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We review recent studies of contact and thermodynamic geometry for black holes in
AdS spacetimes in the extended thermodynamics framework. The cosmological
constant gives rise to the notion of pressure P= −Λ/8π and, subsequently a conjugate
volume V, thereby leading to a close analogy with hydrostatic thermodynamic
systems. To begin with, we review the contact geometry approach to
thermodynamics in general and then consider thermodynamic metrics
constructed as the Hessians of various thermodynamic potentials. We then study
their correspondence to statistical ensembles for systems with two-dimensional
spaces of equilibrium states. From the zeroes and divergences of the curvature scalar
obtained from the metric, we carefully analyze the issue of ensemble non-
equivalence and show certain complimentary behaviors in the description of a
thermodynamic system. Following a thorough analysis of the familiar van der
Waals system, we turn our attention to black holes in extended phase space.
Considering the example of charged AdS black holes, we discuss the generic
features of their thermodynamic geometry in detail. The relationship of the
thermodynamic curvature(s) with critical points as well as microscopic
interactions in black holes is also briefly explored. We finally set up the
thermodynamic geometry for finite temperature gauge theories dual to black
holes in AdS via holographic correspondence and comment on recent progress.
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1 Introduction

It is well appreciated that black holes are associated with entropy and temperature, being
given by the relations [1–5] (in units Z = kB = c = G = 1):

S � A
4
, T � κ

2π
(1)

where A is the area of the event horizon whereas, κ is the surface gravity at the horizon. The
mass of the black hole M can be interpreted as the fundamental energy function whose
variations satisfy: δM = TδS + μiδC

i where Ci are typically the conserved charges such as electric
charge and angular momentum, while μi are relevant chemical potentials. Asymptotically flat
space black holes are typically not thermodynamically stable at non-zero temperatures.
However, black holes in AdS, i.e. with a negative cosmological constant (Λ < 0) can reach
thermodynamic stability via the Hawking-Page transition [6]. The study of asymptotically AdS
black holes is further motivated from the AdS/CFT correspondence [7–11], wherein the
Hawking-Page transition corresponds to a confinement-deconfinement transition on the
boundary [9]. In the recent years, it has been shown that the cosmological constant Λ can
be treated as a thermodynamic pressure, leading to novel pressure-volume variables in black
hole mechanics [12–14]. Thus, the first law of black hole thermodynamics gets modified to:
δM = TδS +VδP + μiδC

i, where P = −Λ/8π [12], whileV is known as the thermodynamic volume
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[14] appearing as conjugate to P. Such a viewpoint, has lead to a flurry
of research over the past decade, and a close analogy between the
thermodynamics of black holes in AdS and that of ordinary
hydrostatic systems has been discovered [15–18] (see also [19–21]).
Remarkably, phase transitions of black holes have been shown to be
closely analogous to the liquid-gas phase transition, exhibited by the
van der Waals model, with an exact matching of the critical
exponents [15].

The introduction of geometrical ideas into thermodynamics have
led to several interesting physical insights (see for example, the reviews
[22, 23]). Of particular interest is the concept of a length between
different thermodynamic states [24–26]. A good starting point leading
to the notion of thermodynamic length is Einstein’s fluctuation theory
which can be motivated as follows. It is a well understood fact that the
entropy of a thermodynamic system is a measure of the number of
ways the system can arrange itself microscopically. One can then
invert the Boltzmann’s formula for entropy (we shall set kB = 1
throughout the paper): S = lnΩ where Ω is the thermodynamic
probability or equivalently the number of accessible microstates to
obtain

Ω � eS. (2)
We may then expand the entropy S about its equilibrium value S0, i.e.
about the point at which all its first derivatives vanish so that we have
up to the second order:

S ≊ S0 + z2S0
zxizxj

dxi ⊗ dxj (3)

where {xi} are suitable thermodynamic variables specified by external
baths or boundary conditions defining the ensemble. With this, one
can re-write Eq. 2 as

Ω ~ e−dl
2
R (4)

with,

dl2R � − z2S0
zxizxj

dxi ⊗ dxj. (5)

Clearly, dl2R can be interpreted as a length on the space of
thermodynamic equilibrium states between points xi and xi + dxi.
With this, Eq. 4 can be interpreted as follows: the shorter the length is
between two thermodynamic states, the more probable is a fluctuation
between them! It therefore follows from elementary fluctuation theory
that the notion of a length on the spaces of thermodynamic
equilibrium states is very well motivated physically. The metric
given in Eq. 5 for suitable thermodynamic variables {xi} is called
the Ruppeiner metric [22, 24]. Since the second law of
thermodynamics implies that the entropy of a system is a concave
function, the Ruppeiner metric is positive definite.

The curvature scalar associated with the Ruppeiner metric, known
as the Ruppeiner curvature or simply the thermodynamic curvature
possesses an intriguing behavior. The empirical understanding
obtained from studying several thermodynamic systems is as
follows. It typically diverges at critical points and possibly also at
points where the thermodynamic system exhibits strong microscopic
correlations. This has been verified for several systems including the
van der Waals fluid [27, 28] and model magnetic systems [29–31] (see
also [32–34]). In fact, it has been argued [22, 35] that close to the
critical point, the Ruppeiner curvature scales with the correlation
volume, i.e. R ~ ξdwhere ξ is the correlation length and d is the number

of spatial dimensions. Another interesting aspect of the Ruppeiner
curvature is that its sign seems to have a connection with the nature of
dominant interactions between the microscopic degrees of freedom in
a given thermodynamic system [35]. In the sign convention that we
adopt in this paper, the curvature scalar is negative (R < 0) for the
attractive van der Waals gas [27, 28] or an ideal gas of bosons [36]. In
the latter, the attractive interactions are of quantummechanical origin.
Similarly, for the ideal gas of fermions, one has R > 0 which may be
taken to signal the existence of quantum mechanical repulsive
interactions whose origin can be traced back into the exclusion
principle [36]. This feature has indeed been verified for several
systems where independent microscopic calculations can be
performed (see [35] and references therein). Therefore, the
Ruppeiner curvature seems to be a powerful diagnostic tool whose
behavior may reveal early insights into the microscopic physics of
systems such as black holes where a satisfactory microscopic theory is
not yet available [27, 28, 37–67] (see also [68–72]).

In recent times, there has been an ongoing debate about the
applicability of geometric methods for understanding the physics of
thermodynamic systems [73, 74, 76, 77], including black holes.
Thermodynamic or information geometry has been shown to be a
powerful diagnostic tool, with the divergences of the associated
curvature scalar capturing the critical points in various
thermodynamic systems. The connection between thermodynamic
curvature and the specific heat capacities has also been explored,
particularly because the divergences of these quantities typically signal
the onset of instabilities and phase transitions in a system. Despite
these advantages, there have been a few longstanding unresolved
issues concerning the lack of diffeomorphism invariance [42, 78]
and non-equivalence of thermodynamic curvatures constructed out
of different thermodynamic potentials [79], among others. It has been
noted in several papers in the past that thermodynamic Hessian
metrics are not Legendre invariant (see for example [42, 79, 80])
and we can understand it by considering thermodynamic curvatures
constructed from two different thermodynamic potentials. Without
loss of generality, for example, one can construct a certain
thermodynamic curvature RU by taking the internal energy U as
the fundamental potential with the divergences of RU capturing the
critical point of the system. Performing a partial Legendre transform
and using instead enthalpy H as the potential, leads to a different
thermodynamic curvature (call it, RH), which may not capture the
critical point exactly (as we show later). Thus, the features exhibited by
thermodynamic curvatures computed using different potentials may
be different. This has been termed as ensemble non-equivalence in
thermodynamic geometry [79]. While a large body of work is devoted
to probing the connection of the divergences of thermodynamic
curvatures to phase transitions, there has been a relatively less
focus on the study of their zeroes, until recently [27, 28, 55, 59, 61].

