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In this article, (3+1)-dimensional generalized ShallowWater-like (gSWl) equation is
discussed. The infinitesimal generators of the equation are derived by using the Lie
symmetry analysis method. The optimal system is obtained based on the adjoint
table of the generators of the equation. Exact solutions of the equation are
constructed by applying symmetry reduction, Exp(−ϕ(ξ)) expansion method,
Exp-function expansion method, Riccati equation method, and (G′/G)
expansion method. For analyzing the dynamical behavior of the solutions, we
derive the physical structures of dark soliton, kink wave, and periodic solutions via
numerical simulations.
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1 Introduction

Non-linear phenomena are widespread in the life of the world, such as marine
engineering, hydrodynamics, chemical physics, etc [1–3]. To investigate exact solutions
of any complex non-linear partial differential equations and examine the behavior of the
solutions is very interesting. Many effective methods for constructing the exact solutions are
proposed, including Bäcklund transformation method [4] (G′/G) expansion method [5, 6],
Hirota bilinear method [7], Homogeneous balance method [8, 9], Lie symmetry method
[10–12], Inverse scattering method [13], F-expansion method [14], Exp-function method
[15, 16], Darboux transformation method [17], Riemann-Hilbert method [18, 19] and so on.

The following (3 + 1)-dimensional generalized Shallow Water equation

uxxxy − 3uxxuy − 3uxuxy + uyt − uxz � 0, (1.1)
has been studied by many approaches. Huang and Gao [20] derived the one-, two- and three-
soliton solutions of the equation by the Hirota method, and deduced the propagation and
interaction of the soliton solutions. In [21], Huang studied the stability of solitons by
numerical methods and noticed that the soliton amplitude magnitude is affected by the
spectral parameters. In [22], the closed-form solutions of the equation were derived by Lie
symmetry, and the soliton solutions were found through the optimal system. Based on the auto-
Bäcklund transformation, Li and Liu [23] constructed themulti-periodic solitons of Eq. 1.1 through
the variable-coefficient homogeneous balance method and investigated the propagation and
interactions of the solutions. In [24], Liu deduced the new periodic solitary solutions of Eq. 1.1
by the direct test function method, and the validity of the direct test function method was shown.
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Liu and Zhu [25] investigated the variable coefficients of the gSW
equation by the Hirota bilinear method and constructed a large
number of breather wave solutions.

Tang, Ma and Xu [26] proposed the (3 + 1)-dimensional
generalized Shallow Water-like (gSWl) equation

uxxxy + 3uxxuy + 3uxuxy − uyt − uxz � 0, (1.2)
which can be derived by rewriting Eq. 1.1 on the scale x→ −x. In [26],
the Grammian and Pfaffian solutions of Eq. 1.2 were obtained and the
equations were extended with the Pfaffianization method. Kumar et al.
[27] derived the multi-stripe and breathing wave solutions of Eq. 1.2 by
the bilinear method, combining the quadratic function and hyperbolic
cosine method, the behavior between the one-block and multi-stripe
solutions were obtained. Sadat et al. [28] applied symbolic calculations
to yield lump-type and stripe solutions of Eq. 1.2. Zhang et al. [29]
applied the generalized bilinear operator method and obtained the
rational and lump solutions of Eq. 1.2.

The shallow water wave equation plays an essential role in
marine engineering, environmental problems, and ecology, so it
is valuable to derive the exact solutions of the shallow water
wave equation. Employing the Lie symmetry method to yield
exact solutions of the (3 + 1)-dimensional gSWl equation has
not been studied. In this paper, the Lie symmetry analysis
method is applied to investigate the solutions of Eq. 1.2. Lie
symmetry method [30–34] has an important significance for
solving partial differential equations (PDEs). Applying the Lie
symmetry method, the symmetry group of the equation can be
derived, furthermore, the equation can be similarly reduced and
the new solutions of the equation can be yielded by the
symmetry transformation. The Lie symmetry method can
reduce the order of the equation when solving with higher
order equations, which is difficult to accomplish by other
methods.

The structure of the rest of the paper is as follows: In Sect 2,
the infinitesimal generators are obtained by applying the Lie
group transformation to the (3 + 1)-dimensional gSWl equation.
In Sect 3, the optimal system for Eq. 1.2 is derived under the basis
of the adjoint table. The periodic wave, kink wave and soliton
solutions of the equation are derived by Exp(−ϕ(ξ)) expansion
method, Exp-function expansion method, Riccati equation
method, and (G′/G) expansion method in Sect 4. The
dynamical behavior of the soliton wave solutions of the gSWl
equation are analyzed in Sect 5. The conclusions are given in
Sect 6.

