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Vague graphs (VGs), belonging to the fuzzy graph (FG) family, have good capabilities
when facing problems that cannot be expressed by FGs. When an element
membership is unclear, neutrality is a good option that can be well-supported by
a VG. The previous definitions limitations in FG have led us to offer new definitions in
VGs. Therefore, this study introduces the notion of vague edge graph (VEG)
ζ̂ � (V ,N), in which V is a crisp vertex set and N is a vague relation (VR) on M,
presenting some of its properties. Using λ-level graphs (LGs) and (λ, δ)-LGs, we
characterize VG ζ= (M,N), whereM is a vague set (VS) on V andN is a VR on V. Medical
diagnosis is one of the most sensitive and important issues in the medical sciences. If
it is not done properly, the patient will suffer irreparable damage. Therefore, an
application of VG in the diagnosis of the disease is expressed.
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1 Introduction

After the introduction of fuzzy sets (FSs) [1], the fuzzy set theory is included as a large research
field. Since then, the theory of FSs has become a vigorous area of research in different disciplines,
including life sciences, management science, statistic, graph theory, and automata theory. Graphs
from ancient times to the present day have played a very important role in various fields, including
computer science and social networks, so that, with the help of the nodes and edges of a graph, the
relationships between objects and elements in a social group can be easily introduced.

A fuzzy graph (FG) is one of the most widely used topics in fuzzy theory, which has been
studied by many researchers. One of the advantages of FG is its flexibility in reducing time and
costs in economic issues, which has been welcomed by all managers of institutions and
companies. Gau and Buehrer [2] organized the FS theory by presenting the VS notion by
changing the value of an element in a set with a subinterval of [0,1]. A VS is more initiative and
helpful due to the existence of false membership degrees. Kauffman [3] introduced FGs using
Zadeh’s fuzzy relation (FR) [4, 5]. However, Rosenfeld [6] presented another detailed definition,
such as paths, cycles, and connectedness. Mordeson and Chang-Shyh [7] defined operations on
FGs. References [8, 9] introduced certain types of product bipolar FGs and some operations and
densities of m-polar FGs. Das et al. [10] presented generalized neutrosophic competition
graphs. Bhattacharya [11] identified some remarks on FGs. Mordeson and Nair [12] studied
several concepts of FGs. Mahapatra [13] introduced radio FGs and frequency assignment in
radio stations. References [14–16] investigated new definitions of vague graphs, and references
[17–20] defined several concepts on VGs and neutrosophic competition graphs. Shoaib et al.
[21] studied complex Pythagorean FGs.
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VG is a type of FG.VGs have a variety of applications in other sciences,
including biology, psychology, management, and medicine. They are used
to find themost effective person in an organization or institution. Likewise,
a VG can focus on determining the uncertainty combined with the
inconsistent and indeterminate information of any real-world problem
in which FGs may not lead to adequate results. The nodes in this graph
represent the individuals, and the edges show the extent of the relationship
between employees. Furthermore, VGs play a very important role in the
field of medical sciences and are used to diagnose diseases and reduce the
costs of hospitals and medical clinics using the concept of domination and
covering. Ramakrishna [22] recommended the VG notion and evaluated
some of its features. Borzooei and Rashmanlou [23, 24] introduced new
concepts in VGs. Sunitha and Vijayakumar [25] presented a complement
of FGs. Kosari et al. and Kou et al. [26, 27] studied new results in VG
structures. References [28–30] defined dominating and equitable
dominating sets in VGs. Shi and Kosari [31] investigated the global
dominating set in product-VGs. Shao et al. [32] introduced a bondage
set and bondage number in intuitionistic FG. VG is used to illustrate real-
world phenomena using vague models in a variety of fields, including
technology, social networking, and biological networks. Therefore, in this
study, we presented the notion of VEG and introduced some of its
properties. Likewise, we characterized VG ζ = (M, N), where M is a VS
and N is a VR. Some operations, including CP, LP, SP, and cross-product
on VGs, have been defined. Finally, an application of VG in medical
diagnosis has been given.