One of the major goals of this article is to pedagogically introduce
thermodynamic geometry with black holes in mind, and to perform a
critical analysis of the thermodynamic curvatures obtained in different
statistical ensembles related by (partial) Legendre transforms. It is
demonstrated that if RU captures the divergences of a certain specific
heat, RH (obtained by a Legendre transform) contains information
about the zeroes of that specific heat and vice versa. This suggests a
complimentary nature of RU and RH (see also [79]). Different
parametrizations of thermodynamic Hessian metrics in a given
ensemble are elaborately discussed. We follow the general route
discussed by Mrugala [82] (discussed in section-(II)) to obtain
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thermodynamic metrics in a given ensemble, once the first law
satisfied at thermodynamic equilibrium is known. We particularly
focus on entropic metrics which are generated from the derivatives of
the entropy or the free entropy and highlight some key features of such
metrics and their relationship with energy metrics (those which are
generated from the derivatives of energy functions). The geometry
described by entropic metrics is explored in some detail, particularly in
the context of black hole chemistry.

The paper is organized as follows. In section-(II), we start by
setting up our notation and summarize some basic aspects of the
contact geometry approach to thermodynamic phase spaces followed
by the notion of Hessian metrics defined on spaces of equilibrium
states [73–77]. Then, in section-(III), we discuss some key ideas on
thermodynamic Hessian metrics and their reparametrizations. The
issue of ensemble non-equivalence is analyzed very carefully. For two-
dimensional spaces of thermodynamic equilibrium states, we follow
closely the earlier analysis in [79] (see also [80, 81]) and study the
(Ruppeiner) thermodynamic curvatures in two different ensembles
contrasting their behavior. The possible sources of singularities of the
Ruppeiner metric are identified in the two ensembles related by a
(partial) Legendre transform. As a model hydrostatic system, we
consider the van der Waals fluid and discuss its thermodynamic
geometry. In section-(IV), we apply the ideas developed earlier to
explore the thermodynamic geometry of black holes in AdS
spacetimes in the extended thermodynamics framework. This
section contains two subsections, i.e. (A) and (B), where the
thermodynamic geometries of the bulk and the boundary (via the
gauge/gravity duality) settings are discussed respectively. We end with
comments and a summary of the paper in the concluding section-(V).

2 Contact and metric structures on
thermodynamic phase spaces

In this section, we shall very briefly review some basic aspects of
the geometry of thermodynamics. The reader is referred to [83–87] for
the details. Thermodynamic phase spaces assume the structure of a
contact manifold, i.e. a (2n + 1)-dimensional smooth manifold M
together with a one form η such that

η ∧ dη( )n ≠ 0. (6)
Clearly, η ∧ (dη)n is a volume form onM. The kernel of the one form η

defines a hyperplane distribution. The condition given in Eq. 6 is then
equivalent to saying that this hyperplane distribution is completely
non-integrable in the Frobenius sense or in simpler words the
hyperplanes are extremely twisted. This one form η shall be called
the contact form. Further, associated with the contact form, there
exists a globally defined and unique vector field ξ known as the Reeb
vector field defined through the relations:

η ξ( ) � 1, dη ξ, .( ) � 0. (7)
In other words, the vector field ξ can be understood to be dual to the
one form field η. Analogous to the one on symplectic manifolds, there
exists a Darboux theorem on contact manifolds which states that on
any local patch on a contact manifold (M, η), it is always possible to
define (Darboux) coordinates (s, qi, pi) such that

η � ds − pidq
i, ξ � z

zs
. (8)

There exist a very special class of submanifolds of a contact
manifold (M, η) which are of interest especially from the
perspective of thermodynamics. They are the integral submanifolds
of maximum dimension such that η = 0 when restricted to the
submanifold. In other words, if qi and pi are to be treated as
conjugate variables, it is easy to see that such a submanifold cannot
contain a conjugate pair and hence would correspond to the familiar
notion of a configuration space from classical mechanics. For a
particular Legendre submanifold L having coordinates (qi, pj)
where i ∈ I, j ∈ J with I and J being a disjoint partition of the
index set {1, 2, . . .., n}, the local structure is always given as

pi � zF

zqi
, qj � − zF

zpj
, s � F − pj

zF

zpj
. (9)

In this context F = F (qi, pj) is known as the generator of L and it should
be clear that all Legendre submanifolds are n-dimensional. It was
shown long back that any contact manifold can be associated with a
Riemannian metric structure which satisfies some compatibility
conditions with the contact form. The reader is referred to the
works [88–90] for details on compatible metric structures on
contact manifolds. The metric is a bilinear, symmetric as well as
non-degenerate structure. It can be verified that the generic choice due
to Mrugala [82]: G = η2 + dqi ⊗ dpi satisfies all these three basic
requirements and also the compatibility condition presented in [88].
Since for an arbitrary Legendre submanifold L, one has η|L = 0 by
definition, therefore restricting G to L gives the local expression from
Eq. 9:

G|L � dqi ⊗ dpi|L � z2F

zqjzqj′
dqj ⊗ dqj′ − z2F

zpjzpj′
dpj ⊗ dpj′. (10)

The metric on a Legendre submanifold L is therefore defined from the
Hessian of the generator of L. Such a metric will be called a Hessian
metric on L. There are of course other ways of defining a symmetric,
bilinear and non-degenerate metric structure on a contact manifold
but that would not be of interest to us in the present work.

With this background, we can now make connection with
thermodynamics (also see [73, 74, 76, 77]). We start by recalling
the first law of thermodynamics for a hydrostatic (P, V, T) system
described by the microcanonical ensemble:

dU � TdS − PdV. (11)
A direct comparison between the first of Eqs 8, 11 leads to the
immediate identification that the thermodynamic variables are local
coordinates on a 5-dimensional contact manifold. Explicitly, one
identifies s = U while (q1, q2) = (S, V) and (p1, p2) = (T, − P).
Further, Eq. 11 which holds at equilibrium implies that the system’s
state is represented by a point on a Legendre submanifold of the
thermodynamic phase space. Such a Legendre submanifold has the
following local structure [Eq. 9]:

s � U, T � zU

zS
, −P � zU

zV
. (12)

Legendre submanifolds therefore represent spaces of thermodynamic
equilibrium states in the sense that each point on the Legendre
submanifold represents an equilibrium state of the system. Thus,
even though apriori all the coordinates of the thermodynamic
phase space are independent, thermodynamic equilibrium or
equivalently the first law puts an on-shell condition such that the
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system lives on a Legendre submanifold with just n independent
coordinates while the other n are derived by taking derivatives of the
thermodynamic potential (the generator) with respect to the
independent thermodynamic variables. A thermodynamic system is
therefore a triplet (M, η, L) where (M, η) is a contact manifold and L
is the Legendre submanifold representing the system. It also means
that the spaces of thermodynamic equilibrium states are equipped
with the notion of a thermodynamic metric which is the Hessian of the
relevant thermodynamic potential. In this paper, we are interested in
such thermodynamic metrics. The contact geometry approach to
thermodynamics naturally leads to a Hamiltonian framework for
the latter which for black holes has been discussed in [91, 92] (see
also [93]).

3 Two ensembles related by a Legendre
transform

We shall begin by analyzing two generic ensembles which in the
thermodynamic limit are related by a Legendre transform (see also
[79] and references therein). Let us say that at equilibrium, the entropy
can be expressed as S = S(xi) with i = 1, . . .., nwhere xi are suitable state
variables characterzing the system’s equilibrium state. For the sake of
simplicity, we take the case with n = 2 so that we have, S = S (E, X)
where E is the energy function (for example, internal energy U) and X
can be a suitable thermodynamic variable.

