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To solve the theoretical solution of dynamic Sylvester equation (DSE), we use a fast
convergence zeroing neural network (ZNN) system to solve the time-varying
problem. In this paper, a new activation function (AF) is proposed to ensure fast
convergence in predefined times, as well as its robustness in the presence of external
noise perturbations. The effectiveness and robustness of this zeroing neural network
system is analyzed theoretically and verified by simulation results. It was further
verified by the application of robotic trajectory tracking.
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1 Introduction

Recurrent neural networks (RNN) have been extensively studied and applied in many
scientific and engineering fields in the past two decades, such as automatic control theory [1],
image processing [2, 3], data processing [4], and matrix equations solving [5–7]. The Sylvester
equation plays a very important role in mathematics and control fields, and it will be involved in
many practical applications [8–12].

The theoretical solution of the general Sylvester equation can be obtained through the
conventional gradient descent method [13]. Using the norm of the error matrix as a
performance indicator, a neural network is evolved along the gradient descent direction so
that the error norm in the fixed-constant case vanishes to zero over time [14]. However, in the
time-varying case, due to the lack of velocity compensation for the time-varying parameters, the
error normmay not converge to zero, even after an infinitely long time. To solve the problem of
solving the dynamic Sylvester equations, a design method based on zeroing neural network
system is adopted. Zeroing neural network is a special recurrent neural network proposed by
Zhang et al. [6, 15], and plays a crucial role in solving various dynamic problem fields. Generally
speaking, zeroing neural networks have better accuracy and higher efficiency than recurrent
neural networks based on gradient descent in solving time-varying problems [16, 17]. In recent
years, ZNN has been studied more and more, and many new models have been developed. For
example, the VP-CZNN in Ref. [5] and the FT-VP-CZNN in Ref. [18] realize super exponential
convergence, and the ZNN model activated by SBPAF in Ref. [19] realizes finite-time
convergence.

There are often many kinds of external noise interference in real life, and most neural
network systems do not consider the tolerance problem of noise, which reduces the effect of
dynamic systems. Through the above discussion analysis, a new activation function can be
introduced to improve the performance of the whole system. At the same time, it can also
ensure the predefined time convergence and noise resistance.
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The rest of this paper is organized as follows. In Section 2, we
introduce zeroing neural network model and dynamic Sylvester
equation. In Section 3, we review some activation functions and
propose a new activation function with predefined time
convergence under noise interference. In Section 4, we focus on
the predefined-time convergence and anti-noise capability of the
model that we established. In Section 5, we verify the theory
through simulation experiments of solving the dynamic Sylvester
equations and the trajectory tracking problem of the robotic arm.
Finally, we give a brief conclusion to the paper in Section 6. In
addition, all the abbreviations used in this work are listed in the
following Table 1.

2 ZNN model and dynamic sylvester
equation

In this work, we are concerned with the Sylvester equation, and its
general expression is directly given as:

A t( )X t( ) −X t( )B t( ) � −C t( ) ∈ Rn×n (1)
where A(t) ∈ Rn×n, B(t) ∈ Rn×n, C(t) ∈ Rn×n stand for known
coefficient matrices, and X(t) ∈ Rn×n stands for an unknown
matrix we need to solve.

To solve the Sylvester equation, we define an error function:

E t( ) � A t( )X t( ) −X t( )B t( ) + C t( ) ∈ Rn×n (2)
If each elements of the error function E(t) converges to 0, we can

obtain the theoretical solution X(t). To make the error function
converge to 0, the ZNN design formula is designed by the
following derivative equation:

d E t( )( )
d t( ) � −γφ E t( )( ) (3)

where φ(·) ∈ Rn×n stands for an array of the activation function, and
γ> 0 are a known adjustable parameter which adjust the
convergence rate.

The time derivative of the error function is defined as:

E
•
t( ) � A t( )X• t( ) + A

•
t( )X t( ) −X

•
t( )B t( ) −X t( )B• t( ) + C

•
t( ) (4)

Then, by substituting error function into the ZNN design formula
and considering that the time derivative of the error function, the
following ZNN model for Sylvester equation is derived:

A t( )X• t( ) −X
•

t( )B t( ) � −A• t( )X t( ) +X t( )B• t( ) − C
•
t( )

−γφ A t( )X t( ) −X t( )B t( ) + C t( )( ) (5)

3 Activation function

The activation function is a monotonically increasing odd
function and is a key component of the ZNN model. It has
important implications for the convergence and robustness of the
ZNN models. Especially in the presence of noise interference, the
selection of an appropriate activation function can play a great positive
role in the ZNN model. In the past decade, many activation functions
have been proposed to improve the performance of neural networks,
and different activation functions can be found to have different
performance through comparison [20–22].