2 Preliminaries

In this section, we introduce some basic concepts of VGs.
A graph is an ordered pair ζ* = (V, E), whereV is the set of nodes of

ζ* and E ∈ Ṽ2 is the set of edges of ζ*. Two nodes p and q in a graph G*
are said to be neighbors in G*, if {p, q} is in an edge of G*.

Definition 2.1. A fuzzy graph (FG) is a pair ς = (τ, ]) with a set X
[12]; then τ is a fuzzy set (FS) in X, and ] is a fuzzy relation (FR) in X ×
X, so that

γ pq( )≤min{τ p( ), τ q( )},
for all pq ∈ X × X.

Definition 2.2. A VS is a pair (tM, fM) on set X [2], where tM and fM
are real-valued functions, which can be presented on V→ [0, 1] so that
tM(p) + fM(p) ≤ 1 and ∀p ∈ X.

Definition 2.3. A VG is defined as a pair ζ = (M, N) [22],where
M = (tM, fM) is a VS on V and N = (tN, fN) is a VS on E ⊆ V × V so

that for each pq ∈ E, tN (pq) ≤ tM(p) ∧ tM(q) and fN (pq) ≥ fN(p)
∨ fN(q).

Definition 2.4. A VEG on a non-empty set V is an ordered pair of
the form ζ̂ � (V,N), where V is a crisp vertex set (CVS) and N is a VR
on V so that tN (pq) ≤ min{tM(p), tM(q)}, fN (pq) ≥ max{fM(p), fM(q)},
and 0 ≤ tN (pq) + fN (pq) ≤ 1, for all pq ∈ E.

We consider VEGs with CVS, that is, VGs ζ̂ � (V,N), that is,
tM(p) = 1, fM(p) = 0, ∀p ∈ V, and edges with true membership and false
membership degrees in [0,1].

Example 2.5. Consider a simple graph (SG) ζ* = (V, E) [24]so that V =
{p, q, s} and E = {pq, qs, ps}. Let N be a VR on V described by N = {(pq,
0.4, 0.2), (qs, 0.5, 0.2), (ps, 0.3, 0.2)}. Clearly, ζ̂ � (V,N) is a VEG with
CVS and VS of edges (see Figure 1).

3 Vague graphs by level graphs

Definition 3.1. Suppose that M = (tm, fM) is a VS on V. Then, the
set M(λ,δ) = {p ∈ V|tM(p) ≥ λ, fM(p) ≤ δ}, where (λ, δ) ∈ [0, 1] × [0, 1]
and λ + δ ≤ 1 is named the (λ, δ)-level set of M. Let N = (tN, fN) be a
VR on V. Then, the set N(λ,δ) = {pq ∈ V × V|tN (pq) ≥ λ, fM(pq) ≤ δ},
where (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1 is called (λ, δ)-LG. In the
case of λ = δ, where λ ≤ 1, we write LG by ζα instead of ζ(λ,δ). Note
that

M λ,δ( ) � {p ∈ V|tM p( )≥ λ} ∩ {p ∈ V|fM p( )≤ δ} � U t; λ( ) ∩ L f; δ( ),
N λ,δ( ) � {pq ∈ V × V|tN pq( )≥ λ} ∩ {pq ∈ V × V|fN pq( )≤ δ}

� U t; λ( ) ∩ L f; δ( ).
Remark 3.2. The level graph ζ(λ,δ) = (M(λ,δ), N(λ,δ)) is a subgraph of

ζ* = (V, E).

Example 3.3. Consider an SG ζ* = (V, E) so that V = {p, q, r, s} and E =
{pq, qr, rs, ps, pr, qs}. From Figure 2, we get that ζ = (M, N) is a VG.

Take λ = 0.5. We have M0.5 = {s, r} and N0.5 = {rs}. Obviously, the
0.5-LG ζ0.5 is a subgraph of ζ*.