2 Lie symmetry analysis for the (3 + 1)
gSWl equation

The key step for solving non-linear PDEs by Lie symmetry group
method is to obtain Lie algebra of the equation. Consider the
following one-parameter Lie group transformation:

x̂ � x + εξ + O ε2( ),
ŷ � y + εη + O ε2( ),
ẑ � z + εφ + O ε2( ),
t̂ � t + ετ + O ε2( ),
û � u + εϕ + O ε2( ),

(2.1)

where ε is a parameter, and ε ≪ 1. ξ, η, φ, τ, and ϕ are infinitesimal
generators concerning x, y, z, t and u. The one-parameter vector field
V of gSWl equation can be written as

V � ξ
z

zx
+ η

z

zy
+ φ

z

zz
+ τ

z

zt
+ ϕ

z

zu
. (2.2)

The vector field V satisfies

pr 4( )V Δ( )∣∣∣∣Δ�0 � 0, (2.3)
in which Δ = uxxxy + 3uxxuy + 3uxuxy − uyt − uxz and pr(4) is the
fourth prolongation of V. The fourth prolongation of Eq. 1.2 can be
derived as

pr 4( )V � V + ϕx z

zux
+ ϕy z

zuy
+ ϕxx z

zuxx
+ ϕxz z

zuxz
+ ϕxy z

zuxy
+ ϕyt z

zuyt
+ ϕxxxy z

zuxxxy
.

(2.4)
The invariant condition can be given as

ϕxxxy + 3ϕxxuy + 3uxϕ
xy − ϕyt − ϕxz + 3uxxϕ

y + 3ϕxuxy � 0.

(2.5)
Based on Eq. 2.5, the system of determining equations can be
given by

ϕu � −1
3
τt, ϕx � −1

3
ηz −

1
3
ξt, ϕy � −1

3
ξz, ϕt � 0,

τx � 0, τy � 0, τz � 0, τtt � 0, ξu � 0, ξx � 1
3
τt, ξy � 0,

ηt � 0, ηu � 0, ηx � 0, ηy � φz −
2
3
τt, φt � 0,

φu � 0, φx � 0, φy � 0, φzz � 0, ξtz � −1
2
ηzz.

(2.6)

By solving the above equations we can derive

ϕ � −1
3
c3u − 1

6
F′1 z( ) + 2F′2 t( ){ }x + 1

6
F″1 z( )t − 2F′3 z( ){ }y + F4 z, t( ), τ � c3t + c4 ,

ξ � 1
3
c3x + F3 z( ) + F2 t( ) − 1

2
tF′1 z( ), η � F1 z( ) + 1

3
3c1 − 2c3( )y, φ � c1z + c2 ,

(2.7)

where ci and Fi (i = 1, 2, 3, 4) are arbitrary constants and functions,
respectively.

Assume that F1(z) � 0, F2(t) � c5, F3(z) � 0, F4(z, t) � c6. The
infinitesimal generators have new forms

ξ � c3x + c5, η � c1 − 2c3( )y, φ � c1z + c2, τ � 3tc3 + c4, ϕ � −uc3 + c6.

(2.8)

TABLE 1 Commutator table.

[vi, vj] v1 v2 v3 v4 v5 v6

v1 0 −v2 0 0 0 0

v2 v2 0 0 0 0 0

v3 0 0 0 −3v4 −v5 v6

v4 0 0 3v4 0 0 0

v5 0 0 v5 0 0 0

v6 0 0 −v6 0 0 0
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Thus, Lie algebras of infinitesimal symmetry of Eq. 1.2 can be
spanned by the following six vector fields

v1 � y
z

zy
+ z

z

zz
, v2 � z

zz
, v3 � x

z

zx
+ 3t

z

zt
− 2y

z

zy
− u

z

zu
,

v4 � z

zt
, v5 � z

zx
, v6 � z

zu
.

(2.9)
The commutator table derived for the gSWl equation by the

action of Lie brackets is shown in Table 1, where [vi, vj] � vivj − vjvi.

3 Optimal systems of one-dimensional
subalgebras

Based on the Lie brackets, the optimal system of one-
dimensional subalgebras of the equation can be deduced. By the
linear combination of subalgebras, a new form is given by

V � a1v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6. (3.1)
By Olver theory [30], using symbolic calculations

Ad exp εVi( )( )Vj � Vj − ε Vi, Vj[ ] + 1
2
ε2 Vi, Vi, Vj[ ][ ] −/ .