Several common activation functions.

1) Linear activation function (LAF)

ϕ x( ) � x (6)

2) Power activation function

ϕ x( ) � xp (7)
with p≥ 3 indicating an odd integer.

3) Power-sigmoid activation function (PSAF)

ϕ x( ) �
xp , x| |≥ 1
1 + exp −ξ( )
1 − exp −ξ( )

1 − exp −ξx( )
1 + exp −ξx( ) , x| |< 1

⎧⎪⎪⎨⎪⎪⎩ (8)

4) Sign-bi-power activation function

ϕ x( ) � 1
2
sgnξ1 x( ) + 1

2
sgnξ2 x( ) (9)

where ξ1 ∈ (0, 1) and ξ2 > 1, sgn(·) is defined as:

sgnn x( ) �
x| |n, x> 0
0, x � 0
− x| |n, x< 0

⎧⎪⎨⎪⎩ (10)

Different activation functions have different convergence
performance, and non-linear activation function generally possesses
better performance than the linear activation function in the rate of the
accelerated ZNN model convergence. All of the above activation
functions can effectively improve the convergence rate, but they do
not consider the noise factor. The convergence performance is greatly
reduced in the presence of noise interference. Considering this factor,
we propose a new activation function (NAF) with predefined time
convergence under noise interference:

ϕ x( ) � k1 x| |p + k2 x| | 1 /p + k3( )sgn x( ) + k4x
2λ−1 (11)

TABLE 1 All the abbreviations used in this work.

Full names Abbreviations

Dynamic Sylvester equation DSE

Second-order dynamic Sylvester equation SDSE

Third-order dynamic Sylvester equation TDSE

Zeroing neural network ZNN

Recurrent neural network RNN

Activation functions AF

Linear activation function LAF

Power-sigmoid activation function PSAF

New activation function NAF

State solution SS

Theoretical solution TS
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where 0<p< 1, k1 > 0, k2 > 0, k3 > 0, k4 > 0, λ ∈ N+, and sgn(·) is
defined as described above.

4 Network model and theoretical
analysis

Before the main theoretical results of the ZNN are given, the
following lemma is first presented as a basis for further discussion [5].

Lemma. There is a non-linear dynamical system such as
X
• (t) � g(x(t), t), t ∈ [0,+∞), where g(t) is a non-linear function.
If a continuous radial unbounded function V: Rn → R+ ∪ 0{ } exists,
making U(ζ) � 0 and any solution satisfied:

U
•

t( )≤ − τUς ζ t( )( ) − ρUμ ζ t( )( ) (12)
where τ > 0, ρ> 0, 0< ς< 1, μ> 0 all are constants.

The predefined convergence time is:

T max � 1
τ 1 − ς( ) +

1
ρ μ − 1( ) (13)

Theorem 1. Starting with the random initial matrix, the exact
solution of the ZNN model predefined convergence is as:

tc ≤
1

γk1 1 − p( ) + 1
γk2 1 /

p − 1( ) (14)

where γ, k1, k2, p stand for the preset parameters.
Proof of Theorem 1. The ZNN model can be represented as

E
•(t) � −γϕ(E(t)), where E(t) represents error function, and
subsystem (i, j) can be expressed as:

ei,j
•

t( ) � −γϕ ei,j t( )( ) (15)

with i, j ∈ 1, 2, ..., n{ }. If the subsystem possesses predefined time
stability, the ZNN model also possesses it. To prove the stability of
the predefined time, we define a Lyapunov function as:

u t( ) � ei,j t( )∣∣∣∣ ∣∣∣∣ (16)

The time derivative is:

u
•
t( ) � −ei,j• t( )sgn ei,j t( )( ) � −γϕ ei,j t( )( )sgn ei,j t( )( )
� −γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p + k2 ei,j t( )∣∣∣∣ ∣∣∣∣ 1 /p + k4 ei,j t( )∣∣∣∣ ∣∣∣∣2λ−1 + k3( )
≤ − γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p + k2 ei,j t( )∣∣∣∣ ∣∣∣∣ 1 /p( )
� −γ k1u

p t( ) + k2u
1 /

p t( )( )
(17)

Comparing with the lemma, predefined convergence time is
available:

tc ≤
1

γk1 1 − p( ) + 1
γk2 1 /

p − 1( ) (18)

Because there may be various disturbances in reality, the following
ZNN model perturbed by noise is studied:

A t( )X• t( ) −X
•

t( )B t( ) � −A• t( )X t( ) +X t( )B• t( ) − C
•
t( )