Now, we take λ = 0.2 and δ = 0.3. By Definition 3.1, we have
M(0.2,0.3) = {p, r, s} and N(0.2,0.3) = {ps}. Clearly, (0.2,0.3)-LG ζ(0.2,0.3) is a
subgraph of ζ*.

Theorem 3.4. ζ = (M, N) is a VG if ζ(λ,δ) is a crisp graph for each pair
(λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1.

Proof. Suppose ζ is a VG. For each (λ, δ) ∈ [0, 1] × [0, 1], we take pq
∈N(λ,δ). Then, tN (pq) ≥ λ and fN (pq) ≤ δ. Since ζ is a VG, it follows that

FIGURE 2
Vague graph ζ.

FIGURE 1
Vague edge graph ζ̂ � (V ,N).

Frontiers in Physics frontiersin.org02

Shi et al. 10.3389/fphy.2023.1130765

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1130765


λ≤ tN pq( )≤min tM p( ), tM q( )( ),
δ ≥fN pq( )≥max fM p( ), fM q( )( ).

It shows that λ ≤ tM(p), λ ≤ tM(q), δ ≥ fM(p), and δ ≥ fM(q); that is, p,
q ∈ M(λ,δ). Hence, ζ(λ,δ) is a graph for each (λ, δ) ∈ [0, 1] × [0, 1].
Conversely, suppose ζ(λ,δ) is a graph for all (λ, δ) ∈ [0, 1] × [0, 1]. For
each pq ∈ Ṽ2, let fN (pq) = δ and tN (pq) = λ. Then, pq ∈ N(λ,δ). Since
ζ(λ,δ) is a graph, we have p, q ∈M(λ,δ), so tM(p) ≥ λ, tM(q) ≥ λ, fM(p) ≤ δ,
and fM(q) ≤ δ. Therefore,

tN pq( ) � λ≤min tM p( ), tM q( )( ),
fN pq( ) � δ ≥max fM p( ), fM q( )( ),

that is, ζ = (M, N) is a VG.
Definition 3.5. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two

VGs of ζ1* � (V1, E1) and ζ2* � (V2, E2), respectively. The Cartesian
product (CP) ζ1 × ζ2 is the pair (M,N) of VSs defined on the CP ζ1* × ζ2*
so that

i( ) tM p1 , p2( ) � min tM1 p1( ), tM2 p2( )( )
fM p1 , p2( ) � max fM1 p1( ), fM2 p2( )( ), ∀ p1 , p2( ) ∈ V1 × V2 ,

{
ii( ) tN p, p2( ) p, q2( )( ) � min tM1 p( ), tN2 p2q2( )( )

fM p, p2( ) p, q2( )( ) � max fM1 p( ), fN2 p2q2( )( ), ∀p ∈ V1 and p2q2 ∈ E2 ,
{

iii( ) tN p1 , r( ) q1 , r( )( ) � min tN1 p1q1( ), tM2 r( )( )
fM p1 , r( ) q1 , r( )( ) � max fN1 p1q1( ), fM2 r( )( ), ∀r ∈ V2 and p1q1 ∈ E1.

{

Theorem 3.6. ζ = (M, N) is the CP of ζ1 and ζ2 if and only if each pair
(λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1, (λ, δ)-LG ζ(λ,δ) is the CP of (ζ1)(λ,δ)
and (ζ2)(λ,δ).

Proof. Assume ζ = (M, N) is the CP of ζ1 and ζ2. For each (λ, δ) ∈
[0, 1] × [0, 1], if (p, q) ∈ M(λ,δ), then

min tM1 p( ), tM2 q( )( ) � tM p, q( )≥ δ

and

max fM1 p( ), fM2 q( )( ) � fM p, q( )≤ λ.
Hence, p ∈ (M1)(λ,δ) and q ∈ (M2)(λ,δ); that is
(p, q) ∈ (M1)(λ,δ) × (M2)(λ,δ). Therefore, M(λ,δ) ⊆ (M1)(λ,δ) ×
(M2)(λ,δ).