The adjoint table is shown in Table 2.

3.1 Construction of group invariants

The exchange and adjoint relations of the six-dimensional Lie
algebras are given in Table 1 and Table 2, respectively. Assume that
the vectors V � ∑6

i�1
aivi and R � ∑6

i�1
sivi satisfy

Ad exp εR( )V( )
� V − ε R,V[ ] + 1

2
ε2 R, R, V[ ][ ] −/

� a1v1 +/ + a6v6( ) − ε s1v1 +/ + s6v6, a1v1 +/ + a6v6[ ] + O ε2( )
� a1v1 +/ + a6v6( ) − ε k1v1 +/ + k6v6[ ] + O ε2( ),

(3.2)

in which k � k(a1,/a6, s1, . . . , s6) can be derived from Table 1. The
values of k were calculated from Table 1 as follows

k1 � 0, k2 � −a2s1 + a1s2, k3 � 0,
k4 � −3a4s3 + 3a3s4, k5 � −a5s3 + a3s5, k6 � a6s3 − a3s6.

(3.3)
For any sj (j = 1, 2, 3, 4, 5, 6), it have required

k1
zχ

za1
+ k2

zχ

za2
+ k3

zχ

za3
+ k4

zχ

za4
+ k5

zχ

za5
+ k6

zχ

za6
� 0. (3.4)

Gather the coefficients containing sj in the above equation, the
following system of differential equations are deduced as

s1: − a2
zχ

za2
� 0,

s2: a1
zχ

za2
� 0,

s3: − 3a4
zχ

za4
− a5

zχ

za5
+ a6

zχ

za6
� 0,

s4: 3a3
zχ

za4
� 0,

s5: a3
zχ

za5
� 0,

s6: − a3
zχ

za6
� 0.

(3.5)

After analyzing the above system of PDEs (3.5), it is not difficult
to yield that the invariant function as χ(a1, a2, a3, a4, a5, a6) �
F(a1, a3).

3.2 One-dimensional optimal system

For Jεn: _j → _j defined by l → Ad(exp(εili)s) is a linear map
[35], in which n = 1, . . . , 6. The matrixMε

n of J
ε
n with respect to basis

to v1, . . . , v6{ } are deduced below

Mε
1 �

1 0 0 0 0 0
0 eε 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Mε

2 �

1 −ε2 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Mε

3 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 e3ε3 0 0
0 0 0 0 eε3 0
0 0 0 0 0 e−ε3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Mε
4 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 −3ε4 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Mε

5 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 −ε5 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Mε

6 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 ε6
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.6)

Then, the matrix M can be yielded by

M � Mε
1pM

ε
2pM

ε
3pM

ε
4pM

ε
5pM

ε
6. (3.7)

The matrix M can be written as

M �

1 −ε2 0 0 0 0
0 eε1 0 0 0 0
0 0 1 −3ε4 −ε5 ε6
0 0 0 e3ε3 0 0
0 0 0 0 eε3 0
0 0 0 0 0 e−ε3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

The adjoint transformation equation for Eq. 1.2 is

TABLE 2 Adjoint table.

Ad V1 V2 V3 V4 V5 V6

V1 V1 eεV2 V3 V4 V5 V6

V2 V1 − εV2 V2 V3 V4 V5 V6

V3 V1 V2 V3 e3εV4 eεV5 e−εV6

V4 V1 V2 V3 − 3εV4 V4 V5 V6

V5 V1 V2 V3 − εV5 V4 V5 V6

V6 V1 V2 V3 + εV6 V4 V5 V6
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ρ1, ρ2, / , ρ6( ) � a1, a2, . . . , a6( ) ·M
� a1v1 + −a1ε2 + a2e

ε1( )v2 + a3v3 + −3a3ε4 + a4e
3ε3( )v4

+ −a3ε5 + a5e
ε3( )v5 + a3ε6 + a6e

−ε3( )v6.
(3.9)

By applying the invariants a1 and a3, discuss the situations of the
following Lie algebras.

Case 1 Assume that a1 ≠ 0 and a3 = 0. Let a1 = 1. Making ρ2 = 0,
ρ3 = 0 through

ε1 � 0, ε2 � a2
a1
, ε3 � 0, (3.10)

and ε4, ε5, ε6 are constants. In other words, all v1 + a2v2 + a3v3 + a4v4
+ a5v5 + a6v6 can be replaced by v1 + ς4v4 + ς5v5 + ς6v6, where ς4, ς5
and ς6 are constants.