3.1 Ensemble A: X is fixed by the boundary

In the thermodynamic limit, we consider the first law with E = U:

dU � TdS + YdX (13)
where Y = (zU/zX)S is the variable conjugate to X. For a hydrostatic
system where X = V (imposed by boundary conditions), one has
Y = −P. On the other hand, for a magnetic system one has X = η (the
magnetization) and Y = h (magnetic intensity). Comparison with the
first of Eq. 8 leads us to the identification that s =U and (q1, q2) = (S, X)
whereas (p1, p2) = (T, Y). The condition, dU − TdS − YdX = 0 defines
the space of equilibrium states on which it is most natural to choose S
and X as the independent coordinates whereas, T and Y are defined
on-shell as derivatives of the generator function U with respect to the
independent ones. The thermodynamic metric [Eq. 10] is then (in our
notation, (dx)2 = dx ⊗ dx)

dl2 � z2U

zS2
dS( )2 + 2

z2U

zSzX
dS ⊗ dX + z2U

zX2 dX( )2

� T

CX
dS( )2 + 2

zT

zX
( )

S

dS ⊗ dX + zY

zX
( )

S

dX( )2.
(14)

This is known as the Weinhold metric [25]. Note that here CX is the
specific heat at constant X. Noting that the function U = U(S, X) is
obtained by inverting the relation S = S(U, X) in favour ofU, then since
S(U, X) is a concave function, U(S, X) is convex ensuring that the
metric given above is positive. This happens because of positivity of
temperature, which implies that entropy is a monotonically increasing
function of U [105]. Now, since S and X are the independent
thermodynamic coordinates on the 2-dimensional space of
equilibrium states, such that U = U(S, X), one has T = T (S, X) =

zSU(S, X) and Y = Y(S, X) = zXU(S, X). These are the equations of state.
Using this, Eq. 14 is equivalent to

dl2 � dS ⊗ dT + dY ⊗ dX. (15)
This is also easily obtained from Eq. 10:

dl2 � dqi ⊗ dpi � dq1 ⊗ dp1 + dq2 ⊗ dp2 (16)
with q1 = S, p1 = T, q2 = X, p2 = Y. Eq. 15 is the line element of the
natural metric on the Legendre submanifold LX representing the
system described by this ensemble.

Now, because of the equations of state (the on-shell relations
between thermodynamic quantities such that only two of them are
independent), one can write T = T(S, X) and Y = Y(S, X). These can in
principle be inverted to obtain S = S(T, Y) and X = X(T, Y). One may
also obtain S = S(T, X) and Y = Y(T, X) or even T = T (S, X) and Y =
Y(S, X). This means that by suitably inverting the equations of state on
the space of equilibrium states LX, we can pick any two among S, T, X
or Y to be independent and re-express our metric [Eq. 15] in four
different ways. One is of course Eq. 14. The other three are

dl2 � CX

T
dT( )2 + zY

zX
( )

T

dX( )2, (17)

dl2 � T

CY
dS( )2 + zX

zY
( )

S

dY( )2, (18)

dl2 � CY

T
dT( )2 + zX

zY
( )

T

dY( )2

+2 zX

zT
( )

Y

dT ⊗ dY. (19)

Here, CX and CY are the specific heats at constant X and Y
respectively. It should be specially emphasized that we have not
performed any Legendre transformation in deriving these line
elements. They are simply Eq. 15 in different coordinate
parameterizations. One goes from one set of independent
coordinates to another by exploiting the equations of state while
still being on the Legendre submanifold LX. All these line elements
therefore, represent the same length on LX but expressed in different
fluctuation coordinates. This is possible because the fluctuations in the
natural coordinates (S, X) are related to those of the dependent
coordinates (T, Y) via the equations of state. Therefore, one
expects that the Ricci scalars associated with the line elements
given in Eqs. 14, 17–19 are all equivalent to each other. For
example, one can compute the scalar curvature on the (S, X) plane
[Eq. 14] and then using the equations of state re-express it as a
function of say, T and Y. It then means that the curvature scalar so
obtained would be the same as that directly calculated using the line
element given in Eq. 19.

Since there is a natural first law associated with a given
ensemble, this introduces a set of natural coordinates on the
Legendre submanifold or the space of thermodynamic
equilibrium states on which the system of interest is described.
For example, for the present case the natural coordinates are S and
X although as we saw, by using the on-shell equations of state T
and/or Y could be made independent on LX. The choice of natural
coordinates does not depend on the specific functional form of the
thermodynamic potential (in this case, the internal energy U = U(S,
X)). In an arbitrary case with n independent variables, one has S = S
(E, Xj) where j = 1, 2, . . .., n − 1. One can therefore write E = E(S, Xj)
giving the first law:
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dE � TdS +∑n−1
j�1

YjdX
j. (20)

This sets the natural coordinates to {S, Xj} and the Legendre
submanifold describing the system is n-dimensional. Keeping in
mind that the exact form of E is not relevant here (as long as it is
well behaved), one may assert that a given statistical ensemble
describes a family of Legendre submanifolds in the thermodynamic
limit. The choice of natural coordinates is specified by the ensemble of
interest.

3.2 Ensemble B: There is a reservoir for X

Let us consider the case where the system is in contact with a
reservoir for the variable X. For a hydrostatic system, with our usual
identification that Y is the pressure, the bath is a barostat with which
the system can exchange its volume. If on the other hand, the system
was a magnetic system with Y being the magnetic intensity, one can
think about the system attaining thermodynamic equilibrium in the
presence of a constant external field. In the present case, the first law is
given by

dE � TdS −XdY (21)
for some energy function E = E(S, Y). The first laws given in Eqs 13, 21
can be related by the Legendre transformation, E(S, Y) = U(S, X) − XY
provided it exists. For a usual hydrostatic system, E(S, P) = U(S, V) +
PV ≔ H(S, P) which is the enthalpy whereas for a magnetic system,
E(S, h) = U(S, η) − ηh.

Inspecting Eq. 21, we arrive at the following identifications: (q1,
q2) = (S, Y) and (p1, p2) = (T, − X) on the space of equilibrium states
(say) LY. The thermodynamic length [Eq. 10] is then

dl2 � dS ⊗ dT − dY ⊗ dX (22)
or in the natural coordinates,

dl2 � z2E

zS2
dS( )2 + 2

z2E

zSzY
dS ⊗ dY + z2E

zY2 dY( )2

� T

CY
dS( )2 + 2

zT

zY
( )

S

dS ⊗ dY − zX

zY
( )

S

dY( )2.
(23)

Clearly, the thermodynamic lengths on Legendre submanifolds LX and
LY given respectively in Eqs 15, 22 are not the same. It can be shown
[77] that two Legendre submanifolds are diffeomorphic to each other
if the Legendre transformation connecting them is regular. Even then,
the thermodynamic lengths for two ensembles do not coincide. In
other words, in the thermodynamic limit where the ensembles become
equivalent (up to Legendre transformations), the lengths are not! We
strongly emphasize on the fact that this non-equivalence has nothing
to do with the microscopic description of a particular system. It is well
appreciated that the presence of long ranged interactions may render
different ensembles inequivalent to each other [94, 95] (see also [96]).
However, the non-equivalence which is being discussed here follows
from the basic structure of the thermodynamic phase space and shall
continue to be there even when there are no long range interactions
between the microscopic degrees of freedom. Thus, non-equivalence
in the present context shall refer to the fact that some of the
geometrical properties of the two Legendre submanifolds
representing the same system but in two different ensembles are

not the same. It can be intuitively understood on physical grounds
by noting that although one is finally working in the thermodynamic
limit, the Hessian metrics are all derived generically based on
thermodynamic fluctuations which are not equivalent in different
ensembles. As it is clear, the two distinct ensembles are associated with
different system-boundary conditions. For example, in ensemble A,
the variable X is held fixed by the boundary of the system whereas in
ensemble B, the system is in contact with a bath with constant
intensive parameter Y. Thus, the fluctuation properties of the
thermodynamic system are in general different in the two different
ensembles. As it turns out, although in the thermodynamic limit, the
behavior of the system consistently agrees in both the ensembles, the
thermodynamic lengths which are derived from fluctuation properties
within each ensembles are still not equivalent. In other words, the
process of taking the thermodynamic limit does not erase the
fluctuation properties captured by the thermodynamic lengths.