Now if (p, q) ∈ (M1)(λ,δ) × (M2)(λ,δ), then p ∈ (M1)(λ,δ) and
q ∈ (M2)(λ,δ). It follows min(tM1(p), tM2(q))≥ δ and
max(fM1(p), fM2(q))≤ λ. Since (M, N) is the CP of ζ1 and ζ2,
tM(p, q) ≥ δ and fM(p, q) ≤ λ; that is, (p, q) ∈ M(λ,δ). So,
(M1)(λ,δ) × (M2)(λ,δ) ⊆ M(λ,δ). Thus, (M1)(λ,δ) × (M2)(λ,δ) � M(λ,δ).
Now, we prove N(λ,δ) = E, where E is the edge set of the CP of
(ζ1)(λ,δ) × (ζ2)(λ,δ) and ∀(λ, δ) ∈ [0, 1] × [0, 1]. Suppose (p1, p2) (q1, q2)
∈ N(λ,δ). Then, tN((p1, p2)(q1, q2))≥ δ and tN((p1, p2)(q1, q2))≤ λ.
Since (M, N) is the CP of ζ1 and ζ2, one of the following cases holds:(i)
p1 = q1 and p2q2 ∈ E2.(ii) p2 = q2 and p1q1 ∈ E1.For case (i), we have

tN p1, p2( ) q1, q2( )( ) � min tM1 p1( ), tM2 p2q2( )( )≥ δ,
fN p1, p2( ) q1, q2( )( ) � max fM1 p1( ), fN2 p2q2( )( )≤ λ.

So, tM1(p1)≥ δ, fM1(p1)≤ λ, tN2(p2q2)≥ δ, and fN2(p2q2)≤ λ. It
follows that p1 � q1 ∈ (M1)(λ,δ) and p2q2 ∈ (N2)(λ,δ); that is, (p1, p2)
(q1, q2) ∈ E.

Similarly, for case (ii), we get (p1, p2) (q1, q2) ∈ E. Thus, N(λ,δ) ⊆ E.
For each (p, p2) (p, q2) ∈ E, tM1(p)≥ δ, fM1(p)≤ λ, tN2(p2q2)≥ δ, and
fN2(p2q2)≤ λ. Since (M, N) is the CP of ζ1 and ζ2, we have

tN p, p2( ) p, q2( )( ) � min tM1 p( ), tN2 p2q2( )( )≥ δ,
fM p, p2( ) p, q2( )( ) � max fM1 p( ), fN2 p2q2( )( )≤ λ.

Therefore, (p, p2) (p, q2) ∈N(λ,δ).In the same way, for each (p1, r) (q1, r)
∈ E, we get (p1, r) (q1, r) ∈ N(λ,δ). So, E ⊆ N(λ,δ) and N(λ,δ) = E.

The converse part is obvious.
Definition 3.7. Let ζ1 and ζ2 be two VGs of ζ1* � (V1, E1) and

ζ2* � (V2, E2), respectively. The composition (Co) ζ1 [ζ2] is the pair (M,
N) of VSs defined on the Co ζ1*[ζ2*] so that

i( ) tM p1 , p2( ) � min tM1 p1( ), tM2 p2( )( ),
fM p1 , p2( ) � max fM1 p1( ), fM2 p2( )( ), ∀ p1 , p2( ) ∈ V1 × V2 .

{
ii( ) tN p, p2( ) p, q2( )( ) � min tM1 p( ), tN2 p2q2( )( ),

fN p, p2( ) p, q2( )( ) � max fM1 p( ), fN2 p2q2( )( ), ∀p ∈ V1 and ∀ p2q2 ∈ E2 .
{

iii( ) tN p1 , r( ) q1 , r( )( ) � min tN1 p1q1( ), tM2 r( )( ),
fN p1 , r( ) q1 , r( )( ) � max fN1 p1q1( ), fM2 r( )( ), ∀r ∈ V2 and ∀p1q1 ∈ E1 .