Case 2 Assume that a3 ≠ 0 and a1 = 0. Let a3 = 1. Making ρ1 = 0,
ρ4 = 0, ρ5 = 0, ρ6 = 0 through

ε1 � 0, ε3 � 0, ε4 � a4
3a3

, ε5 � a5
a3
, ε6 � −a6

a3
, (3.11)

and ε2 is an arbitrary constant. In other words, all a1v1 + a2v2 + v3 +
a4v4 + a5v5 + a6v6 can be replaced by ς2v2 + v3, where ς2 is a constant.

Case 3 Assume that a1 ≠ 0 and a3 ≠ 0. Let a1 = 1 and a3 = 1.
Making ρ2 = 0, ρ4 = 0, ρ5 = 0, ρ6 = 0 through

ε1 � 0, ε2 � a2
a1
, ε3 � 0, ε4 � a4

3a1
, ε5 � a5

a1
, ε6 � −a6

a1
.

(3.12)

In other words, all v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced
with v1 + v3.

Case 4 Replacing a1 = a3 = 0 into (3.9). By solving (3.9) for εi, we
get ε1 = 0, ε3 = 0 and ε2, ε4, ε5, ε6 are arbitrary constants. In other
words, all v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced by ς2v2 +
ς4v4 + ς5v5 + ς6v6, where ς2, ς4, ς5 and ς6 are constants.

Similarly, the other terms of the optimal system of Eq. 1.2 can be
obtained by the above method. All of them are listed below.Single
vector fields: v1, v2, v3, v4, v5, v6.Dual vector fields: v1 + v3, v1 + v4, v1 +
v5, v1 + v6, v2 + v3, v2 + v4, v2 + v5, v2 + v6, v4 + v5, v4 + v6, v5 +
v6.Triple vector fields: v1 + v4 + v5, v1 + v4 + v6, v1 + v5 + v6, v2 + v4 +
v5, v2 + v4 + v6, v4 + v5 + v6.Quadruple vector fields: v1 + v4 + v5 + v6,
v2 + v4 + v5 + v6.

4 Exact solutions of the gSWl equation

Next, the exact solutions of the gSWl equation are derived by
employing the optimal system. The similarity solutions for arbitrary
vector field v in the optimal system can be solved by the Lagrange’s
system.

dx

ξ
� dy

η
� dz

φ
� dt

τ
� du

ϕ
. (4.1)

4.1 Vector field v1

The characteristic equation can be composed as

dx

0
� dy

y
� dz

z
� dt

0
� du

0
. (4.2)

(Eq. 4.2) has the following form similarity solution.
U (x, y, z, t) = F (α, β, δ).in which α = x, β � y

z, δ = t.
Taking the above similarity solution into Eq. 1.2, the reduced

NLPDE is given as

3FααFβ + 3FαFαβ + Fαααβ + βFαβ − Fβδ � 0. (4.3)
Similarly, applying the Lie symmetry method, the infinitesimal
generators of Eq. 4.3 can be derived

ξα � 1
3
c1α + g1 δ( ), ξβ � −2

3
c1β + c3, ξδ � c1δ + c2,

ηF � −1
3
c1F − 1

3
c3 + g1 δ( )δ( )α + g2 δ( ). (4.4)

Let c1 = 0,1(δ) = d,2(δ) = d, c2 = d, c3 = 3d, and take these values into
(4.4), we get

dα

d
� dβ

3d
� dδ

d
� dF

−α + d
, (4.5)

which has the similarity solutions from

F α, β, δ( ) � α − 1
2
α2 + h P,Q( ), (4.6)

where P = α − δ and Q = 3α − β.
Putting it into Eq. 4.3, the following reduced equation can be

yield

−3hQhPP − 27hQhPQ − 3hPhPQ + QhPQ − 54hQhQQ − 9hPhQQ
+3QhQQ − 4hPQ − 9hQQ + 3hQ − hPPPQ − 9hPPQQ − 27hPQQQ − 27hQQQQ � 0.

