (Q) is related to the energy exchange between the source and the
reactive part of the load.

2.2 Mathematical models of the ideal second-
order memristor, memcapacitor, and
meminductor

According to the concepts of memristors in [1], there are three
mathematical representations of the time-invariant ones, which have
been named as extended memristor, generic memristor, and ideal
memristor; each one has two forms depending on whether the input
signal is a current source (current-controlled memristor) or a voltage
source (voltage-controlled memristor). In this section, we focus on one
of the specific cases based on the constitutive relationship, i.e., the ideal
second-order memristor (MR), second-order memcapacitor (MC),
and second-order meminductor (ML).

Considering a charge-controlled memristor for an ideal second-
order one, its constitutive relationship can be described analytically by
a proposed cubic polynomial:

FIGURE 2
Practical network with passive elements excited by the sinusoidal
source.
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φ � 1
3
a11q

3 + 1
2
b11q

2 + Rq (8)

where φ and q are the accumulated flux and charge, respectively; a11
and b11 are the two parameters; R represents the initial memristance in
Ohm (Ω).

The pinched hysteresis loop occurs at the origin (v, i) = (0, 0) and is
depicted in Figure 3A. The Lissajous figures of v−i for C−1

m and Lm are
the approximative conical ellipse loops and semi-ellipse loops in
Figure 3B, respectively.

Also, the proposed ideal second-order memristance R(q) can be
calculated as follows:

Rm q( ) � a11q
2 + b11q + R. (9)

Then, constitutive relations and notions of the ideal second-order
memcapacitor and meminductor can be expanded as follows:

Cm φ( ) � a12φ
2 + b12φ + C

Lm q( ) � a13q
2 + b13q + L

{ , (10)

where Cm and Lm stand for the memcapacitance and meminductance,
respectively; φ and q are the time-domain integrals of u and i,
respectively; a12, b12, a13, and b13 are the parameters; both C and L
represent the initial memcapacitance in farad (F) and meminductance
in henry (H).

Both pinched hysteresis loops occur at the origin (v, i) = (0, 0) and
are depicted in Figure 4.

From Figure 3 and Figure 4, ‘crossing-type hysteretic loops’ are
exhibited as one of their typical fingerprints for ideal memory
elements [4].

3 Power analysis for memory elements

We consider a non-linear circuit which is a combination of a
memory element and several resistors under sinusoidal excitation. It
is tested with bipolar periodic input sinusoidal signals, which result in a
periodic sinusoidal response with a different frequency. Both the resistor
and memristor have the unit of Ohm, and the “in-phase” relationship
could be found for the purely resistive circuit, but different conclusions
could occur for the non-linear circuit with a memory element. As
mentioned in the previous section, this section begins by defining and
deriving the apparent power for this special non-linear circuit with only
one memory element, as shown in Figure 5.

3.1 Apparent power of an ideal MR

For a charge-controlled ideal second-order memristor (see Eq. 9),
we assume that the applied current source is i(t) � I cos(ωt + θi),

FIGURE 3
Pinched hysteresis loop and Lissajous figure of v−i. (A) Pinched
hysteresis loop of an ideal memristor. (B) v−i for the inverse
memcapacitance and meminductance.

FIGURE 4
Pinched hysteresis loops. (A) Double-valued Lissajous figure of q(t)
and v(t) for an ideal second-order memcapacitor. (B) Double-valued
Lissajous figure of i(t) and ϕ(t) for an ideal second-order meminductor.

FIGURE 5
Memristive system with a memory element and several resistors
excited by a sinusoidal source.
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and the relation between the voltage and current can be given as
follows:

i t( ) � I cos ωt + θi( ), t ≠ 0

v � RI + a11I
3

4ω2( )cos ωt + θi( ) − a11I
3

4ω2 cos 3ωt + 3θi( ) + b11I
2

2ω
sin 2ωt + 2θi( )

⎧⎪⎪⎨⎪⎪⎩ ,

(11)

where the variables i and vMR with the period t could be presented in the
form of the Fourier series; I, (RI + a11I3

4ω2 ), (−a11I3

4ω2 ), and (b11I22ω ) are real
coefficients. The voltage (vMR) has three parts, and all of them are
sinusoidal functions; the frequency in the first part is also ω, which is
the same angular frequency and phase between the voltage and current.
The frequency in the second one is 3ω, which is triple the angular
frequency and phase of the current. The frequency in the third one is 2ω,
which is double the angular frequency and phase of the current.