−γφ A t( )X t( ) −X t( )B t( ) + C t( )( ) + Y t( )
(19)

where Y(t) represents an additional noise.
Case 1. Dynamic bounded vanishing noise.
Theorem 2. There is a dynamically bounded vanishing noise,

where its elements (i, j) satisfy |yi,j(t)|≤ δ|ei,j(t)| and
δ ∈ (0,+∞), |ei,j(t)| is the absolute value of the element (i, j) in
the error function E (t). Starting with a random initial matrix
X(0) ∈ Rn×n, If it satisfy γk4 ≥ δ, it will output exact solutions of
the time-varying Sylvester equation at the predefined time tc.

tc ≤
1

γk1 1 − p( ) + 1
γk2 1 /

p − 1( ) (20)

Proof of Theoreim 2. The ZNNmodel which is perturbed by noise
can be reduced to E

•(t) � −γϕ(E(t)) + Y(t), The subsystem (i, j) is
expressed as:

e
•
i,j t( ) � −γϕ ei,j t( )( ) + yi,j t( ) (21)

where yi,j(t) stands for the element (i, j) of matrix Y(t).
To prove the predefined time stability of the subsystem subject to

noise perturbation, we define a Lyapunov function as:

u t( ) � ei,j t( )[ ]2 (22)

The time derivative is:

u
•
t( ) � 2ei,j t( )e• i,j t( ) � 2ei,j t( )( − γϕ(ei,j t( )) + yi,j t( ))
� −2γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p+1 + k2 ei,j t( )∣∣∣∣ ∣∣∣∣1 /p+1( ) − 2γk3 ei,j t( )∣∣∣∣ ∣∣∣∣

+2 ei,j t( )yi,j t( ) − γk4 ei,j t( )∣∣∣∣ ∣∣∣∣2 2λ−1( )( )
≤ − 2γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p+1 + k2 ei,j t( )∣∣∣∣ ∣∣∣∣1 /p+1( )

+2 δ ei,j t( )∣∣∣∣ ∣∣∣∣2 − γk4 ei,j t( )∣∣∣∣ ∣∣∣∣2 2λ−1( )( )
≤ − 2γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p+1 + k2 ei,j t( )∣∣∣∣ ∣∣∣∣1 /p+1( )

� −2γ k1u
p+1( )/2 t( ) + k2u

1 /

p+1( )/2

t( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (23)

with λ is positive integer. Therefore, 2(2λ − 1) is certainly greater than
or equal to 2. If it satisfy γk4 ≥ δ, the upper formula must hold.

Comparing with the lemma, predefined convergence time is
available:

tc ≤
1

γk1 1 − p( ) + 1
γk2 1 /

p − 1( ) (24)

Case 2. Dynamic bounded non-vanishing noise.
Theorem 3. There exists a dynamically bounded non-vanishing

noise, where its elements (i, j) satisfy |yi,j(t)|≤ δ, and δ ∈ (0,+∞).
Starting with a random initial matrix, if it satisfy γk3 ≥ δ, it will output
exact solutions of the time-varying Sylvester equation at the
predefined time tc.

tc ≤
1

γk1 1 − p( ) + 1
γk2 1 /

p − 1( ) (25)

Proof of Theorem 3. The additive noise is just different,
comparing with Theorem 2. Therefore, we still choose the
following Lyapunov function:
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u t( ) � ei,j t( )[ ]2 (26)

The time derivative is:

u
•
t( ) � 2ei,j t( )e• i,j t( ) � 2ei,j t( ) −γϕ ei,j t( )( ) + yi,j t( )( )
� −2γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p+1 + k2 ei,j t( )∣∣∣∣ ∣∣∣∣1 /p+1( ) − 2γk4 ei,j t( )∣∣∣∣ ∣∣∣∣2 2λ−1( )

+2 ei,j t( )yi,j t( ) − γk3 ei,j t( )∣∣∣∣ ∣∣∣∣( )
≤ − 2γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p+1 + k2 ei,j t( )∣∣∣∣ ∣∣∣∣1 /p+1( )

+2 δ ei,j t( )∣∣∣∣ ∣∣∣∣ − γk3 ei,j t( )∣∣∣∣ ∣∣∣∣( )
≤ − 2γ k1 ei,j t( )∣∣∣∣ ∣∣∣∣p+1 + k2 ei,j t( )∣∣∣∣ ∣∣∣∣1 /p+1( )

� −2γ k1u
p+1( )/2 t( ) + k2u

1 /

p+1( )/2

t( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (27)

If it satisfy γk3 ≥ δ, the above formula is established.
Comparing with the lemma, predefined convergence time is

available:

tc ≤
1

γk1 1 − p( ) + 1
γk2 1 /

p − 1( ) (28)

According to the above discussion and analysis, it can be
concluded that the proposed network model can effectively achieve
the predefined time convergence, and can attain better performance in
environments where noise disturbance exists.