Now for the present case, it is possible to re-express the length [Eq.
22] in different coordinate parameterizations. One of them is Eq. 23.
The other three are

dl2 � CY

T
dT( )2 − zX

zY
( )

T

dY( )2, (24)

dl2 � T

CX
dS( )2 − zY

zX
( )

S

dX( )2, (25)

dl2 � CX

T
dT( )2 − zY

zX
( )

T

dX( )2

−2 zY

zT
( )

X

dT ⊗ dX. (26)

It turns out that the Ricci scalars of the line elements given in Eqs
23–26 are equivalent to one another. However, the line elements with
the same fluctuation coordinates (say (T, X)) are not equivalent in the
two ensembles. Therefore, to summarize, the Ricci scalars associated
with thermodynamic metrics corresponding to different ensembles
(hence, different families of Legendre submanifolds) are in general
inequivalent.

3.3 Entropic metrics

So far we saw that it is possible to construct various
thermodynamic metrics by taking Hessians of different
thermodynamic potentials. Typically, such potentials are the energy
functions of the system such as the internal energy or the enthalpy.
However, it is often physically more intuitive to consider entropic
potentials (those with dimensions of entropy) in the construction of
suchmetrics. Among them the Ruppeiner metric is special because it is
directly linked with the probability of fluctuations rendering a physical
meaning to the length between two thermodynamic states.
Furthermore, its Ricci scalar, i.e. the Ruppeiner curvature or the
thermodynamic curvature bears a nice physical interpretation as
was pointed out in the introduction.

As it turns out, Eq. 13 can be re-written as

dS � dU

T
− Y

T
dX. (27)

This is clearly a microcanonical description where the entropy is given
by the Boltzmann formula S = lnΩ(U, X). From the point of view of
statistical mechanics, this is a more fundamental form of the first law
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as compared to Eq. 13 because all the equilibrium properties including
the specific heats and susceptibilities can be computed from the
knowledge of S derived from microscopic details (via Ω). The
Ruppeiner metric is then defined as the negative Hessian of the
entropy or equivalently, the Hessian of the negative entropy. In
order to derive an expression for the Ruppeiner metric in ensemble
A, let us start out with the generic expression for the Ruppeiner line
element, dl2R � −gijdxi ⊗ dxj with gij = zizjS. Writing out dzi = gijdx

j

one finds

dl2R � −dzi ⊗ dxi. (28)
Now, since dzi = gijdx

j, we must have

zi � zS

zxi
. (29)

From the first law given in Eq. 13, one can write

dS − dU

T
+ YdX

T
� 0 (30)

which means that z1 = 1/T and z2 = −Y/T whereas x1 = U and x2 = X.
With these identifications,

dz1 � −dT
T2

, dz2 � YdT

T2
− dY

T
. (31)

The line element given in Eq. 28 can now be expressed as

dl2R � − −dT
T2

( ) ⊗ dU − Y

T2
dT − dY

T
( ) ⊗ dX (32)

which from the first law reduces to

dl2R � 1
T

dS ⊗ dT + dX ⊗ dY( ). (33)

We can now turn to ensemble B where Y is fixed by an external bath.
In this case the Ruppeiner line element is

dl2R � 1
T

dS ⊗ dT − dY ⊗ dX( ) (34)

where the entropy of the system is of the generic form S = S(E, Y). This
is different from the microcanonical or (V, U)-description. The first
law in terms of the entropy can be re-written as

dS � dE

T
+ X

T
dY (35)

which is equivalent to rearranging Eq. 27 and defining E = U − YX. Since
X is an extensive variable, its conjugate, Y is intensive and consequently S
has been expressed as a function of an intensive and an extensive variable
as opposed to the microcanonical description where it is a function of U
and X, both being extensive. It therefore follows that in ensemble B, the
entropy is convex in argument Y while still being concave in E.
Nevertheless, its Hessian is still negative making it a concave function
overall. This ensures that the Ruppeiner metric defined as the negative
Hessian of the entropy is positive. The energy metric defined as the
Hessian of E discussed in the previous subsection, being conformally
related to the Ruppeiner metric [Eq. 34] is also positive for T > 0. If the
system of interest is a hydrostatic system, then such a description would
correspond to the (P,H)-ensemble where the pressure P and the enthalpy
H are held fixed at the boundary.

As it turns out, the curvature scalar associated with the Ruppeiner
metric has a peculiar behavior close to critical points or even the points

at which the system gets strongly correlated [24]. Let us examine the
case of a system described by the ensemble A with two independent
thermodynamic coordinates. For such a case, the metric has the
general form: dl2R � g11(dx1)2 + g12dx1 ⊗ dx2 + g21dx2 ⊗ dx1 +
g22(dx2)2 where g12 = g21. The Ricci scalar corresponding to the
geometry described by the metric can be obtained to be [97]

R � − 1��
g

√ z

zx1

g12

g11
��
g

√ zg11

zx2 − 1��
g

√ zg22

zx1( )[
z

zx2

2��
g

√ zg12

zx1 − 1��
g

√ zg11

zx2 − g12

g11
��
g

√ zg11

zx1( )] (36)

where g is the determinant of the metric tensor. This means that
calculations are a lot simpler if the metric is diagonal. For the sake of
simplicity, let us consider the ensemble A discussed in a preceding
subsection and pick up the Ruppeiner element dl2R obtained by
dividing the line element given in Eq. 17 by a factor of T:

dl2R � CX

T2
dT( )2 + 1

T

zY

zX
( )

T

dX( )2. (37)

Clearly, one finds that the metric is singular if CX = 0 or (zY/zX)T = 0.
Taking the Ruppeiner line element obtained by dividing Eq. 18 by a
factor of T, it also follows that the curvature scalar say RU in ensemble
A can also diverge as CY → ∞. Blowing up of the specific heat is
reminiscent of a critical point which indicates that RU may blow up at
the critical point. For a hydrostatic systemwhere Y = −P andX =V, the
situation corresponds to blowing up of CP at the critical point.

Next, let us consider the ensemble B consisting of a system in
contact with a bath for X. It is not hard to convince oneself that the
thermodynamic curvature obtained in this case, say RE does not
coincide with RU. The metrics and hence their Ricci scalars simply
do not match. However, the curvature scalar RE diverges as CX → ∞
and CY = 0 suggesting a complimentary behavior to RU as far as
divergences are concerned. For a general case where there are two
fluctuation variables, the correspondence between the zeroes and
divergences of the specific heats with the singularities of the
thermodynamic lengths (which could possibly lead to divergences
of the curvature scalars) has been summarized in Table 1.

3.4 (U, V) and (H, P)-ensembles

In this subsection, we shall make our assertions concrete by
considering the van der Waals model, which exhibits features of
the liquid-gas phase transition. Then, ensemble A discussed in
subsection-(A) is the familiar microcanonical or (U, V)-ensemble
where symbols have their usual meaning. On the other hand,
ensemble B discussed in subsection-(B) then corresponds to the
isoenthalpic-isobaric or (H, P)-ensemble [98] with energy function
H = U + PV. For a hydrostatic system, our notations and conventions
are as follows: The number of particles N is kept fixed and is not
allowed to fluctuate. Thus N is merely a fixed parameter setting the
system’s size. For convenience, we put X = v (rather than V) and we
have Y = −Pwhere v =V/N is now the specific volume of the fluid such
that the ideal gas equation reads Pv = T.