Then, instantaneous power PMR(t) for a memristor in Figure 5
could be also defined as the product of instantaneous voltage vMR(t)
across this element and the instantaneous current i(t) through it, given
as follows:

PMR t( ) � vMR t( )i t( ) � RI2

2
+ a11I

4

8ω2( )
+RI

2

2
cos 2ωt + 2θi( ) − a11I

4

8ω2 cos 4ωt + 4θi( )

+b11I
3

4ω
sin 3ωt + 3θi( ) + sin ωt + θi( )[ ],

(12)

where the variable PMR is also presented in the form of the Fourier
series; (RI22 + a11I4

8ω2 ), (RI22 ), (−a11I4

8ω2 ), and (b11I34ω ) are real coefficients. In Eq.
(12), there are five terms in the form of memristor instantaneous
power. The first part is constant or time independent, which depends
on the angular frequency of the current. The second part is a sinusoidal
function whose frequency is 2ω, which is twice the angular frequency
and phase of the current. The third part is a sinusoidal function whose
quadruple frequency and phase are 4ω and 4θi, respectively. The last
part is also a sinusoidal function.

Moreover, the average value of memristor instantaneous power
over on period can be given as follows:

PavgMR t( ) � RI2

2
+ a11I

4

8ω2( ) + RI2

2T
∫T

0
cos 2ωt + 2θi( )dt − a11I

4

8tω2∫ T

0
cos 4ωt + 4θi( )dt

+b11I
3

4Tω
∫ T

0
sin 3ωt + 3θi( ) + sin ωt + θi( )[ ]dt

,

(13)

where PavgMR has two terms. The first one is a non-linear function with
frequency instead of the constant for purely resistive circuits. The
second integer term is a sinusoid, which equals to zero over a period of
time. Therefore, memristor average power could be denoted as
PavgMR � (RI22 + a11I4

8ω2 ), which is quite different from the value of
one linear resistor.

Furthermore, as mentioned in the concept of the effect value of
power (PrmsMR), it can be derived as follows:

PrmsMR � R
I	
2

√( )2

+ a11
2ω2

I	
2

√( )4

� RI2rms +
a11
2ω2

I4rms, (14)

where PrmsMR has two parts. The first part is a constant which is similar
to the effect power of the resistor. The second one is a non-linear
function, which could change with the frequency affecting the
memristive circuit effect power.

According to the concepts in the circuit theory, for an AC purely
resistive circuit, the current and voltage are in-phase and power at
any instant can be found by multiplying the voltage by the current at
that instant, and because of this “in-phase” relationship, P(t) and
Prms(t) values can be used to find the equivalent DC power or heating
effect.

PR t( ) � RI2 cos2 ωt + θi( ) � RI2

2
1 + cos 2ωt + 2θi( )[ ]

PMR t( ) � RI2

2
1 + cos 2ωt + 2θi( )[ ] + a11I

4

8ω2 1 − cos 4ωt + 4θi( )[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(15)

and

PrmsR � UI

2
cos θv − θi( ) � RI2rms

PrmsMR � R
I	
2

√( )2

+ a11
2ω2

I	
2

√( )4

� RI2rms +
a11
2ω2I

4
rms

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (16)

While comparing the instantaneous power between (PR) and
(PMR) (see Eq. 15) and effect power between (PrmsR) and (PrmsMR)
(see Eq. 16), there is an extra term in each equation; they are
unpublished and important special variables that change with the
frequency. Both of them can be considered as key points in exhibiting
memory characteristics for a memristor.