(4.7)
Repeating the above steps, we get

ξP � c1, ξQ � c2, ηh �
1
3
c2P + c3. (4.8)

Substituting c1 = d, c2 = 3d, c3 = d into (4.8). The new characteristic
equation is given as

dP

d
� dQ

3d
� dh

dP + 1
. (4.9)

The new similarity solutions from

h P, Q( ) � 1
2
P2 + P + k ϖ( ), (4.10)

whereϖ = 3P −Q. Replacing (4.10) into Eq. 4.7, we get 3kϖϖ = 0. The
solution of Eq. 1.2 via the above method can be given as

u � 2x − t + 1
2
t2 − xt + c1y

z
− 3c1t + c2, (4.11)

in which c1 and c2 are constants.

4.2 Vector field v3

The characteristic equation can be composed as

dx

x
� dy

−2y � dz

0
� dt

3t
� du

−u. (4.12)

The derived similarity solution has the form as.
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u(x, y, z, t) � F(α, β, θ).where α � x

t
1
3
, β � yt

2
3, θ = z. Hence, the

following (2 + 1)-dimensional equation can be given as

2βFββ − 9FααFβ − 9FαFαβ − 3Fαααβ + Fβ + 3Fαθ − αFαβ � 0. (4.13)
Then, the new infinitesimal generators of Eq. 4.13 can be yielded

ξα � c3, ξβ � c1β, ξθ � c1θ + c2, ηF � −1
9
c3α + g1 θ( ). (4.14)

Let c1 = 0, c2 = 0, c3 = 0, g1(z) = θ, and take these values into (4.14),
the corresponding characteristic equation is reduced as

dα

0
� dβ

β
� dθ

θ
� dF

θ
, (4.15)

which has the similarity solutions from

F α, β, θ( ) � θ + h P, Q( ), (4.16)
in which P = α, Q � β

θ. Substituting F (α, β, θ) into Eq. 4.13 results

−9hPPhQ − 9hPhPQ − PhPQ + 2QhQQ + hQ − 3QhPQ − 3hPPPQ � 0.

(4.17)
Equations 4.17 satisfies infinitesimal as follows

ξP � c1, ξQ � 0, ηh � −P + c2, (4.18)
assume that c1 = 9, c2 = 1 and its characteristic equation is

dP

9
� dQ

0
� dh

−P + 1
. (4.19)

The similarity solution is

h P, Q( ) � − 1
18

P2 + P

8
+ k ϖ( ), (4.20)

where ϖ = Q. Then the ODE can be reduced as

2kϖ + 2ϖkϖϖ � 0. (4.21)
By solving the above equation, we get

u �
z + x

9t
1
3
− x2

18t
2
3
+ c2 ln

yt
2
3

z
( ) + c1

t
1
3

.
(4.22)

4.3 Vector field v2 + v5

The characteristic equation can be composed as

dx

1
� dy

0
� dz

1
� dt

0
� du

0
. (4.23)

(4.23) has the following form similarity solution

u x, y, z, t( ) � F α, β, δ( ), (4.24)
in which α = x − z, β = y, δ = z. Then Eq. 1.2 can be reduced to the
following (2 + 1)-dimensional equation

Fαααβ + 3FααFβ + 3FαFαβ − Fβδ + Fαα � 0. (4.25)
The solution of Eq. 4.25 is more difficult to be derived, hence we

use the Exp(−ϕ(ξ)) expansion method to find its solution.
Considering the following traveling wave transformation

F α, β, δ( ) � h υ( ), υ � kα + lβ +mδ, (4.26)
where k, l, m are constants. Replacing (4.26) into Eq.
4.25 and integrate the derived equation with respect to υ

once, we get

lk3hυυυ + 3lk2h2υ − lmhυ + k2hυ � 0. (4.27)

Suppose that Eq. 4.27 can be solved in the following form

h υ( ) � aj exp −ϑ υ( )( )( )j, (4.28)

in which j can be determined later and ϑ satisfies

ϑ′ υ( ) � exp −ϕ υ( )( ) + μ exp ϑ υ( )( ) + λ. (4.29)
When λ2 − 4μ > 0 and μ ≠ 0, (4.29) has a solution given by

ϑ υ( ) � ln

−
������
λ2 − 4μ

√
tanh

������
λ2 − 4μ

√
2

υ + ε0( )⎛⎜⎜⎝ ⎞⎟⎟⎠ − λ

2μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4.30)

When λ2 − 4μ < 0, (4.29) has a solution given by

ϑ υ( ) � ln

������
4μ − λ2

√
tan

������
4μ − λ2

√
2

υ + ε0( )⎛⎜⎜⎝ ⎞⎟⎟⎠ − λ

2μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4.31)

By balancing Eq. 4.27, j = 1. Hence (4.28) can be rewritten

h υ( ) � a0 + a1e
−ϑ υ( ). (4.32)

Taking (4.32) along with Eq. 4.29 into Eq. 4.27, a series of
algebraic equations about a0, a1, k, l and m can be deduced.
Select a set from these to discuss the solution of the equations,
we get

k � k, l � k2

k3λ2 − 4k3μ −m
, m � m, a0 � a0, a1 � 2k.

