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The purpose of this study is to apply the Lie group analysis method to the time-
fractional order generalized fifth-order KdV (TFF-KdV) equation. We examine
applying symmetry analysis to the TFF-KdV equation with the
Riemann–Liouville (R–L) derivative, employing the G′/G-expansion approach to
yield trigonometric, hyperbolic, and rational function solutions with arbitrary
constants. The discovered solutions are unique and have never been studied
previously. For solving non-linear fractional partial differential equations, we find
that theG′/G-expansion approach is highly effective. Finally, conservation laws for
the equation are well-built with a full derivation based on the Noether theorem.
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1 Introduction

The soliton solutions of non-linear evolution equations have has a significant impact on
the flesh and have been widely used in wide ranges of physical and biological sciences, such as
non-linear optics, plasma physics, fluid dynamics, biochemistry, and mathematical
chemistry. In recent years, fractional partial differential equations (FPDEs) have
attracted great attention and have been extensively investigated. The non-linear FPDEs
can be found in different fields of science and engineering problems, such as signal
processing, mechanics, plasma physics, finance, electricity, stochastic dynamical system,
control theory, economics, and electrochemistry [1–6]. Several efficient methods have been
presented to solve FPDEs of interest. It is necessary to point out that some methods used for
solving non-linear FPDEs are actually to construct numerical and analytical methods, such
as the fractional sub-equation method [7–10], tanh-function method [11–13], Adomian
decomposition method [14–17], variational iteration method [18–20], trial equation method
[21, 22], homotopy perturbation method [23, 24], exponential rational function method
[25], Riccati sub-equation method [26], and rational G′/G-expansion method [27], which
have been applied to handle the non-linear evolution equations.

As far as we know, the fractional differentiation and integration operators have a variety
of definitions so that we can mention them, like the Riemann–Liouville definition [3, 28] and
the Caputo definition [29]. Recently, [30] proposed a new simple definition of the fractional
derivative named the conformable fractional derivative, which can redress shortcomings of
many definitions.
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In this paper, we consider the following time-fractional
generalized fifth-order KdV (TFF-KdV) equation:

uα
t + u2ux − uuxxx + uxxxxx � 0. 0< α< 1( ), (1.1)

where 0< α≤ 1, Dα
t � zαu/ztα.When α = 1, Eq. 1 can be reduced to a

generalized fifth-order KdV equation of general meaning.
Some of the researchers have investigated different kinds of

exact solutions for different orders of KdV equations. For example,
Wang [31] has found some new exact solutions of the fifth-order
KdV equation with the Lie point symmetry group method, while
Abdel-Salam A B and Al-Muhiameed Z I A [32] have provided the
exact solutions for the KdV–mKdV equation by applying the
analytic solution method. Recently, an efficient numerical scheme
has been developed to solve a linearized time-fractional KdV
equation by Zhang [33].

Our aim in the present work is to investigate many new
closed-form solutions of the TFF-KdV equation by using Lie
group analysis and the G′/G-expansion method with the
Riemann–Liouville (R–L) derivative. These algebraic methods
can be regarded as the most concise and the most efficient
methods for searching the closed-form solutions of the non-
linear FPDEs.

The rest of the article is organized as follows: the basic
definitions and properties of the fractional calculus are being
considered in terms of the Riemann–Liouville derivative in
Section 2. In Section 3, we briefly give an account of the Lie
symmetry analysis method for the TFF-KdV equation. We
perform the Lie group classification on the TFF-KdV equation
and investigate the symmetry reductions of the TFF-KdV
equation. The main steps of the improved G′/G-expansion
method are given, and the exact solutions of the TFF-KdV
equation are obtained in Section 4. In Section 5, conservation
laws of the TFF-KdV equation are constructed by using the
Noether theorem. Finally, in Section 6 of this paper, we will
discuss the results obtained.

2 Foreword

As to the fractional derivative operators, various definitions
which are not necessarily equivalent to each other exist. In this
paper, we would like to consider the most common definition that is
named after the Riemann and Liouville derivative, which is the
natural generalization of the Cauchy formula for the n-fold primitive
of a function f(x). The Riemann–Liouville (R–L) fractional
derivative is defined as follows [34]:

Dα
t f �

dnf

dtn
In−αf t( ), 0≤ n − 1< α< n,

dnf

dtn
, α � n,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (2.1)

where n ∈ N and Iμf(t) is the R–L fractional integral of order μ, namely,

Iμf t( ) � 1
Γ μ( )∫

t

0
t − ξ( )μ−αf ξ( )dξ, μ> 0

I0f t( ) � f t( ),
and Γ(z) is the standard Gamma function.