Hereby, when a current source (i) is applied through this memory
element, the parameters (I = 3A, ω = 1.5 rad/s, θ = π/6, R = 2, b11 = 2,
and a11 = 2), curves of the current (i(t)), voltage (vMR(t)), and
instantaneous powers (PR(t) and PMR(t)) are shown in Figure 6.

FIGURE 6
Different curves of instantaneous power in the time domain and
fingerprint of MR. (A) Curves of the current (i(t)), voltage (vMR(t)), and
instantaneous powers (PR(t) and PMR(t)). (B) Pinched hysteresis loops of
the ideal MR.
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From Figure 6, multiple frequencies between the input signal
(i(t))/response signal (vMR(t)) and instantaneous power (PR(t) and
PMR(t)) are observed. Also, the existence of fingerprints for the
proposed MR could be verified. For a traditional resistor (R), when
the current source i(t) is applied through R = 2Ω, it is absorbed power
in watts (W) and can be illustrated through red-dotted lines, which
present the twice frequency relationship between i(t) and PR(t).
Complex curves of vMR(t) and PMR(t) demonstrate unique memory
characteristics by negative values, i.e., the negative value would mean
that it would perpetually supply energy when operated with an
alternating current. However, according to concepts of real power
for a resistor, it should always be a positive value. Thus, real power is
not suitable for defining the features of an MR or memristive system,
with apparent power being applied (SMR(t)).

Furthermore, in general electrical engineering, the power factor
(abbreviated as pf) of an AC power system is defined as the ratio of
the real power absorbed by the load to the apparent power flowing
in the circuit. Real power is the average of the instantaneous
product of voltage and current and represents the capacity of
electricity for performing the work. Therefore, there are the
following relations: 1) Q = 0 for resistive loads (unify pf); 2)
Q < 0 for capacitive loads (leading pf); 3) Q > 0 for inductive
loads (lagging pf). However, from Figure 6A, both positive and
negative values exist in instantaneous power (PMR(t)), instead of
only the positive values in real instantaneous power (PR(t) in
Figure 1B).Here, there are two meanings: One means that the
perpetual supply energy could occur to keep its unique memory
characteristics and the other implies that the effect of the power
factor disappeared in such types of circuits and only the definition
of apparent power is still working.

3.2 Apparent power for an ideal MC

For a φ-controlled (φ denotes the time-domain integral of the
voltage) ideal second-order memcapacitor (see Eq. 10) and applied
voltage source v(t) � U cos(ωt + θv), the following relation between
voltage and current can be computed:

v t( ) � U cos ωt + θv( ), t ≠ 0

iMC t( ) � − UCω + 3α12U
3

4ω
( )sin ωt + θv( ) + α12U

3

4ω
sin 3ωt + 3θv( )

+b12U
2

2
cos 2ωt + 2θv( ) − b12U

2

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where the variables v and iMC with the period t can be presented in
the form of the Fourier series; (± b12U2

2 ), (−UCω − 3α12U3

4ω ), and (α12U3

4ω )
are real coefficients. The current (iMC) has four parts, and three of
them are sinusoidal functions, which are the multiple angular
frequencies and phases between the voltage and current. The
last part is a constant.

In an AC circuit, the product of voltage and current is
expressed as volt-ampere (VA) and is known as apparent
power, symbol “S”. Also, the “in-phase” relationship between
the current and voltage exists for an AC purely resistive circuit.
However, if the circuit contains reactive components, the voltage
and current waveforms will be “out-of-phase” by some amount
determined by the circuit’s phase angle. If the phase angle between
the voltage and current is at its maximum of π/2, the volt-ampere
product will have equal positive and negative values. In other
words, there is also another power component that is present

FIGURE 7
Different curves of instantaneous power in the time domain and
fingerprint of MC. (A) Curves of v(t), iMC(t), and QC(t) and QMC(t) in the
time domain. (B) Pinched hysteresis loops of the ideal MC.