5 Simulation effect verification

A network model based on a novel activation function is proposed
above. Unlike the common activation function, this activation
function can achieve predefined time convergence in a noisy
environment. And we perform a convergence analysis for different
types of noise. Then we will verify the convergence effect and compare
it with the simulation effect of other common activation functions.
Firstly, we apply the contrast by simulations of time-varying Sylvester
equations.

5.1 Simulation 1: second order coefficient
matrix

Generally, coefficient matrix A(t), B(t) and C(t) can be chosen
randomly, as long as A(t) and B(t) are both invertible matrix. For no
loss of generality, the following second-order matrices are selected:

A t( ) � sin 2t( ) cos 4t( )
−cos 4t( ) sin 3t( )( ), B t( ) � 3 0

1 2
( ),

C t( ) � sin 4t( ) cos 4t( )
−cos 4t( ) sin 4t( )( )

For random initial state X(0) ∈ [2, 2]2×2, the network model with
the classical linear activation function, the power-sigmoid activation
function, and the proposed activation function is simulated in a noise-
free environment.

The results are presented in Figure 1. The following figures are the
comparison of the state solution (SS) and the theoretical solution (TS)
of the three activation functions in a noiseless environment, where the
red dashed line represents the theoretical solution, and the blue solid
line indicates the state solution. Each group of status figure is
composed of four components, representing the four elements
(x11 x12;x21 x22) in the matrix in turn.

The first set of graphs shows a comparison of the state solution
produced by the newly proposed activation function with the
theoretical solution. And the second and third sets of graphs
represent the state contrast figures which are produced by the
power-sigmoid activation function and linear activation function. It
is obvious from the three groups that the state solutions produced by
the newly proposed activation function are closer to the theoretical
values.

The following sets of graphs in Figure 2 show the residual graphs
generated by the three activation functions in different noise
environments, where the blue line represents the newly proposed
activation function, the red line represents the power-sigmoid
activation function, and the yellow line represents the linear activation
function. The first figure shows the residual figure in a noiseless
environment; the remaining two figures are the residual figures in the
presence of an external noise of y(t) = 0.3t and y (t) = cos (t). Obviously,
the newly proposed activation function can achieve faster convergence
and possesses a better anti-noise interference ability.

FIGURE 1
The comparison of the state solution and the theoretical solution: (A) SS of NAF for solving SDSE; (B) SS of PSAF for solving SDSE; (C) SS of LAF for solving
SDSE.
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5.2 Simulation 2: Third order coefficient
matrix

The principle as above, coefficient matrix A(t), B(t) and C(t) are
chosen randomly, as long as A(t) and B(t) are both invertible matrix.
For no loss of generality, select following random third-order matrices:

A t( ) �
sin 2t( ) sin 2t( ) cos t( )
cos 3t( ) sin 2t( ) − sin 2t( )
sin t( ) cos 2t( ) sin 2t( )

⎛⎜⎝ ⎞⎟⎠, B t( ) �
10 0 5
0 20 10
0 15 20

⎛⎜⎝ ⎞⎟⎠
C t( ) �

sin 2t( ) sin 2t( ) cos 3t( )
cos 3t( ) sin 2t( ) − sin 3t( )
−sin t( ) cos 3t( ) sin 2t( )

⎛⎜⎝ ⎞⎟⎠
For random initial state X(0) ∈ [1, 1]3×3, the network model with

the classical linear activation function, the power-sigmoid activation
function, and the proposed activation function is simulated in the
presence of noise (Y(t) = 0.5t) environment.

The results are presented in Figure 3. The figure shows the
comparison of the state solutions and the theoretical solutions of
the three activation functions in this environment, where the red
dashed line represents the theoretical solution, and the blue solid line
indicates the state solution. Each group of status figure is composed of
nine components, representing the nine elements
(x11 x12 x13; x21 x22 x23;x31 x32 x33) in the matrix in turn.

The first set of graphs shows a comparison of the state solution
produced by the newly proposed activation function with the
theoretical solution. The second and third sets of graphs represent
the state contrast figures which are produced by the power-sigmoid
activation function and linear activation function. It is obvious from
the three groups that the state solutions produced by the newly
proposed activation function are closer to the theoretical values.