Definition 1. The R–L fractional partial derivative is defined by

Dα
t f �

1
Γ n − α( )

z

ztn
∫t

0
t − ξ( )n−α−1u ξ, x( )dξ, 0≤ n − 1< α< n,

zf

ztn
, α � n.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2.2)

If it exists, znt is the usual partial derivative of the integer order n
[31, 35].

In [34], some useful formulas and properties are provided. Here,
we only mention the following:

Dα
t t

γ � Γ γ + 1( )
Γ γ + 1 − α( )tγ−α, γ> 0, (2.3)

Dα
t u t( )v t( )[ ] � u t( )Dα

t v t( ) + v t( )Dα
t u t( ), (2.4)

Dα
t f u t( )( )( )[ ] � fu′ u t( )[ ]Dα

t v t( ) � Dα
uf u t( )[ ] ut′( )α. (2.5)

Definition 2. The generalized Leibnitz rule [36, 37] is defined by

Dα
t u t( )v t( )[ ] �∑∞

n�0

α
n

( )Dα−n
t u t( )Dn

t v t( ), α> 0, (2.6)

where

α
n

( ) � −1( )n−1αΓ n − α( )
Γ 1 − α( )Γ n + 1( ) . (2.7)

Definition 3. Considering the generalization of the chain rule
[31]for composite functions, we have

dmf g t( )( )
dtm

�∑m
k�1
∑k
r�0

k
r

( ) 1
k!

−g t( )[ ]r dm

dtm
g t( )k−r[ ] dkf g( )

dtk
. (2.8)

3 Lie symmetry analysis for fractional
partial differential equations

In this section, we consider the time-fractional differential
equations as the form:

Dα
t u( ) � G x, t, u, ux, uxx, . . .( ), 0< α< 1( ), (3.1)

where u � u(x, t), ux � zu/zx, and Dα
t u is a fractional derivative of

u with respect to t. Subject to the Lie theory, if Eq. 3.1 is a invariant
under a one-parameter Lie group of point transformations, then

t* � t + ετ x, t, u( ) +O ε2( ), x* � x + ες x, t, u( ) + O ε2( ),
u* � u + εη x, t, u( ) +O ε2( ),

zu*
zt*

� zαu

ztα
+ εη0α x, t, u( ) +O ε2( ),

zu*
zx*

� zu

zx
+ εηx x, t, u( ) +O ε2( ),

..

.

z5u*

zx*5
� z5u

zx5 + εηxxxxx x, t, u( ) +O ε2( ), (3.2)

where ε ≪ 1 is a small parameter, and
ηx � Dx η( ) − uxDx ς( ) − utDx τ( ),
ηxx � Dx ηx( ) − uxtDx τ( ) − uxxDx ς( ),
ηxxx � Dx ηxx( ) − uxxtDx τ( ) − uxxxDx ς( ),
ηxxxx � Dx ηxxx( ) − uxxxtDx τ( ) − uxxxxDx ς( ),
ηxxxxx � Dx ηxxxx( ) − uxxxxtDx τ( ) − uxxxxxDx ς( ).

(3.3)

Here, Dx denotes the total derivative.
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Dx � z

zx
+ ux

z

zu
+ uxx

z

zux
+/ , (3.4)

and the vector field associated with the aforementioned group of
transformations can be written as

V � ς x, t, u( ) z

zx
+ τ x, t, u( ) z

zt
+ η x, t, u( ) z

zu
. (3.5)

If the vector field Eq. 3.5 generates a symmetry of Eq. 3.1, then V
must satisfy Lie’s symmetry condition.

Pr n( )VΔ
∣∣∣∣Δ�0 � 0, (3.6)

where Δ � Dα
t (u) − G(x, t, u, ux, uxx, . . .).