{
iv( ) tN p1 , p2( ) q1 , q2( )( ) � min tM2 p2( ), tM2 q2( ), tN1 p1q1( )( ),

fN p1 , p2( ) q1 , q2( )( ) � max fM2 p2( ), fM2 q2( ), fN1 p1q1( )( ), ∀p2 , q2 ∈ V2 and ∀p1q1 ∈ E1 that p2 ≠ q2 .
{

Theorem 3.8. ζ = (M,N) is the Co of VGs ζ1 and ζ2 if, for every (λ, δ) ∈
[0, 1] × [0, 1] and λ + δ ≤ 1, (λ, δ)-LG ζ(λ,δ) is the Co of (ζ1)(λ,δ)
and (ζ2)(λ,δ).

Proof. Let ζ = (M, N) be the Co of ζ1 and ζ2. By the definition of ζ1
[ζ2] and the same argument as in the proof of Theorem 3.6, we have
M(λ,δ) � (M1)(λ,δ) × (M2)(λ,δ). Now, we prove N(λ,δ) = E, where E is
the edge set of the co (ζ1)(λ,δ)[(ζ2)(λ,δ)], for all (λ, δ) ∈ [0, 1] × [0, 1].
Assume (p1, p2) (q1, q2) ∈ N(λ,δ). Then, tN ((p1, p2) (q1, q2)) ≥ δ and fN
((p1, p2) (q1, q2)) ≤ λ. Since ζ = (M, N) is the Co ζ[ζ2], one of the
following conditions hold:

(i) p1 = q1 and p2q2 ∈ E2.
(ii) p2 = q2 and p1q1 ∈ E1.
(iii) p2 ≠ q2 and p1q1 ∈ E1.
For cases (i) and (ii), the same as cases (i) and (ii) in the proof of

Theorem 3.6, we get (p1, p2) (q1, q2) ∈ E. For case (iii), we have

tN p1, p2( ) q1, q2( )( ) � min tM2 p2( ), tM2 q2( ), tN1 p1q1( )( )≥ δ,
fN p1, p2( ) q1, q2( )( ) � max fM2 p2( ), fM2 q2( ), fN1 p1q1( )( )≤ λ.
So, tM2(p2)≥ δ, tM2(q2)≥ δ, tN1(p1q1)≥ δ, fM2(p2)≤ λ,

fM2(q2)≤ λ, and fN1(p1q1)≤ λ. It follows that p2q2 ∈ (M2)(λ,δ)
and p1q1 ∈ (N1)(λ,δ); that is, (p1, p2) (q1, q2) ∈ E. Thus, N(λ,δ) ⊆
E. For each (p1, p2) (q1, q2) ∈ E, tM1(p)≥ δ, fM1(p)≤ λ,
tN2(p2q2)≥ δ, and fN2(p2q2)≤ λ. Since ζ = (M, N) is the Co of
ζ1 [ζ2], we get

tN p, p2( ) p, q2( )( ) � min tM1 p( ), tN2 p2q2( )( )≥ δ,
fM p, p2( ) p, q2( )( ) � max fM1 p( ), fN2 p2q2( )( )≤ λ.

So, (p, p2) (p, q2) ∈N(λ,δ). Similarly, for each (p1, r) (q1, r) ∈ E, we get
(p, p2) (p, q2) ∈N(λ,δ). For each (p1, p2) (q1, q2) ∈ E, where p2 ≠ q2 and p1
≠ q1, tN1(p1q1)≥ δ, fN1(p1q1)≤ λ, tM2(q2)≥ δ, fM2(q2)≤ λ,
tM2(p2)≥ δ, and fM2(p2)≥ λ. Since ζ = (M, N) is the Co of
G1[G2], we have

tN p1, p2( ) q1, q2( )( ) � min tM2 p2( ), tM2 q2( ), tN1 p1q1( )( )≥ δ,
fN p1, p2( ) q1, q2( )( ) � max fM2 p2( ), fM2 q2( ), fN1 p1q1( )( )≤ λ,