FIGURE 8
Instantaneous values in the time domain and fingerprint of ML. (A)
Instantaneous values of the current (i(t)), voltage (vML(t)), and
instantaneous reactive powers (QL(t) and QML(t)) in the time domain. (B)
Pinched hysteresis loops of the ideal ML.
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whenever there is a phase angle. This component is called reactive
power (sometimes referred to as imaginary power) and is
expressed in a unit called “volt-amperes reactive”, (Var), and
symbol “Q.” When the reactive circuit returns as much power
to the supply as it consumes, it results in the average power
consumed by the circuit becoming zero. Then, the expression
of active power P(t) and Prms = UrmsIrms is no longer suitable. These
reactive components include the capacitor, inductor, and memory
elements (i.e., memcapacitor and meminductor). Also, both MC
and ML are not considered as new fundamental circuit elements
(Liu, 2020b).

Then, instantaneous reactive powerQMC(t) could be defined as the
product of the instantaneous voltage v(t) across this element and the
instantaneous current iMC(t) through it, given as follows:

QMC t( ) � −1
2
U2 Cω − a12U

4

4ω
( )sin 2ωt + 2θv( )

+α12U
4

8ω
sin 4ωt + 4θv( ) + b12U

3

4
cos 3ωt + 3θv( )

−b12U
3

4
cos ωt + θv( ),

(18)

where the variable QMC is also presented in the form of the Fourier
series; (−1

2U
2Cω − a12U4

4ω ), (a12U4

8ω ), (b12U3

4 ), and (−b12U3

4 ) are real
coefficients. There are four parts in QMC, whose values all depend
on changes with the angular frequency.

While comparing instantaneous reactive powers between (QC(t))
and (QMC(t)), there is an extra term in Eq. (19), which is unpublished
and important because special variables change with the frequency.
They could be considered as key points for exhibiting memory
characteristics for the memcapacitor.

QC t( ) � −U
2Cω

2
sin 2ωt + 2θv( )

QMC t( ) � −U
2Cω

2
− a12U

4

4ω
( )sin 2ωt + 2θv( )

+ b12U
3

4
cos 3ωt + 3θv( ) − b12U

3

4
cos ωt + θv( ) + a12U

4

8ω
sin 4ωt + 4θv( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(19)

When the phase angle between the voltage and current is at its
maximum of π/2, the relationship can be given as follows:

QC � −CU
2

2
ω

QMC � −U
2Cω

2
+ a12U

4

4ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (20)

Next, for an φ-controlled memcapacitor, when a voltage source (v)
is applied throughMC, the parameters (U = 1.5A, ω = 3 rad/s, θ = π/6,
C = 0.7, a12 = 1.3, and b12 = −1.3), the curves of voltage (v(t)), current
(iMC(t)), and instantaneous reactive powers between (QC(t)) and
(QMC(t)) are depicted in Figure 7.

As observed from Figure 7, multiple frequencies between the input
signal (v(t))/response signal (iMC(t)) and instantaneous powers (QC(t)
and QMC) are observed. Then, the existence of fingerprints for the
constructed MC could be verified. For one traditional capacitor (C),
when the voltage source v(t) is applied cross C = 0.7F, its reactive
power can be represented through a cyan-solid line, which presents the
twice frequency relationship between v(t) and QC(t). Complex curves
of iMC(t) and QMC(t) demonstrate unique memory characteristics
through negative values with the unit of volt-ampere reactive (Var).

3.3 Apparent power for an ideal ML

Similar to the description on MC and motivated by the
aforementioned analysis on the ideal ML, for a q-controlled ideal
meminductor (see Eq. 10) and applied current source
i(t) � I cos(ωt + θi), the relation between the voltage and current
can be given as follows:

i t( ) � I cos ωt + θi( ), t ≠ 0

vML t( ) � − ILω + 3a13I
3ω

4ω2( )sin ωt + θi( ) + a13I
3

4ω
sin 3ωt + 3θi( ) + b13I

2

2
cos 2ωt + 2θi( ) − b13I

2

2

⎧⎪⎪⎨⎪⎪⎩ ,

(21)

FIGURE 9
Special circuit with a current source i(t) through impedance (ZM).