Conversely, the corresponding group transformations (Eq. 3.2)
to a known operator (Eq. 3.6) are found by solving the Lie equations.

d �x ε( )( )
dε

� ς �x ε( ), �t ε( ), �u ε( )( ), �x 0( ) � x,

d �u ε( )( )
dε

� η �x ε( ), �t ε( ), �u ε( )( ), �u 0( ) � u.
(3.7)

It is not different to observe that Eq. 3.2 conserves the structure of
the fractional derivative infinitesimal operator Eq. 2.1. As the lower
limit of the integral is constant, it should be in variant with respect to
Eq. 3.2. Therefore, we can arrive at

τ x, t, u( )|t�0 � 0. (3.8)
For the R–L fractional time derivative [31, 35, 38], Eq. 3.8 can be
changed into

η0α � Dα
t η( ) + ςDα

t ux( ) −Dα
t ςux( ) +Dα

t Dt τ( )u( ) −Dα+1
t τu( )

+ τDα+1
t u( ).

(3.9)
By means of the generalized Leibnitz rule (Eq.2.6), Eq.3.9 can be
read as

η0α � Dα
t η( ) − αDt τ( ) z

αu

ztα
−∑k

n�1

α
n

( )Dn
t ς( )Dα−n

t ux( )

−∑∞
n�1

α
n + 1

( )Dn+1
t τ( )Dα−n

t u( ). (3.10)

Furthermore, by applying the chain rule in Eq. 2.8 and the
generalized Leibnitz rule in Eq. 3.10 with f(t) = 1, we can
arrive at

ηαt � zαη

ztα
+ ηu

zαu

ztα
− u

zαηu
ztα

+∑∞
n�1

α
n

( ) znηu
ztn

Dα−n
t u( ) + μ, (3.11)

where

μ �∑∞
n�2
∑n
m�2
∑m
k�2
∑k−1
r�o

α
n

( ) n
m

( )
× k

r
( ) 1

k!

tn−α

Γ n + 1 − α( ) −u( )r z
m

ztm
uk−r( ) zn−m+kη

ztn−mzuk
. (3.12)

It should be noted that we have μ = 0 when the infinitesimal η is
linear of the variable u, considering the existence of the
derivatives zkη

zuk, k≥ 2 in the aforementioned expression. To sum

up the aforementioned reasonings, the explicit form of ηα,t is
obtained.

ηα,t � zαη

ztα
+ ηu − αDt τ( )( ) zαu

ztα
− u

zαηu
ztα

+μ +∑∞
n�1

α
n

( ) zαηu
ztα

− α
n + 1

( )Dn+1
t τ( )[ ] × Dα−n

t u( )

−∑∞
n�1

α
n

( )Dn
t ς( )Dα−n

t ux( ).
(3.13)

According to the Lie theory, we have the following theorems:
Theorem 1. The function u = ϕ(x, t) is an invariant solution of

Eq. 3.1 if and only if
(i)Vϕ � 05(ς(x, t, u) z

zx + τ(x, t, u) z
zt + η(x, t, u) z

zu)ϕ � 0, and
(ii)u = ϕ(x, t) is the solution of FDPEs, as in Eq. 3.1.

4 The time-fractional fifth-order KdV
equation

In the previous section, we have elaborated some definitions and
formulas of the Lie symmetry analysis method of FPDEs. Now in
this part, we are going to deal with the invariance properties of the
TFF-KdV equation. Next, we will give some exact and explicit
solutions to the TFF-KdV equation.

4.1 Lie symmetry of the TFF-KdV equation

By using the Lie group theory, we can derive the corresponding
system of the symmetry equations as

η0α + 2u2ηx + 4uηux − ηuxxx − uηxxx + ηxxxxx � 0. (4.1)
By solving Eq. 3.1 with the help of Eq. 3.3, we can obtain

ς � c1x + c2, τ � 5c1
α

t, η � −2c1u, (4.2)

where c1 and c2 are arbitrary constants. Furthermore, the
corresponding operator can be arrived at

V � c1x + c2( ) z

zx
+ 5c1t

α

z

zt
− 2c1u

z

zu
. (4.3)

Similarly, the Lie algebra of infinitesimal symmetries of Eq. 1.1 is
spanned by the two vector fields:

V1 � z

zx
,V2 � x

z

zx
+ 5t
α

z

zt
− 2u

z

zu
. (4.4)

It is easy to check that the vector fields are closed under the Lie
bracket, respectively,

V1,V2[ ] � 2V1, V2,V1[ ] � −2V1. (4.5)
In order to obtain the similarity variables forV2, we have to solve the
corresponding characteristic equations.

dx

x
� αdt

5t
� du

−2u. (4.6)
Thus, we derive the group-invariant solution and group-invariant as
follows:
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θ � xt−
α
5 , u � t−

2α
5 g θ( ). (4.7)

It is not difficult to observe that Eq. 1.1 is reduced to a non-linear
ordinary differential equation (NODE). We derived a theorem as
follows:

Theorem 2. The TFF-KdV equation Eq. 1.1 can be reduced
into a NODE of fractional order by transformation in Eq. 4.7 as
follows:

P
1−7α

5 ,α
5
α

g( ) θ( ) � g2gθ − ggθθθ + gθθθθθ , (4.8)

with the Erdelyi–Kober (EK) fractional differential operator Pτ,α
β of

order [34].