(4.33)
If λ2 − 4μ > 0 and μ ≠ 0, the kink wave solution of Eq. 1.2 is

u � a0 + 4kμ

−tanh 1
2
c1

������
λ2 − 4μ

√
+ 1
2

mt + k x − z( ) − k2y

k3λ2 − 4k3μ −m
( ) ������

λ2 − 4μ
√( ) ������

λ2 − 4μ
√

− λ

.

(4.34)

If λ2 − 4μ < 0, the periodic wave solution of Eq. 1.2 can be given by

u � a0 + 4kμ

tan
1
2
c1

�������
−λ2 + 4μ

√
+ 1
2

mt + k x − z( ) − k2y

k3λ2 − 4k3μ −m
( ) �������

−λ2 + 4μ
√( ) �������

−λ2 + 4μ
√

− λ

.

(4.35)

4.4 Vector field v4 + v6

The characteristic equation can be composed as

dx

0
� dy

0
� dz

0
� dt

1
� du

1
. (4.36)
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We derive u(x, y, z, t) � t + F(α, β, θ), where α = x, β = y and θ = z
as the similarity variables. Taking it into Eq. 1.2, the following
reduced equation can be obtained

Fαααβ + 3FααFβ + 3FαFαβ − Fαθ � 0. (4.37)
In the following (G′/G) method is applied to solve Eq. 4.37.

Considering the following traveling wave transform

F α, β, θ( ) � h υ( ), υ � kα + lβ +mθ, (4.38)
in which k, l, m are constants. Putting (4.38) into Eq. 4.37 yields

lk3hυυυυ + 6lk2hυυhυ −mkhυυ � 0, (4.39)
then integrate once, we yield

k3hυυυ + 3lk2hυυ −mkhυ � 0. (4.40)
Assume that Eq. 4.40 has solutions of the following form

h υ( ) � ∑p
j�0

αj
G′
G

( )j

, (4.41)

in which bj (j = 0, . . . , p) are constants which can be derived later and
h(υ) satisfies the equation

G″ + λG′ + μG � 0. (4.42)
Exploiting the principle of homogeneous balance, p = 1. Hence
(4.41) can be rewritten as

h υ( ) � α0 + α1
G′
G

( ). (4.43)

Substituting (4.42) and Eq. 4.43 into Eq. 4.40 and putting the same
power combination of (G′/G)j. Then make these coefficients be zero,
and a series of algebraic equations about k, l,m, α1, α2 can be yielded.
By solving the above equations, we obtain

k � k, l � m

k2 λ − 4μ( ), m � m, α0 � α0, α1 � α1, (4.44)

where k ≠ 0 and λ − 4μ ≠ 0. With these parameters, we can yield the
following forms of solutions:

For λ2 > 4μ,

u � k
������
λ2 − 4μ

√
c1 sinh κ( ) + c2 cosh κ

c1 cosh κ + c2 sinh κ
− kλ + α0, (4.45)

where κ � (12 (kx + my
k2(λ2−4μ) +mz)

������
λ2 − 4μ

√
) and c1, c2, α0, k, λ, μ are

constants.
For λ2 < 4μ,

u � k
�������
−λ2 + 4μ

√
c1 sin χ( ) + c2 cos χ

c1 cos χ + c2 sinφ
− kλ + α0, (4.46)

where χ � (12 (kx + my
k2(λ2−4μ) +mz)

�������
−λ2 + 4μ

√
) and c1, c2, α0, k, λ, μ

are constants.