The van der Waals (vdW) fluid is a prototypical example of a
model fluid exhibiting features of the liquid-gas phase transition. The
attractive interactions among the fluid molecules can be summarized
by the van der Waals potential V(r) = −k/r6 for some constant k > 0
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acting between pairs of molecules. Furthermore, the molecules are
modelled as impenetrable hard spheres and therefore, if σ be the
distance at which two molecules touch each other, the potential is
infinite. Such a description of intermolecular interactions is mean
field. The fluid is described by the equation of state:

P � T

v − b
− a

v2
. (38)

Taking Cv = 3/2, one has the following expression for CP:

CP � Tv3

Tv3 − 2a b − v( )2 +
3
2
. (39)

Note that putting a = b = 0, one has CP − Cv = 1 as expected from the
ideal gas. In the microcanonical ensemble, the thermodynamic
curvature reads (see also [27, 28])

RU � −4a b − v( )2 a b − v( )2 − Tv3( )
3 Tv3 − 2a b − v( )2( )2 (40)

whereas, in the isoenthalpic-isobaric ensemble, the curvature scalar of
the Ruppeiner metric reads the following when expressed in T and v
coordinates:

RH � −4a b − v( )2 3a b − v( )2 − 5Tv3( )
6a b − v( )2 − 5Tv3( )2 (41)

where the subscript H signifies that in this case, the energy function E
is equal to the enthalpy. The thermodynamic curvatures RU and RH

have been plotted as a function of v in Figure 1. Clearly, the
divergences in CP and RU exactly coincide as was expected. With
v > b = 1, CP has divergences at v = 1.21, 37.9 and RU diverges exactly at
these points. We mention that the plots are for a temperature below

the critical temperature. The curvature scalar RU becomes zero at the
point v = bwhere the specific volume and the co-volume coincide putting
a lower cutoff to the physical values v can take. However, this point lies in
the negative bulk modulus range below the critical temperature. We also
note that RU crosses zero for two values of v > b. However, both of them
occur in the region where the isothermal bulk modulus is negative thus
falling in a thermodynamically unstable region. For T = 0.1, a = 2 and b =
1, the isothermal bulk modulus is negative (shaded in grey in the plots)
between v = 1.210 and 37.918). Such crossings are therefore not
considered to be of physical interest. It is then simple to check that
the thermodynamic curvature is negative definite over the entire
thermodynamically stable region with v > b and (zP/zv)T ≤ 0. This
can empirically be taken to signal the existence of attractive interactions
between molecules. It may be shown that near the critical temperature Tc,
the specific heat CP and thermodynamic curvature RU scale as [28]

CP ~|T − Tc|−1, RU ~|T − Tc|−2. (42)
The exponent ‘2’ for the thermodynamic curvature near the critical
point has been obtained earlier in other contexts [27, 33, 34, 64, 72].

As for RH, the divergences of RH do not correspond to those of CP.
As a matter of fact, if Cv had divergences, one could expect such
divergences to coincide with those of the thermodynamic curvature
RH. In the present case where Cv is a constant it can be clearly seen that
the divergences of RH correspond to the zeroes of CP. It should be
emphasized that the constancy of one of the specific heats (here Cv)
originates from the specific choice X = v for the (U, X) ensemble where
Cv is a constant due to the equipartition theorem for the van derWaals
fluid. For v > b = 1, CP has zeroes at v = 21.8 and 1.3. RH diverges at
both these points. This is expected from the generic structure of the
line elements presented earlier. Let us also note that RH consistently
goes to zero at v = b. Finally, we point out that the other crossings of RH

TABLE 1 Possible sources of singularities of the Ruppeiner metric.

Ensemble Possible sources of singularities of the Ruppeiner metric

(U, X) (a) Divergences of CY (b) Zeroes of CX (c) At (zY/zX)T = 0 (d) At (zX/zY)S = 0

(E, Y) (a) Divergences of CX (b) Zeroes of CY (c) At (zX/zY)T = 0 (d) At (zY/zX)S = 0

FIGURE 1
Thermodynamic curvatures RU, RH and specific heat CP for the van der Waals fluid plotted versus specific volume with a = 2, b =1 below the critical
temperature. The region(s) with negative bulk modulus are shaded in grey.
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fall into the region of negative isothermal bulk modulus (shaded in
grey) and are therefore discarded. Thus, RH is negative over the entire
physically interesting region possibly signifying the attractive nature of
van der Waals interactions between the molecules. Furthermore, let us
note that as one takes v → ∞, both RU and RH approach zero. This is
the ideal gas limit where the thermodynamic geometry is flat.

Some discussion is in order. Although we find that for the van der
Waals model, the physically interesting zero of both RU and RH agree,
irrespective of their inequivalence, this is not true in general. For example,
if we use the fact that the specific heat at fixed volume is a constant
(certainly true for several model systems), then RH and RU have the
following general expressions (written in terms of specific volume):

RH � −
T2CvzT,vP

2 − 2T2CvzvPzT,T,vP − CvzvP
2 + 2T3zTP

2zT,T,vP
−2T2zTP

2zT,vP + 2TzT,vP
2zvP

2

2 TzTP2 − CvzvP( )2
(43)

and,

RU � T2 −zT,vP2( ) + 2T2zvPzT,T,vP + zvP2

2CvzvP2
. (44)

Now, using the fact that zT,T,vP = 0 (the equation of state is linear
in T), it is simple to check that both RU = RH = 0 when

zP

zv
( )

T�0
� 0. (45)

The above condition, gives one physical solution at which bothRU and RH
vanish, both below and above the critical point. Other zero crossings are
physically not quite interesting because they lie in the range of negative
bulk modulus. Although the above result proving the equivalence of the
zero crossing(s) of RU and RH looks appealing, let us emphasize that it is
based on two crucial assumptions about the fluid system. First, we have
assumed that Cv is a constant, independent of T and v. Although this
follows from the equipartition theorem, this is certainly not true for a
general fluid with complicated microscopic interactions where the virial
coefficients are temperature dependent. The second assumption is that the
equation of state is linear in T, i.e. zT,T,vP = 0. While this is true for the
ideal gas and several model fluid systems (such as van der Waals), this is
not the case for a general fluid where the virial coefficients do not depend
on temperature linearly. Thus, the zero crossing behavior of RU and RH
are indeed not equivalent in the general case. Nevertheless, they do follow
some general trends as far as their divergences are concerned.

4 Black holes in AdS spacetimes

We shall consider black holes in AdS spacetimes. In the extended
thermodynamics framework [12], the cosmological constant is treated
as thermodynamic pressure via the relation

P � − Λ
8π

with, Λ � − d − 1( ) d − 2( )
2l2

. (46)

Here d is the number of spacetime dimensions. For charged black
holes, the first law of thermodynamics takes the following form:

dM � TdS + VdP +ΦdQ (47)
where,Q is the electric charge (U (1) charge) of the black hole, andΦ is
the corresponding potential. The thermodynamic variables satisfy the
Smarr relation [12, 15, 16]:

d − 3( )M � d − 2( )TS − 2PV + d − 3( )QΦ (48)
which can be obtained via scaling arguments. Thermodynamic
geometry of black holes was first studied in [37] wherein the BTZ
black hole was considered and it was found that the curvature
scalar diverges at extremality. This was followed by a series of
papers (see for instance [38, 39, 41, 42]) where the thermodynamic
curvature for various black holes were computed and analyzed. It
was found that upon suitably choosing the thermodynamic
potential, the thermodynamic curvature is divergent along the
Davies line [39] (see also [79]). The most natural choice of energy
metric for black holes is defined as the Hessian of the mass
[37–39], i.e.

dl2M � z2M

zyizyj
dyi ⊗ dyj (49)

where M = M(yi) with y1 = S (entropy). One may invert this
fundamental relation, to express the entropy as the potential, ie.
S = S(M, /) and subsequently define the Ruppeiner metric dl2R
from it. Using arguments identical to those discussed in
subsection-(C), it follows that dl2R � dl2M/T where, T is the
Hawking temperature. There have been several extensive
investigations on thermodynamic geometry of black holes in the
literature [27, 28, 37–42, 44–49, 51–55, 57–72]. We remark here
that although we shall be focussing on Hessian metrics, there are
other metric structures which have been considered for black holes
earlier [42, 78].