Pτ2 ,α
β g( ) :�∏n−1

j�0
τ2 + j − 1

β
θ
d

dθ
( ) Kτ2+α,n−α

β g( ) θ( ), (4.9)

n � α[ ] + 1, α ≠ N,
α α ∈ N,

{ (4.10)

where

Kτ2 ,α
β g( ) :� 1

Γ α( )∫
∞

1
u − 1( )α−1u− τ2+α( )g θu

1
β( )du, α> 0,

g θ( ), α � 0,

⎧⎪⎪⎨⎪⎪⎩
(4.11)

is the EK fractional integral operator [39, 40].
Let n − 1 < α < n, n = 1, 2, 3, . . .. Based on the R–L fractional

derivative for the similarity transformation (Eq. 4.7), we have

zαu

ztα
� zn

ztn
1

Γ n − α( )∫
t

0
t − s( )n−α−1s−2α5 g xs

−α
5( )ds[ ]. (4.12)

Taking v = t/s, one can obtain ds � − t
v2 dv. Then Eq. 4.12, can be

written as

zαu

ztα
� zn

ztn
tn−

7α
5

1
Γ n − α( )∫

∞

1
v − 1( )n−α−1v−n+7α

5 −1g θv
α
5( )dv[ ].

(4.13)
If we use the definition of the EK fractional integral operator (Eq.

4.11), then Eq. 4.13 will be

zαu

ztα
� zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ]. (4.14)

Now, we attempt to simplify the right hand side of Eq. 4.14.
Taking into account θ � xt−α

5 , ρ ∈ C1(0,∞), we can obtain

t
z

zt
ρ θ( ) � tx −α

5
( )t−α

5−1ρ′ θ( ) � −α
5
θ
z

zθ
ρ θ( ). (4.15)

One can arrive at

zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ]
� zn− 1

ztn− 1
z

zt
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ]
� zn− 1

ztn− 1
tn−

7α
5 n − 7α

5
− α

5
θ
z

zθ
K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ].
(4.16)

Through repeating the same procedure n − 1 times, we obtain
the following equation:

zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ]
� zn− 1

ztn− 1
z

zt
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ]
� zn− 1

ztn− 1
tn−

7α
5 n − 7α

5
− α

5
θ
z

zθ
K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ]
..
.

� t−
7α
5 ∏n−1

j�0
1 − 7α

5
+ j − α

5
θ
z

zθ
( ) K

1−2α
5 ,n−α

5
α

g( ) θ( ).

(4.17)

Then, by using Eq. 4.9, we find that

zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ] � t−
7α
5 P

1−7α
5 ,α

5
α

g( ) θ( ). (4.18)

Substituting Eq. 4.18 into Eq. 4.14, the following expression for
the time-fractional derivative is obtained:

zαu

ztα
� t−

7α
5 P

1−7α
5 ,α

5
α

g( ) θ( ). (4.19)

Thus, the TFF-KdV equation Eq. 1.1 can be reduced into a
fractional-order ODE as follows:

P
1−7α

5 ,α
5
α

g( ) θ( ) � g2gθ − ggθθθ + gθθθθθ . (4.20)

By this mean, the proof of theorem 2 is completed.

4.2 The G′/G-expansion method for the
non-linear FPDEs

A general non-linear conformable time FPDE can be written as
follows:

P u, uα
t , ux, u

2α
t , uxx, . . .( ) � 0, 0< α< 1( ), (4.21)

where u is an unknown function of independent variables x and t, and P
is a polynomial in u = u (x, t) and its partial fractional derivatives, where
the highest order derivatives and non-linear terms are involved.

Next, we will illustrate the major steps of the G′/G-expansion
method [41].