4.5 Vector field v2 + v4 + v5 + v6

The characteristic equation can be composed as

dx

1
� dy

0
� dz

1
� dt

1
� du

1
. (4.47)

Solving (4.47), we derived the similarity solution

u x, y, z, t( ) � F α, β, θ( ), (4.48)
in which α = x − t, β = y and θ = z − t are similarity variables. Taking
(4.48) into Eq. 1.2, the (2 + 1)-dimensional equation can be yielded

Fαααβ + 3FααFβ + 3FαFαβ + Fαβ + Fβθ − Fαθ � 0. (4.49)
Next, applying the Riccati equation method, different forms of

solutions of Eq. 4.49 can be deduced. Taking the following traveling
wave transform

F α, β, θ( ) � h υ( ), υ � kα + lβ +mθ, (4.50)
where k, l, m are constants. Substituting (Eq. 4.50) into Eq. 4.49 and
integrating once yields

lk3hυυυ + 3lk2h2υ + lkhυ + lmhυ −mkhυ � 0. (4.51)

Suppose that Eq. 4.51 has solutions of the following form

h υ( ) � ∑p
j�0

ajϕ
j, (4.52)

where aj (j = 1 p) are constants which can be obtained later and h(υ)
satisfies the equation

ϕ′ � ϕ2 + ω, (4.53)
in whichω is an constant. The form of the solutions of Eq. 4.53 are as
follows

ϕ �

− ��
ω

√
tanh

���−ω√
υ( ), ω< 0,

−1
υ
, ω � 0,

��
ω

√
tan

��
ω

√
υ( ), ω> 0.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4.54)

By balancing Eq. 4.51, we get p = 1. Hence, (Eq. 4.52) can be
rewritten as

h � a0 + a1ϕ. (4.55)
Replacing (Eq. 4.53) along with Eq. 4.55 into Eq. 4.51, letting

the same coefficients and a series of algebraic equations
about a0, a1 and l can be yielded. Solving the above equations,
we obtain

l � mk

−4k3ω +m + k
, k � k, m � m, a0 � a0, a1 � −2k.

(4.56)
On the basis of Eq. 4.56, we derive the solution of Eq. 1.2 as follows:

For ω < 0,

u � t + 2k
���−ω√

tanh
���−ω√

k x − t( ) + mky

−4k3ω + k +m
+m z − t( )( )( ) + a0,

(4.57)

where k, m, a0, ω, y, z are constants.
For ω > 0,
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FIGURE 1
Singularity profile of (4.11).

FIGURE 2
Annihilation of the kink wave solution of (4.34) at y =1.

FIGURE 3
Multi period solution of (4.35).
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FIGURE 4
The kink wave solution of (4.57) at z =0.

FIGURE 5
The periodic solution of (4.58) at z =0.

FIGURE 6
The symmetric two-periodic solution of (4.68).
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u � t − 2k
��
ω

√
tan k x − t( ) + mky

−4k3ω + k +m
+m z − t( )( ) ��

ω
√( ) + a0,

(4.58)
where k, m, a0, ω, y, z are constants.

4.6 Vector field v2 + v4

The characteristic equation can be composed as

dx

0
� dy

0
� dz

1
� dt

1
� du

0
. (4.59)

Solving (Eq. 4.59), we derived the similarity solution

u x, y, z, t( ) � F α, β, θ( ), (4.60)
where α = x, β = y and θ = z − t are similarity variables. Taking (Eq.
4.60) into Eq. 1.2, the (2 + 1)-dimensional equation can be
obtained by

Fαααβ + 3FααFβ + 3FαFαβ + Fβθ − Fαθ � 0. (4.61)
Taking the traveling wave transform

F α, β, θ( ) � h υ( ), υ � kα + lβ +mθ, (4.62)
where k, l and m are constants. Putting (Eq. 4.62) into Eq. 4.61 and
integrate once, we derive

lk3hυυυ + 3lk2hυ
2 + lmhυ −mkhυ � 0. (4.63)

Suppose the solution of Eq. 4.63 is given by

h υ( ) �
∑2p
j�0

sje
iυ

∑2p
j�0

rje
iυ

, (4.64)

where sj, rj are constants to be obtained. By balancing Eq. 4.63, p = 1.
Therefore, Eq. 4.64 is written as

h υ( ) � s0 + s1e
υ + s2e

2υ

r0 + r1e
υ + r2e

2υ. (4.65)

Replacing (Eq. 4.63) along with Eq. 4.65 and making the same
coefficient be zero, a family of algebraic equations about s0, s1, s2, r0,
r1, r2, k, l and m can be yielded. Solving the above equations, we
obtain:

k � 0, l � 0, m � m, s0 � s0, s1 � s1, s2 � s2, r0 � r0, r1 � r1, r2 � r2.