The supra sets of graphs in Figure 4 show the residual graphs
generated by the three activation functions in different noise
environments, where the blue line represents the newly proposed
activation function, the red line represents the power-sigmoid
activation function, and the yellow line represents the linear
activation function. The first figure shows the residual figure in a
noiseless environment; the remaining two figures are the residual
figures in the presence of an external noise of y(t) = 0.3t and y (t) =
cos(t). Obviously, the newly proposed activation function can achieve
faster convergence and possesses better anti-noise interference ability.

5.3 Simulation 3: Mechanical arm trajectory
tracking

The joint angle vector θ of the robotic arm and the actual trajectory
L of the end actuator are related to:

FIGURE 2
Residual graphs generated by the three activation function: (A) Simulated residual errors of ZNN for solving SDSE without noise; (B) Simulated residual
errors of ZNN for solving SDSE with y(t) = 0.3t; (C) Simulated residual errors of ZNN for solving SDSE with y(t) = cos(t).

FIGURE 3
The comparison of the state solution and the theoretical solution: (A) SS of NAF for solving TDSE; (B) SS of PSAF for solving TDSE; (C) SS of LAF for solving
TDSE.
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L � f θ( ) (29)
where f(·) is a known non-linear one-to-many function between the
joint angle and the actual trajectory of end-effector. Given the
movement path L of the end-effector, the motion change of the
corresponding joint angle vector θ can be determined.

From the time-varying view, the equations of motion of the
robotic arm can be expressed as:

L t( ) � f θ t( )( ) (30)
The track-tracking problem eventually turns into a speed problem.

Therefore, the two sides of the above equation are guided to obtain the
motion equation of the mechanical arm at the velocity level:

L
•
t( ) � J θ( )θ

•
t( ) (31)

where J(θ) represents a Jacobian matrix J(θ) � zf(θ)/zθ. After
introducing the Jacobian matrix, the time-varying joint angular

velocity θ
•(t) and the mechanical arm end time-varying velocity L

•(t)
can be regarded as a linear relationship. Generally, L

•(t) is known quantity
and θ

•(t) is unknown quantity. Thus, the upper equation belongs to an
inversion equation of motion and we can consider the trajectory tracking
problem as a problem of solving a time-varying linear matrix equation.

The proposed network model is used to solve the time-varying
problem and to construct the corresponding model:

J θ( )θ
•
t( ) � L

•
t( ) − γϕ L t( ) − J θ( )θ t( )( ) + y t( ) (32)

where y(t) is additive noise and set to y(t) = 0.1t.
The expected tracking trajectory of the mechanical arm is a four-

pointed star type, and the simulations in noisy environments are shown in
Figure 5. The first graph in Figure 5 depicts the whole track schematic of
themechanical arm, and the second figure illustrates traced trajectory of it
from the top perspective. Themovement trajectory of themobile platform
is described in (c). Furthermore, a contrast drawing between expected

FIGURE 4
Residual graphs generated by the three activation function: (A) Simulated residual errors of ZNN for solving TDSE without noise; (B) Simulated residual
errors of ZNN for solving TDSE with y(t) = 0.3t; (C) Simulated residual errors of ZNN for solving TDSE with y(t) = cos(t).

FIGURE 5
Simulations of mechanical arm tracking trajectory: (A) The whole track schematic; (B) Top plot of the traced trajectory; (C) Movement trajectory of the
mobile platform; (D) Expected path and actual trajectory contrast; (E) Tracking error.
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path and actual trajectory is exhibited subsequently. Finally, the tracking
error of this test in three dimensions is captured in (e). Therefore, the
novel neural network model can accurately complete the trajectory
tracking with small error under the noise polluted environment.

6 Conclusion

In this paper, we propose a zeroing neural network model by
introducing a novel activation function. Through the theoretical
analysis and simulation verification, the network model possesses the
characteristics of predefined time convergence and strong noise
resistance. In dealing with the problem of solving the dynamical
Sylvester equations, it has faster convergence rate, higher accuracy and
better robustness, comparing with several classical network models
constructed with the activation functions. Moreover, the effectiveness
and reliability of the network model have been validated by theoretical
analysis and simulation in the robotic arm trajectory tracking problem.

In addition, there are some difficulties in future research. On the one
hand, in the interest of improving the effectiveness of ZNN model, the
structure require further optimized, such as designing other new
outstanding activation functions and convergence factor. On the other
hand, for the sake of improving the practicality of the ZNN model, it is
necessary to expand the practical application scope of the model to other
scientific and engineering fields, such as applying it to time-varying
electronic circuits, chaotic systems, multi-agent research, chaotic systems.
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