Step 1. Combining the independent variables x and t into one
variable ξ � kx + l t

α

α , it is supposed that

u x, t( ) � ϕ ξ( ), ξ � kx + l
tα

α
, (4.22)

where k, l are constants that will be determined later.
The traveling wave variable in Eq. 4.22 permits us to reduce Eq.

4.21 to an ODE for u(x, t) = ϕ(ξ),

P ϕ,−lϕ′, kϕ′, l2ϕ″, k2ϕ″, . . .( ) � 0. (4.23)
Step 2. Assuming that the exact solution of Eq. 4.23 can be

expressed by the polynomial in (ω/G) andω,G satisfies the following
relation
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ω

G
( )′ � a + b

ω

G
( ) + c

ω

G
( )2, (4.24)

namely,

ω′G − ωG′ � aG2 + bωG + cω2, (4.25)
where a, b, c are arbitrary constants. Now, let us have a careful
examination on Eq. 4.24. If choosing ω = G′, a = −μ, = ̱ −λ, c = −1,
then u(ξ) can be expressed as

u ξ( ) �∑m
i�0

ai
G′
G

( )i

, (4.26)

where G satisfies the second-order LODE in the form

G″ + λG′ + μG � 0. (4.27)
In here, the general solutions of Eq. 4.27 are as follows:

G′ ξ( )
G ξ( ) �

−λ
2
+

������
λ2 − 4μ
√

2

C1 sinh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 cosh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

C1 cosh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 sinh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ2 − 4μ> 0,

−λ
2
+ C2

C1 + C2ξ
λ2 − 4μ � 0,

−λ
2
+

������
λ2 − 4μ
√

2

−C1 sin

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 cos

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

C1 cos

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 sin

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ2 − 4μ< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4.28)

This is just the G′/G-expansion method that Wang et al [42]
have proposed recently.

Furthermore, if we put ω = tanh ξ, g = 1, a = 1, b = 0, c = −1, then

u(ξ) turns to be u(ξ) �∑m
i�0

ai(tanh ξ)i, which is the tanh-function
expansion method.

Step 3. Substituting Eq. 4.24 into Eq. 4.23 and using second-
order LODE, collecting all terms with the same order of G′/G
together, we will obtain the system of algebraic equations for
am//, l, λ, and μ.

Step 4. Substituting the results obtained in the aforementioned
steps into Eq. 4.26.

4.3 The application to the TFF-KdV equation
using the G′/G-expansion method

Considering the TFF-KdV equation as follows:

uα
t + u2ux − uuxxx + uxxxxx � 0. 0< α< 1( ). (4.29)

Eq. 4.29 has been investigated in [31] by using the Lie symmetry
analysis. Now, we will use the G′/G-expansion method to find the
closed-form solutions to the TFF-KdV equation. For this purpose,
we will apply the traveling wave transformation as follows:

u x, t( ) � ϕ ξ( ), ξ � x + l
tα

α
, (4.30)

where l is the constant that will be determined later. The
transformation of Eq. 4.29 and Eq. 4.30 leads to the following
equation:

lϕ′ + ϕ2ϕ′ − ϕϕ‴ + ϕ′′′′′ � 0. (4.31)
Eq. 4.31 is integrable; thus, once integrating with respect to ξ, we

can obtain the following result:

lϕ + 1
3
ϕ3 + ϕϕ″ − 1

2
ϕ′( )2 + ϕ

′′′′ + C � 0, (4.32)

where C is the integral constant that will be determined later.
Considering the homogeneous balance between ϕ3 and ϕ′′′′ in

Eq. 4.32, 3m = m + 4 gives m = 2. Thus, we can write Eq. 4.32 as

ϕ � a0 + a1
g′
g

( ) + a2
g′
g

( )2

. (4.33)

By substituting Eqs 4.33 and 4.27 into Eq. 4.32 and collecting all
terms with the same power of (G′G) together, the left-hand side of Eq.
4.32 is converted into another polynomial in (G′G). Equating the
coefficients of this polynomial to zero yields a set of simultaneous
algebraic equations for a2, a1, a0, l, λ, μ and C. Solving the algebraic
equations, we obtain

a2 � −12, a1 � −12λ, a0 � −1 − 3λ2,

λ � λ, μ � λ2 + 1
4

, l � 1
2

48μ2 − 24μλ2 + 3λ2 − 5( ), (4.34)

where λ, μ and a0 are arbitrary constants.
We substitute Eq. 4.34 with Eq. 4.28 into Eq. 4.32 and obtain the

closed-form solutions of Eq. 4.32as three types, which are as follows:
When λ2 − 4μ > 0, we can obtain the hyperbolic function

solutions as follows:

ϕ ξ( ) � − 1 + 3λ2( ) + 12λ
g′
g

( ) + 12
g′
g

( )2[ ]
� − 1 + 3 λ2 − 4μ( ) C1 sinh

����
λ2−4μ

√
ξ

2( ) + C2 cosh
����
λ2−4μ

√
ξ

2( )
C1 cosh

����
λ2−4μ

√
ξ

2( ) + C2 sinh
����
λ2−4μ

√
ξ

2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(4.35)

where ξ � x + 1
2 (48μ2 − 24μλ2 + 3λ2 − 5)(tαα), and C1 and C2 are

arbitrary constants.
Taking C1 and C2 special values, then different known solutions

can be deduced from Eq. 4.35.
For example,
(i) If C1 = 0 and C2 ≠ 0, we have

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )coth2
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.36)

(ii) If C1 ≠ 0 and C2 = 0, we have

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )tanh2
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.37)

(iii) If C1 ≠ 0 and C2
2 <C1

2, we have

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )tanh2 ξ0 +
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.38)

(iv) If C2 ≠ 0 and C1
2 <C2

2, we have
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ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )coth2 ξ0 +
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.39)

Here, ξ0 � tanh−1(C1
C2
).

However, if λ2 − 4μ < 0, we obtain the trigonometric function
solutions:

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( ) −C1 sin
����
λ2−4μ

√
ξ

2( ) + C2 cos
����
λ2−4μ

√
ξ

2( )
C1 cos

����
λ2−4μ

√
ξ

2( ) + C2 sin
����
λ2−4μ

√
ξ

2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(4.40)

where ξ � x + 1
2 (48μ2 − 24μλ2 + 3λ2 − 5)(tαα), and C1 and C2 are

arbitrary constants.
Remark 1. Taking C1 and C2 as special values, various known

solutions can be found from Eq. 4.40. Here, we do not list them for
simplicity.

However, if λ2 − 4μ = 0, the following rational function solutions
can be obtained:

ϕ ξ( ) � − 1 + 12
C1

C2 + C1ξ
( )2[ ], (4.41)

where ξ � x + 1
2 (48μ2 − 24μλ2 + 3λ2 − 5)(tαα), and C1 and C2 are

arbitrary constants.
Remark 2. When ω = tanh ξ, which is the tanh-function

expansion method. This is similar to the (G′G) method, which is
omitted here.

Remark 3. Inc, M and B Kilic [43] have investigated exact
solutions for the KdV-like equation using Kudryashov, Exp-
function, and Jacobi elliptic rational expansion methods. From
the aforementioned procedure, the G′/G-expansion method is
very powerful for FPDEs. As far as we know, the solutions
obtained therefrom under this study have never been reported
previously, and are newly generated.

Remark 4. Recently, many scholars put forward the
Riemann–Hilbert method [44, 45], and its application in FPDEs
is also worthy of further study.

5 Conservation laws of the TFF-KdV
equation

In this part, we have obtained the conservation laws for the TFF-
KdV equation by applying Eq. 4.4 of Lie point symmetry.

Based on the definition of the conserved vector for inter-order
PDEs, a conserved vector C(Ct, Cx) for Eq. 1.1 admits the following
conservation equation:

Dt Ct( ) +Dx Cx( )| TFF−KdV( ) � 0. (5.1)

It should be noted that the TFF-KdV equation might be written
in the form of the conservation law as Eq. 5.1.

Ct
0 � Dα−1

0 u, Cx
0 � u2ux − uuxxx + uxxxxx. (5.2)

We also study the conservation laws with the adjoint equation
[46] and symmetries of the TFF-KdV equation. As to Eq. 1.1, the
adjoint equation can be written in the following form:

ϖα
t + u2ϖx − uϖxxx + ϖxxxxx � 0, (5.3)

and the Lagrangian can be written in the symmetrized form as
follows:

L � ϖ uα
t + u2ux − uuxxx + uxxxxx( ), (5.4)

where ϖ(t, x) is a new dependent variable. The adjoint equation of
Eq. 1.1 is written as

W* � δL

δu
� 0, (5.5)

where δ
δu is the Euler–Lagrange operator we defined by

δ

δu
� z

zu
+ Dα

t( )* z

zDα
t u

−Dx
z

zux
+D2

x

z

zuxx
−D3

x

z

zuxxx
+D4

x

z

zuxxxx

−D5
x

z

zuxxxxx
,

(5.6)
where (Dα

t )* is the adjoint operator of Dα
t . As to the

Riemann–Liouville fractional differential operators, we have

Dα
t( )* � −1( )nKn−α

T Dn
t( ) � Dα

T( )Ct , (5.7)
where

Kn−α
T f t, x( ) � 1

Γ n − α( )∫
T

t

f τ, x( )
τ − t( )1+α−n dτ, n � α[ ] + 1 (5.8)

is the right-sided Caputo operator of the fractional differentiation of
order α.