and then (p1, p2) (q1, q2) ∈N(λ,δ). Hence, E ⊆N(λ,δ). Thus, E =N(λ,δ).
Conversely, suppose (M(λ,δ), N(λ,δ)), where (λ, δ) ∈ [0, 1] × [0, 1], is

the Co of (ζ1)(λ,δ) and ((M2)(λ,δ), (N2)(λ,δ)). In the same way, by the
same arguments as in the proof of Theorem 3.6, we get

tN p1, p2( ) q1, q2( )( ) � min tM2 p2( ), tM2 q2( ), tN1 p1q1( )( ),
fN p1, p2( ) q1, q2( )( ) � max fM2 p2( ), fM2 q2( ), fN1 p1q1( )( ),

∀p2, q2 ∈ V2 (p2 ≠ q2) and ∀ p1q1 ∈ E1.
This completes the proof.
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Definition 3.9. Let ζ1 = (M1,N1) and ζ2 = (M2,N2) be two VGs. The
union ζ1 ∪ ζ2 is defined as the pair (M, N) of VSs described on the union
of graphs ζ1* and ζ2* so that

i( ) tM p( ) � tM1 p( ) if p ∈ V1, p ∉ V2,
tM2 p( ) if p ∈ V2, p ∉ V1,
max tM1 p( ), tM2 p( )( ) if p ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩
ii( ) fM p( ) � fM1 p( ) if p ∈ V1, p ∉ V2,

fM2 p( ) if p ∈ V2, p ∉ V1,
min fM1 p( ), fM2 p( )( ) if p ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩
iii( )tN pq( ) � tN1 pq( ) if pq ∈ E1, pq ∉ E2,

tN2 pq( ) if pq ∈ E2, pq ∉ E1,
max tN1 pq( ), tN2 pq( )( ) if pq ∈ E1 ∩ E2,

⎧⎪⎨⎪⎩
iv( ) fN pq( ) � fN1 pq( ) if pq ∈ E1, pq ∉ E2,

fN2 pq( ) if pq ∈ E2, pq ∉ E1,
min fN1 pq( ), fN2 pq( )( ) if pq ∈ E1 ∩ E2.

⎧⎪⎨⎪⎩

Theorem3.10. Let ζ1 = (M1,N1) and ζ2 = (M2,N2) be two VGs and V1

∩ V2 =∅. Then, ζ = (M, N) is the union of ζ1 and ζ2 if each (λ, δ)-LG
ζ(λ,δ) is the union of (ζ1)(λ,δ) and (ζ2)(λ,δ).

Proof. Let ζ = (M, N) be the union of VGs ζ1 and ζ2. We show
that M(λ,δ) � (M1)(λ,δ) ∪ (M2)(λ,δ), for each (λ, δ) ∈ [0, 1] × [0, 1].
Suppose p ∈M(λ,δ). Then, p ∈ V1 − V2 or p ∈ V2 − V1. If p ∈ V1 − V2,
then tM1(p) � tM(p)≥ δ and fM1(p) � fM(p)≤ λ, which shows
p ∈ (M1)(λ,δ). Similarly, p ∈ V2 − V1 shows p ∈ (M2)(λ,δ).
Hence, p ∈ (M1)(λ,δ) ∪ (M2)(λ,δ). Therefore,
M(λ,δ) ⊆ (M1)(λ,δ) ∪ (M2)(λ,δ).

Now, let p ∈ (M1)(λ,δ) ∪ (M2)(λ,δ). Then, p ∈ (M1)(λ,δ),
p ∉ (M2)(λ,δ), or p ∈ (M2)(λ,δ), p ∉ (M1)(λ,δ). For the first case, we
get tM1(p) � tM(p)≥ δ and fM1(p) � fM(p)≤ λ, which shows p ∈
M(λ,δ). For the second case, we get tM2(p) � tM(p)≥ δ and
fM2(p) � fM(p)≤ λ. Hence, p ∈ M(λ,δ). Thus,
(M1)(λ,δ) ∪ (M2)(λ,δ) ⊆ M(λ,δ).