FIGURE 10
v−i curves and apparent power of series-connected circuits. (A) v−i
curves of the series-connected combination of MR, MC, and ML. (B)
Voltage and apparent power in the time domain.
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where the I and VML with the period t can be presented in the form of
the Fourier series. (−ILω − 3a13I3ω

4ω2 ), (a13I34ω ), and (± b13I2

2 ) are real
coefficients. Similar to MC, the voltage (vML) has four parts; they
are one constant and three sinusoidal functions, which are multiple
angular frequencies and phases between the voltage and current.

Then, instantaneous reactive power QML(t) can be derived as
follows:

QML t( ) � −1
2
I2Lω − a13I

4ω

4ω2( )sin 2ωt + 2θi( )

+a13I
4

8ω
sin 4ωt + 4θi( ) + b13I

3

4
cos 3ωt + 3θi( )

−b13I
3

4
cos ωt + θi( )

, (22)

where (−LI2

2 ω − a12U4

4ω ), (a13I48ω ), (b13I34 ), and (−b13I3

4 ) are real coefficients.
In Eq. 22, there are also four parts, whose values could be determined
by the change in angular frequency.

The instantaneous reactive power between (QL(t)) and (QML(t))
(see Eq. 23) is computed as follows:

QL t( ) � −I
2Lω

2
sin 2ωt + 2θi( )

QML t( ) � −I
2Lω

2
− a13I

4ω

4ω2( )sin 2ωt + 2θi( )

+a13I
4

8ω
sin 4ωt + 4θi( ) + b13I

3

4
cos 3ωt + 3θi( ) − b13I

3

4
cos ωt + θi( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(23)
where two extra negative terms exist in QL(t) and QML(t), which are
important special variables and change with the frequency. They can

be considered as key points in exhibiting memory characteristics for
the meminductor.

When the phase angle between the voltage and current is at its
maximum of π/2, the relationship can be given as follows:

QL � −I
2Lω

2

QML � −I
2Lω

2
− a13I

4ω

4ω2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (24)

Setting the parameters (I = 1A, ω = 3 rad/s, θ = π/6, L = 0.8, b13 = 3,
and a13 = 2), curves of voltage (vm(t)) and instantaneous reactive
power (QML(t)) are shown in Figure 8.

Observed from Figure 8, similar to MR and MC, multiple
frequencies are verified. Then, the fingerprint of the MC does exist.
For a traditional inductor (L), when the current source i(t) is applied
through L = 0.8H, its reactive power can be represented through a
cyan-solid line, which presents the twice frequency relationship
between i(t) and vML(t). Complex curves of vML(t) and QML(t)
demonstrate unique memory characteristics with the negative volt-
ampere product.

4Apparent power for the combination of
memory elements

When a specific circuit is built by an AC source and a combination
of the proposed memory elements, its apparent power could be
expressed by a function of the circuit’s total memory impedance
(ZM). In the previous section, the true power or reactive power is

FIGURE 11
v−i curves and apparent power of series-connected circuits. (A) v−i
curves of the series-connected combination of MR and MC. (B) Voltage
and apparent power in the time domain.

FIGURE 12
v−i curves and apparent power of series-connected circuits. (A) v−i
curves of the series-connected combination of MR and ML. (B) Voltage
and apparent power.
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discussed for MR, MC, and ML, respectively. According to the
definition of impedance (Z � v/i) and Ohm’s law, the impedance
of the memory elements can be derived as follows:

ZMR � a11I
2

2ω2 + R( ) − a11I
2

2ω2 cos 2ωt + 2θi( ) + b11I

ω
sin ωt + θi( )

ZML � − Lω + a13I
2

ω2( )tan ωt + θi( ) + b13I

cos ωt + θi( )[ ] + a13I
2

2ω
sin 2ωt + 2θi( ) + b13I cos ωt + θi( )

Z−1
MC � − Cω + a12U

2

ω
( )tan ωt + θv( ) + b12U

cos ωt + θv( )[ ] + a12U
2

2ω
sin 2ωt + 2θv( ) + b12U cos ωt + θv( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(25)

where Z−1
MC is the inverse reactance of a memcapacitor. For the

proposed memory elements, the relationship of the lead and lag
between the current and voltage is not available and is difficult to
be described by any existing rule.