(4.66)

Then the solution of Eq. 1.2 is given by:

u � s0

r0 + r1e
z−t( )m + r2e

z−t( )m( )2 +
s1e

z−t( )m

r0 + r1e
z−t( )m + r2e

z−t( )m( )2 +
s2e

z−t( )m( )2

r0 + r1e
z−t( )m + r2e

z−t( )m( )2 ,

(4.67)

where m, s0, s1, s2, r0, r1 and r2 are constants. Based on Eq. 4.67,
replacing the parameter k = ik, l = il, m = im and picking the real
part, the following periodic wave solution can be given

u � s0
r0 + r1 cos z − t( )m( ) + r2 cos 2 z − t( )m( ) +

s1 cos z − t( )m( )
r0 + r1 cos z − t( )m( ) + r2 cos 2 z − t( )m( )

+ s2 cos 2 z − t( )m( )
r0 + r1 cos z − t( )m( ) + r2 cos 2 z − t( )m( ).

(4.68)

5 Analysis and discussion

In this part, the geometric representation of the solution of Eq.
1.2 is discussed by employing graphical description. The physical
phenomena of the solutions can be seen more obviously via
numerical simulation. The solutions of the gSWl equation yielded
from the above process include periodic, dark soliton, kink wave and
annihilation structures of solutions. The dynamic structure of the
solutions is investigated below.

Figure 1 depicts the physical structure of the singular solution
when the parameter c1 = 1, = 1, x = 1, y = 1. (B) Indicates the density
plot of the corresponding solution.

Figure 2 describes the physical structure of the kink solution
when t = 1, and the rest of the parameters take the value of y = 1, =
3, = 1, k = 1, l = 1, m = 1, = 1, = 1. When the time increases from t = 1

FIGURE 7
Dark soliton solution of (4.67).
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to t = 28, the energy of the wave is gradually depleted and eventually
becomes a plane wave.

The physical structure of the antisymmetric periodic solution
(4.35) is shown in Figure 3. The 3-D plot of the antisymmetric
periodic solution is described when the parameter is taken as z = 0,
y = 0, = 1, = 1, k = 1, l = 1, m = 1, = 1, = −1. (B) show the density plot
of the solution.

The dynamics structure of the kink wave solution at z = 0 is
plotted in Figure 4.When k = −10, c = 10, = 1, = −10, y = 1. (A) shows
the 3-D plot of the solution and (B) depicts the spread route of the
solution along the x-axis when t = 0, t = 1, t = 2 and t = 3,
respectively.

It is shown in Figure 5 and Figure 6 that the physical structure of
the periodic wave solutions (4.58) and (4.68). (A) Is the
corresponding 3D structure, (B) is the track of the solution along
the x-axis, which is given when the parameterk = 1, = −1, = 1, r = 1,
y = 0, z = 0 (4.68) shows the 3-D structure of the symmetric two-
period wave solution, with the corresponding parameter a0 = 1, =
1, = 1, = 5, = 1, = 1, m = 1. (B) Depicts the spread route of the
solution along the z-axis at t = 0.

A structure of the dynamics of the dark soliton (4.67) is depicted
in Figure 7. The 3-D plot of the dark soliton is obtained when the
parameter is selected as a0 = 1, = 1, = 1, = 1, = 2, = 1, m = 1. The
spread route behavior of the dark soliton along the z-axis can be
derived by choosing t = 0, t = 1, t = 2 and t = 3.

6 Conclusion

In summary, the (3 + 1)-dimensional generalized Shallow
Water-like wave equation is shown in this paper which is
studied based on the Lie symmetry method and the symbolic
calculation. By the adjoint table of the infinitesimal generators, a
one-dimensional optimal system is formulated. In terms of the
optimal system, some new solutions of the gSWl equation are
derived by Exp(−ϕ(ξ)) expansion method, Riccati equation
method, Exp-function expansion method, and (G′/G) expansion
method. In particular, the physical structures of the detected dark
soliton, kink wave, and periodic solutions are investigated to make
this study more credible.

In this work, a situation of the (3 + 1)-dimensional gSWl
equation has been investigated based on the Lie symmetry
method, and the rest of the latter cases are presented in other
subsequent papers. More work needs to be done in the future.
Firstly, in this paper, the exact solutions of the equation are derived
richly with the Lie symmetry method, and other methods can be

employed for the solutions of the equation, such as the numerical
analysis method [36–38]. Secondly, the natural properties of the
solutions to the equation can be investigated further in subsequent
studies through the generalized multi-symplectic method and the
structure-preserving method [39–42].
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