In the extended thermodynamics framework, thermodynamic
geometry for BTZ black holes (d = 3) has been studied in [59, 60]
(also see [37, 40] for older studies). It has been found that for the
neutral and non-rotating BTZ black hole, the thermodynamic
geometry is Ricci flat, empirically indicating towards the
absence of net microscopic interactions. However, for black
holes with electric charge and/or angular momentum, the
geometry is curved with a positive thermodynamic curvature.
This may be taken to indicate towards the presence of repulsive
microscopic interactions and is consistent with the fact that the
BTZ black hole does not admit a phase transition [18]. For charged
and/or rotating BTZ black holes, the scalar RH has been found to
diverge at the extremal point [59], consistent with a much older
result [37]. The thermodynamic curvature RH was obtained for the
case of exotic BTZ black holes in [59], and it was found that RH

could be both positive and negative with a zero crossing between
the two regimes. The origin of such a crossing is not well
understood, partly because exotic BTZ black holes do not admit
a fluid-like equation of state. On the other hand, thermodynamic
curvatures obtained for black holes in higher dimensions exhibit
richer features. Below, we shall consider charged AdS black holes in
four dimensions.

4.1 Bulk

The solution to Einstein-Maxwell equations with a negative
cosmological constant in four dimensions (d = 4) reads [15]:

ds2 � −f r( )dt2 + f r( )−1dr2 + r2dΩ2
2, (50)

A � −q
r
dt, F � dA (51)

where dΩ2
2 is the line element on a 2-sphere and,
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f r( ) � 1 − 2M
r

+ q2

r2
+ r2

l2
. (52)

Here, M is the ADM mass and q is the U (1) charge of the spacetime.
The event horizon is defined as the largest root of the relation f (r+) = 0.
In terms of r+, the black hole mass can be expressed as

M � r+
2

1 + q2

r2+
+ r2+
l2

( ). (53)

It should be remarked that here, the mass takes the role of the enthalpy
of the system, i.e. M≔H(S, P, q) [12]. In terms of thermodynamic
variables S � πr2+ and P = 3/8πl2, the enthalpy (mass) is given by

H S, P, q( ) � 1
6

��
π

√ S−
1
2 8PS2 + 3S + 3πq2( ). (54)

Temperature and thermodynamic volume can be computed by
differentiating the enthalpy giving

T � zH

zS
( )

P

, V � zH

zP
( )

S

(55)

which upon elimination of S, gives the equation of state:

P � 2 6π( )2/3q2 + 6 6π( )2/3TV − 3
�
63

√
V2/3

36
��
π3

√
V4/3

. (56)

This provides an on-shell relationship between P, V and T for the
charged AdS black hole. Thermodynamic geometry of the system has
been studied earlier in both the (U, V)-ensemble [27, 28] and the (H,
P)-ensemble [48, 55]. Let us note that the thermodynamic volume
turns out to be (see also [14])

V � 4
3
S3/2��
π

√ (57)

which is only a function of entropy (no pressure dependence).
Therefore, the specific heat at constant volume CV identically
vanishes ensuring that RU is divergent for all thermodynamic
equilibrium states. The authors of [27, 28] have suggested a
remedy by considering CV to be a vanishingly small number
(rather than zero), of the order of kB and then one may define a
normalized curvature as

~RU � lim
CV→0+

CVRU (58)

which is finite. As a matter of fact, in black hole chemistry with d ≥ 3,
CV vanishes for all black holes with spherical symmetry and as such the
procedure described above works for all such cases. In what follows, we
compare and contrast the behavior of the curvature scalars obtained in
(U, V) and (H, P)-ensembles [48, 55].

The specific heat CP turns out to be

CP � 9πTV5/3�
63

√
π2/3 4q2 + 3TV( ) − 3V2/3

(59)

and we have the following expression for ~RU:

~RU � A1 × A2

A3
(60)

where,

A1 � 4
�
63

√
π2/3q2 − 3V2/3( ),

A2 � 2
�
63

√
π2/3 2q2 + 3TV( ) − 3V2/3( ),

A3 � 3
�
63

√
π2/3 4q2 + 3TV( ) − 3V2/3( )2.

~RU has been plotted together with CP in Figure 2. One clearly sees that
the divergences of ~RU coincide with those of CP. The only zero crossing
of the normalized thermodynamic curvature which falls in the region
of thermodynamic stability occurs at

4
�
63

√
π2/3q2 � 3V2/3. (61)

This in terms of the horizon radius r+ is equivalent to the condition:
r+ � �

2
√ |q|. On the other hand, the thermodynamic curvature in the

isothermal-isobaric ensemble is regular, i.e. it does not need to be
normalized. It reads

RH � B1 × B2

B3
(62)

where,

B1 � 4
�
63

√
π2/3q2 − 3V2/3( ),

B2 � 4
�
63

√
π2/3q2CV + 6

�
63

√
π2/3TVCV(

−3V2/3CV + 18πTV5/3),
B3 � 2 4

�
63

√
π2/3q2CV + 3

�
63

√
π2/3TVCV(

−3V2/3CV + 9πTV5/3)2.
This expression coincides with the one obtained earlier in [55] for the
choice CV = 0. Since, the limit CV→ 0+ is smooth for RH, we can very well
set it equal to zero without the need of normalizing the thermodynamic
curvature unlike the case of RU. The scalar RH diverges as V → 0. This
corresponds to the limit CP → 0 and is consistent with our expectations.
Remarkably, even for the black hole, the two thermodynamic curvatures
have identical crossing points within the region of thermodynamic
stability (corresponding to the horizon radius r+ satisfying r+ � �

2
√ |q|)

independent of CV [55]. This is shown in Figure 3 and can also been seen
by noticing that the factorsA1 andB1 appearing in Eqs 60, 62 are the same,
independent of the value (constant) of CV chosen. This is because in the
equation of state, i.e. Eq. 56, the pressureP depends onT linearly. It should
be noted that unlike the van der Waals fluid, where the thermodynamic
curvatures were negative definite over the entire physical range, for
charged black holes in AdS there is a region in which the
thermodynamic curvatures are positive, possibly implying towards the
existence of repulsive interactions [27]. However, if we set q = 0, i.e.
consider (neutral) Schwarzschild-AdS black holes, the thermodynamic
curvatures are negative definite. If one considers the sign of the
thermodynamic curvatures to indicate towards the nature of
microscopic interactions, at least empirically, then this gives rise to an
interesting picture. One may speculate that a charged black hole in AdS is
associated with two kinds of microscopic degrees of freedom [48, 55]. The
first type, which are present even in the q = 0 case are associated with
attractive interactions whereas, the second type, which are present only
when q ≠ 0, interact in a repulsive manner. Therefore, Schwarzschild-AdS
(q = 0) black holes have ~RU,RH < 0 whereas, for their electrically charged
counterparts, the thermodynamic curvatures can be both positive and
negative (even zero) depending on the competition between the two
distinct kinds of microscopic degrees of freedom. However, one should
bear in mind that these remarks are mere speculations and cannot
substitute for independent microscopic computations to describe the
statistical mechanics of black holes.

Interestingly, the existence the zero crossings for black holes may
be explained naively as follows. If we define a specific volume v = 2r+ =
2(3V/4π)1/3, then Eq. 56 becomes [15]

P � T

v
− 1
2πv2

+ 2q2

πv4
(63)
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which resembles the equation of state of a non-ideal fluid, i.e. a fluid
with interactions among its molecules. Since v is the specific volume,
its reciprocal, i.e. ρ = 1/v can be interpreted as a density of the degrees
of freedom [49]. In terms of ρ, the equation of state takes the following
intuitive form [61]:

P � ρT − ρ2

2π
+ 2q2ρ4

π
. (64)

It may be speculated that the underlying degrees of freedom have
some resemblance with those of a fluid. Noting that by the
equipartition theorem, the kinetic energy of molecules is
proportional to T, the first term appearing in the RHS of Eq. 64
can be interpreted as a kinetic energy density of the degrees of
freedom. Then, it is natural to interpret the remaining terms as a
potential energy density, i.e. one defines the potential energy
density:

u ρ( ) � − 1
2π

( )ρ2 + 2q2

π
( )ρ4 (65)

which has been plotted in Figure 4.
If the sign of the thermodynamic curvatures indicates towards the

nature of microscopic interactions, then the point of zero crossing
(~RU � RH � 0) is expected to coincide with the extremum of the mean
field interaction potential, i.e.

zu ρ( )
zρ

� 0. (66)

The condition above gives ρ � 1/
�
8

√ |q| or r+ � �
2

√ |q|, exactly
coinciding with the point at which the thermodynamic curvatures
(both ~RU and RH) vanish. From a fluid-like perspective, in a mean field
description, where the particle positions are averaged, one can argue
that v ~ r3 or ρ ~ r−3 where r is the mean separation between the

FIGURE 2
Normalized thermodynamic curvature ~RU for the RN-AdS black hole and specific heat CP plotted versus thermodynamic volume V with q =1, T =0.01.