Hereby, a series-connected combination of all memory elements
denoted as (ZM) is designed in Figure 9.

When a series-connected circuit with an unknown combination of
memory elements is configured, the following four special cases occur,
and they are analyzed and discussed in this section. A typical situation
for the first case is the combination of MR, MC, and ML. Then,
parameter values are fixed as I = 1.5A, ω = 3 rad/s, θ = π/6, R = 2, C =
0.07, L = 0.5, a11 = 2, b11 = 2, a12 = 1.3, b12 = −1.3, a13 = 2, and b13 = 2;
the v−i curves, v(t) curves, and apparent powers in the time domain
are shown in Figure 10.

In Figure 10, the v−i curve of ZM � ZMR + Z−1
MC + ZML does not

cross its origin, and it is a loop structure bent clearly. Also, the loop is
asymmetrical with the origin-/x-/y-axis. Its apparent power presents
diversity but it could not be simply attributed to the individual
expression by any certain memory element or traditional component.

A typical situation for the second case is the combination of MR
andMC; the v−i curves, v(t) curves, and apparent power are shown in
Figure 11. For convenience, the parameter values of memory elements
used in this case are exactly the same as the ones in the last case.

In Figure 11, the v−i curve of ZM � ZMR + Z−1
MC, similar to

Figure 10, also does not cross the origin and asymmetry.
The combination ofMR andML is a typical situation for the third

case as shown in Figure 12. Its v−i of ZM = ZMR + ZML curves is a
triangle frisbee-like loop surrounding the origin.

The combination of MC and ML is a typical situation for the
fourth case; the v−i curves and apparent power are shown in Figure 13.

In practice, some different or same types of multiple memory
elements can be connected together, and the combination of the
memory elements is very complex. Hereby, four typical situations
are introduced and discussed to illustrate the physical characteristics
of v−i and apparent powers, which could conveniently help in
analyzing non-linear behaviors and finding phenomena of the
combination of the proposed second-order memristor,
memcapacitor, and meminductor. The theoretical analysis of the
combination problem of memory elements can conveniently reveal
whether some traditional definitions and rules are still available for
these memory elements. This method can also be suitable for the
physical connection problem when the connected memory elements
operate nearly in their ideal ranges.

5 Conclusion

Since memory elements have been considered as the key for
developing the new generation of intelligent devices postulated by
some researchers, some neuromorphic systems and basic memristive
circuits should become one of the hotspots, such as for physical
expression and power analysis. According to the concepts on
constitutive relationships, ideal second-order memory elements are
proposed; their expressions of current/voltage are derived according to
the input excitation. Then, the difference between ideal second-order
memory elements (i.e.,MR,MC, andML) and traditional passive ones
(i.e., R, C, and L) is presented according to forms of true power,
reactive power, and apparent power for them. Moreover, the
corresponding curves in the time domain are depicted. Observed
from the curves of PR/QC/QL and SMR/SMC/SML, harmonic (and
negative) values exist in all expressions of apparent power. These
harmonic values represent that they would perpetually supply energy
when operated with an alternating current. Finally, a series-connected
circuit with an unknown combination of memory elements is
configured; the v−i curves, voltages, and apparent power of four
special cases are shown in detail. For memristive circuits, analyses
show that the traditional relationship of the lead and lag between the
current and voltage is not available and is difficult to be described by
any existing rule. Their apparent power presents diversity, but it could
not be simply attributed to an individual expression by any certain
memory element or traditional component.
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FIGURE 13
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