Through the substitution of Eq. 5.4 into Eq. 5.5, it can lead to
the adjoint equation of Eq. 1.1 admitting the following
expression:

W* � Dα
t( )*ϖ + u2ϖx + uϖxxx + ϖxxxxx � 0. (5.9)

The TFF-KdV equation arrives at the following conservation law
in [44].

Dt Ct
i( ) +Dx Cx

i( ) � 0, (5.10)
where the conserved vector C(Ct, Cx) has a new form.

Cx
i � Xi

δL

δux
+Dx Xi( ) δL

δuxx
+D2

x Xi( ) δL

δuxxx
+D3

x Xi( ) δL

δuxxxx

+D4
x Xi( ) δL

δuxxxxx
, Ct

i �∑n−1
k�0

−1( )kDα−1−k
t Xi( )Dk

t

zL

z Dα
t u( )[ ]

− −1( )nS Xi, D
n
t

zL

z Dα
t u( )( )[ ], n � α[ ] + 1, (5.11)

where Xi = ηi − ςiux − τiut, and S is the integral.

S f, g( ) � 1
Γ n − α( )∫

t

0
∫ T

t

f p, x( )g q, x( )
q − p( )α+1−n dqdp. (5.12)

Using the symmetriesV1 � z
zx,V2 � x z

zx + 5t
α

z
zt − 2u z

zu, we have

X1 � −ux,X2 � − xux − 5t
α
ut − 2u. (5.13)

Substituting Eq.5.4 and Eq.5.13 into Eq. 5.11, we obtain the
following conserved vectors for the TFF-KdV equation.
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Case 1: By using the symmetry X1 = −ux, we find an additional
conserved vector as follows:

Cx
1 � X1

zL

zux
+ −1( )nDn−1

x

zL

zunx
[ ] +Dn−1

x X1( ) zL

zunx
,

Ct
1 � −K1−α

t −X1( )ψ − S −X1,ψt( ). (5.14)

Case 2: By using the symmetryX2 � − xux − 5t
α ut − 2u, we find

an additional conserved vector:

Cx
2 � X2

zL

zux
+ −1( )nDn−1

x

zL

zunx
[ ] +Dn−1

x X2( ) zL

zunx
,

Ct
2 � K1−α

t −X2( )ψ + S −X2,ψt( ). (5.15)

According to the aforementioned detailed analysis, we have
Theorem 3. The TFF-KdV equation has the following conservation

laws:

Dt Ct
i( ) +Dx Cx

i( ) � 0, i � 1, 2, (5.16)
where Ct

i is shown in Eq.5.2, Eq.5.14, and Eq. 5.15.

6 Conclusion

In this research, it was considered the symmetry analysis,
explicit solutions to the TFF-KdV equations with Riemann-
Liouville derivative. The TFF-KdV equation was reduced to a
non-linear ordinary differential equation (ODE) of fractional
order. The G′/G-expansion method was obtained to work out
the TFF-KdV equation in the sense of the Riemann–Liouville
derivative. There were three types of exact solutions that
originated in the aspect of hyperbolic, trigonometric, and
rational functions with some parameters, which have great
potential for further research. All solutions derived in this
study were checked utilizing Maple by incorporating them
into Eq. 1.1. At last, considering the advantages of the G′/G-
expansion method such as efficiency, conciseness, and briefness,
the method can be applied to several other higher-order non-
linear FPDEs arising in mathematical physics, plasma,
hydrodynamics, engineering, and other fields of applied
sciences. Finally, based on the Noether theorem, the
conservation laws of the equation are well-constructed with
detailed derivation. Additionally, it is clear from Lie symmetry
analysis that this approach is relatively well-organized and can
be used to solve many different non-linear FPDEs from natural
sciences.
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