FIGURE 3
Zero crossing of ~RU and RH (with CV =0) for the RN-AdS black hole plotted versus thermodynamic volume V with q =1, T =0.01.
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particles. Thus, from Eq. 65, one can speculate that the microscopic
potential describing the interactions among the degrees of freedom
can be taken to be of the form [61]:

V r( ) � − σ

r6
+ δ

r12
, σ, δ > 0. (67)

Therefore, the Lennard-Jones potential describes the interactions
between the microscopic degrees of freedom, at least at a mean
field level [28, 61, 99, 100].

The remarks made above may be generalized straightforwardly to
the case of charged AdS black holes in an arbitrary number of
spacetime dimensions. It should be mentioned that similar studies
have been performed for black holes in higher curvature theories, such
Einstein-Gauss-Bonnet theory [54–58]. The analysis of the
thermodynamic curvatures for such systems can be done in a
similar manner as described above for charged AdS black holes in
Einstein gravity. Although we do not pursue it further, we summarize
the sign of the thermodynamic curvature for several black holes in AdS

in the extended thermodynamic framework in Table 2. In the next
subsection, we shall consider an alternate set-up, where black hole
chemistry has been studied in the context of the AdS/CFT
correspondence.

4.2 Boundary

A deepmotivation for studying the thermodynamics of black holes
in AdS, is the all too important AdS/CFT correspondence [7–9], which
is a duality relating: a certain (quantum) theory of gravity in
d-dimensional AdS spacetime (known as the bulk) to a conformal
field theory (CFT) which is defined on the (d − 1)-dimensional
boundary. One of the remarkable checks of this correspondence is
the identification of the cross-over from thermal AdS phase to the
black hole phase (the Hawking-Page transition), with the large N
confinement-deconfinement transition in the boundary field theory
[8]. This correspondence has of course received continuous attention

FIGURE 4
Mean field potential u(ρ) for different values of electric charge.

TABLE 2 Sign of Ruppeiner curvature for some black holes in AdS [27, 28, 37–42, 44–49, 51–55, 57–72]. In the table below, by “neutral”wemean the absence of electric
charge.

Black hole Sign of thermodynamic curvature

Neutral and non-rotating BTZ 0

Rotating BTZ +

Charged BTZ +

Exotic BTZ 0, ±

Schwarzschild-AdS in d-dimensions −

Reissner-Nordström-AdS in d-dimensions 0, ±

Neutral or charged Gauss-Bonnet-AdS in 4-dimensions 0, ±

Neutral Gauss-Bonnet-AdS in 5-dimensions −

Charged Gauss-Bonnet-AdS in 5 and 6-dimensions 0, ±

Neutral Gauss-Bonnet-AdS in 6-dimensions 0, ±
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with the most well studied case being the correspondence between
string theory in AdS5 × S5 and N � 4, SU(N) supersymmetric Yang-
Mills theory at largeN , meaning that there exists a relation connecting
parameters on both sides of the duality, namely [7]:

l4 �
�
2

√
l4pl

π2
N. (68)

Here, l gives a measure of number of degrees of freedom via N which
is the number of colors of the boundary gauge theory with l4pl being
the ten dimensional Planck length.

Now, with regards to extended thermodynamics motivated above,
we saw the possibility of having new pressure P and thermodynamic
volume V, variables in the bulk (gravity) description. It is tempting to
ask what these quantities correspond to in the holographic dual field
theory via the AdS/CFT correspondence. There are several arguments
which reveal that the pressure P in bulk introduced as above, is not the
usual pressure of the boundary field theory [19–21]. The pressure of
the boundary theory is fully determined from the partition function of
the theory. However, in the bulk, the pressure comes from a different
notion of a variableΛ. Gauge/gravity duality is well studied in the large
N limit giving several clarifying results, which is the limit of large l or
small curvature limit. On the field theory side, N is generally the rank
of the gauge group and sets the number of degrees of freedom (which
are actually proportional to N2 for the U(N) gauge group). This means
that a dynamical Λ, giving pressure P = −Λ/8πGd in the bulk, should
correspond to a dynamical N on the holographic dual side [20].
Varying the number of branes N, might mean holographic
renormalization group (RG) flow and more interestingly, to a tour
in the space of dual field theories [19]. It is well known that RG flow
changes the effective cosmological constant of the underlying theory
and also plays an active role in changing the number of degrees of
freedom.

It is important to note here that: in traditional black hole
thermodynamics (when Λ is not dynamical), the gauge/gravity
correspondence suggests identifying the bulk quantities such as
temperature T and entropy S with the quantities in the boundary.
What changes now, in the context of a dynamical Λ is that, although
black hole mass M continues get identified with internal energy U of
the boundary [19]; in the bulk M is identified with enthalpy H = U +
PV. This holographic interpretation was argued in several works to be
a plausible starting point to discuss holographic aspects of black hole
heat engines, most notably in [19]. There are further subtleties such as
the role of the Newton’s constant Gd in the extended first law of black
hole thermodynamics. Such questions are currently being explored
[101–103].

Let us consider the approach adopted in [68–72], where a
dynamical cosmological constant in the bulk corresponds to
varying the number of colours on the boundary [20]. For
definiteness, we shall consider black holes in AdS5× S5. The bulk
metric field reads [10]

ds2 � ds2AdS5 + l2 dΩ2
5 (69)

where, dΩ2
5 is the line element on a 5-dimensional sphere with unit

radius and,

ds2AdS5 � −f r( ) dt2 + f r( )−1 dr2 + r2 dΩ2
3 (70)

with dΩ2
3 being the metric on a 3-sphere. Here, f(r) is the blackening

factor which has the following form:

f r( ) � 1 − 8G 5( )M
3πr2

+ r2

l2
(71)

where l is the radius of the AdS5 spacetime related to the cosmological
constant as Λ � − 6

l2.M is the black hole mass and the five dimensional
Newton’s constant G(5) appearing in the black hole solution is not
fixed but is tied to l as

1
16πG 5( )

� π2l5

16G 10( )
. (72)

Here, it is the ten dimensional Newton’s constant G(10) and the ten
dimensional Planck length lP (linked as ZG(10) � l8P) which are held
fixed. The spacetime AdS5× S5 can be thought of as the near
horizon limit of N coincident D3-branes stacked on top of each
other in type IIB supergravity. The dual description is the N �
4 SU(N) SUSY Yang-Mills theory in the large N limit. The particle
content of the theory is: N2 gauge fields, 6N2 massless scalars, and
4N2 Weyl fermions. Thus, there are 8N2 bosonic and 8N2 fermionic
degrees of freedom. Therefore, the number of degrees of freedom
scales as N2 (proportional to the central charge). Following [70,
72], we shall be considering energy and entropy densities instead
of their absolute values for convenience. Thus, the first law reads

du � Tds + μdN2 (73)
where u � 2π2M/V is the energy density, s � 2π2S/V is the entropy
density, and μ is the chemical potential for the number of degrees of
freedom. Here V � 2π2l3 is the CFT volume and the AdS radius l is
related to the number of D3-branes via Eq. 68. In particular, the energy
density in terms of thermodynamic quantities is given by

u � 3s2/3 N5/6 + 2
�
23

√
s2/3( )

4 22/3πN2/3
. (74)

Thus, from Eq. 73, the Hawking temperature is calculated to be

T � zu

zs
( )

N2

� N5/6 + 4
�
23

√
s2/3

2 × 22/3πN2/3
�
s3

√ (75)

which has a minimum value, Tmin at s0 � N5/4

8
�
2

√ . For any temperature
above Tmin, there are two values of s with the same temperature: s < s0
corresponds to the small black hole branch whereas s > s0 corresponds
to the large black hole branch [6]. From the energy density [Eq. 74]
one can compute the chemical potential for N2, which reads

μ ≕
zu

zN2
( )

s

�
�
23

√
N5/6s2/3 − 8 × 22/3s4/3

32πN8/3
. (76)

Before computing the thermodynamic curvatures, it is important to
find the specific heats. CN2 is given by

CN2 � zu

zT
( )

N2

� −3s N5/6 + 4
�
23

√
s2/3( )

N5/6 − 4
�
23

√
s2/3

. (77)

It diverges at T = Tmin and is positive in the region of the large black
hole while it is negative for that of the small black hole [6]. In a fixed
chemical potential setting, Cμ is calculated to be

Cμ � zh

zT
( )

μ

� −−
512 22/3s7/3

N5/6 + 11N5/6s − 84
�
23

√
s5/3

3N5/6 − 36
�
23

√
s2/3

(78)

where h = u − μN2. Thus, we now have two ensembles, one with fixed
N2 while the other is with fixed μ. In the latter, the first law reads: dh =
Tds − N2dμ.
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Let us begin with the fixed N2 ensemble, in which following the
treatment presented in section-(III), we have

dl2R � 1
T

ds ⊗ dT + dN2 ⊗ dμ( ) (79)

and this can be written in different parametrizations. The associated
thermodynamic curvature, Ru takes the following form:

Ru � C1

C2
, (80)

where,

C1 � 8 40 22/3N5/3s2/3 + 160N5/6s4/3(
−5 �

23
√

N5/2 + 768
�
23

√
s2),

C2 � 3N5/6
�
s3

√
N5/6 − 12

�
23

√
s2/3( )2

× N5/6 + 4
�
23

√
s2/3( ).

The thermodynamic curvature Ru has been plotted in Figure 5,
together with the specific heats Cμ and CN2 . Clearly, the divergence
of Ru coincides with that of Cμ as one would have expected.
Furthermore, if T0 be the temperature at which Ru and Cμ diverge
(as shown in Figure 5), it is straightforward to show [72]:

Cμ ~|T − T0|−1, Ru ~|T − T0|−2 (81)
thereby giving the same exponents as found in the bulk concerning
the divergence of CP and the normalized curvature ~RU respectively.
The same exponents have been observed in various different
contexts earlier [27, 33, 34, 64, 72] including the case of black
holes in the bulk.

In the fixed μ ensemble, the Ruppeiner metric turns out to have the
following form:

dl2R � 1
T

ds ⊗ dT − dN2 ⊗ dμ( ). (82)

The associated curvature scalar, labelled as Rh is computed to be

Rh � D1

D2D3
(83)

where,

D1 � −12N5/6 −968 22/3N5/3s2/3 − 6368N5/6s4/3(
+165 �

23
√

N5/2 − 61440
�
23

√
s2),

D2 � �
s3

√
N5/6 + 4

�
23

√
s2/3( ),

D3 � −172 �
23

√
N5/6s2/3 + 11N5/3 + 512 22/3s4/3( )2.

The curvature scalar Rh has been plotted in Figure 6, together with the
specific heats CN2 and Cμ. In contrast to Ru, the thermodynamic
curvature Rh does not diverge at the divergence of Cμ. However, its
divergence coincides with that of CN2 with the same exponents as Eq.
81 (with Cμ replaced byCN2 , and Ru replaced by Rh). Furthermore, one
may observe that Rh diverges at the zero of Cμ. This is precisely what
we expect based on the discussions presented in section-(III).
Henceforth, we have demonstrated the generality of the arguments
presented in section-(III) and the correspondence between the
divergences of specific heats and thermodynamic curvatures in
different ensembles related by Legendre transforms [Table 2].

Now, if one considers the sign of the thermodynamic curvature to be
an empirical indicator of the nature of microscopic interactions, then
clearly for the large black hole branch (s > 0.0883883) one has Ru, Rh < 0
suggesting that the system is attraction dominated, reminiscent of an ideal
gas of bosons. Moreover, it was shown in [72] (see also [20]) that |Ru|
increases as one approaches towards z→ 1 where z = eμ/T is the fugacity
parameter. For an ideal gas of bosons, this limit indicates Bose
condensation wherein the absolute value of the thermodynamic
curvature grows indicating the growth of inter-particle correlations
[36]. The fact that the same behavior is observed for black holes in
AdS5 × S5 may suggest that the degrees of freedom undergo an analogous
condensation [20]. However, a satisfactory understanding of this can only
be achieved via computations performed in a quantum theory of gravity.
Nevertheless, the study of the thermodynamic curvature may reveal early
insights into the physics of black holes.

FIGURE 5
Plot of thermodynamic curvature Ru together with the specific heats CN2 and Cμ as a function of entropy density s.
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5 Discussion

Geometrical approaches to thermodynamics and in particular,
thermodynamics of black holes have received constant attention due
to their potential to provide a unique perspective on connecting the
microscopic to macroscopic physics [27, 28, 37–49, 51–55, 57–72]. As
summarised in this review, methods of contact and metric geometry have
given novel insights (though qualitative in nature) on the nature of
dominant interactions and phase transitions in black holes in AdS in the
extended thermodynamics set up. It should be mentioned here that the
thermodynamic metrics explored in this review have been generalized
further by several groups with varied advantages, such as [42–44, 78],
among others. For instance, in the framework of
geometrothermodynamics [42, 78], the thermodynamic metric is
Legendre invariant, i.e. it is invariant under Legendre transformations.
However, the metric is not a Hessian although there have been recent
attempts to derive it from statistical mechanics [104].

In this review, we considered Hessian thermodynamic metrics in
different ensembles connected by (partial) Legendre transforms and
discussed their complimentary behavior as far as divergences are
concerned [79]. While such metrics are not Legendre invariant, they
are physically straightforward to motivate on the grounds of
thermodynamic fluctuation theory. We have emphasized upon
ensemble non-equivalence and reparametrizations of Hessian metrics
in various choices of independent coordinates. We then considered the
most widely usedHessianmetric, the Ruppeiner metric [22, 24] and listed
the sources of its divergences from general considerations. They were then
verified through various examples considered subsequently. It was
mentioned that the sign of the thermodynamic curvature could
possibly indicate towards the nature of microscopic interactions in a
thermodynamic system. While this can indeed be verified for the van der
Waals fluid or ideal quantum gases [36], one cannot yet ascertain its
validity for a general thermodynamic system. However, keeping in mind
that black holes in the extended thermodynamics framework do admit a
van der Waals-like behavior, one may gain early insights into the
microscopic interactions from studying the behavior of the
thermodynamic curvature. In this sense, it is encouraging to explore
the thermodynamic geometry of black holes in various settings.

In section-(IV), we applied the ideas developed in sections-(II)
to (III), to study thermodynamic geometry of black holes in AdS
spacetimes in the extended thermodynamics framework. In
subsections-(A) and (B), the thermodynamic geometries of the
bulk and the boundary (via the gauge/gravity duality) settings were
discussed respectively. We briefly touched upon the applications of
thermodynamic geometry in a holographic setting where the black
hole in the AdS bulk is dual to a finite temperature gauge theory on
the boundary. While some consistent results were demonstrated
including the exponent ‘2’ for the thermodynamic curvature, it
should be pointed out that in the context of extended
thermodynamics, there have been recent developments on new
ideas in relating the holographic dual theories [101–103]. It would
be interesting to extend the methods summarized in this review to
such situations.
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