To prove N(λ,δ) � (N1)(λ,δ) ∪ (N2)(λ,δ), for all (λ, δ) ∈ [0, 1] × [0,
1], suppose pq ∈N(λ,δ). Then, pq ∈ E1 − E2 or pq ∈ E2 − E1. For pq ∈ E1 −
E2, we get tN1(pq) � tN(pq)≥ δ and fN1(pq) � fN(pq)≤ λ. Hence,
pq ∈ (N1)(λ,δ). Similarly, pq ∈ E2 − E1 gives pq ∈ (N2)(λ,δ). So,
N(λ,δ) ⊆ (N1)(λ,δ) ∪ (N2)(λ,δ). If pq ∈ (N1)(λ,δ) ∪ (N2)(λ,δ), then
pq ∈ (N1)(λ,δ) − (N2)(λ,δ) or pq ∈ (N2)(λ,δ) − (N1)(λ,δ). For the first
case, tN1(pq) � tN(pq)≥ δ and fN1(pq) � fN(pq)≤ λ. Therefore, pq
∈ N(λ,δ). In the second case, we get pq ∈ N(λ,δ). Thus,
(N1)(λ,δ) ∪ (N2)(λ,δ) ⊆ N(λ,δ). The converse part is clear.

Definition 3.11. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs.
The join ζ1 + ζ2 is the pair (A, B) of VSs defined on ζ1* + ζ2* so that

i( ) tM p( ) � tM1 p( ) if p ∈ V1 and p ∉ V2,
tM2 p( ) if p ∈ V2 and p ∉ V1,
max tM1 p( ), tM2 p( )( ) if p ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩
ii( ) fM p( ) � fM1 p( ) if p ∈ V1 and p ∉ V2,

fM2 p( ) if p ∈ V2 and p ∉ V1,
min fM1 p( ), fM2 p( )( ) if p ∈ V1 ∩ V2,

⎧⎪⎨⎪⎩
iii( )tN pq( ) �

tN1 pq( ) if pq ∈ E1 and pq ∉ E2,
tN2 pq( ) if pq ∈ E2 and pq ∉ E1,
max tN1 pq( ), tN2 pq( )( ) if pq ∈ E1 ∩ E2,
min tM1 p( ), tM2 q( )( ) if pq ∈ E′,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iv( ) fN pq( ) �

fN1 pq( ) if pq ∈ E1 and pq ∉ E2,
fN2 pq( ) if pq ∈ E2 and pq ∉ E1,
min fN1 pq( ), fN2 pq( )( ) if pq ∈ E1 ∩ E2,
max fN1 p( ), fN2 q( )( ) if pq ∈ E′.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Theorem 3.12. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs
and V1 ∩ V2 =∅. Then, ζ = (M, N) is the join of ζ1 and ζ2 if each (λ, δ)-
LG ζ(λ,δ) is the of (ζ1)(λ,δ) and (ζ2)(λ,δ).

Proof. Let ζ = (M, N) be the join of VGs ζ1 and ζ2. Then, by the
definition and the proof of Theorem 3.10,
M(λ,δ) � (M1)(λ,δ) ∪ (M2)(λ,δ), for all (λ, δ) ∈ [0, 1] × [0, 1]. We
prove that N(λ,δ) � (N1)(λ,δ) ∪ (N2)(λ,δ) ∪ E(λ,δ)′ , for all (λ, δ) ∈ [0,
1] × [0, 1], where E(λ,δ)′ is the set of all edges joining the nodes of
(M1)(λ,δ) and (M2)(λ,δ).

From the proof of Theorem 3.10, it follows that
(N1)(λ,δ) ∪ (N2)(λ,δ) ⊆ N(λ,δ). If pq ∈ E(λ,δ)′ , then tM1(p)≥ δ,
fM1(p)≤ λ, tM2(q)≥ δ, and fM2(q)≤ λ. So,

tN pq( ) � min tM1 p( ), tM2 q( )( )≥ δ
and

fN pq( ) � max fM1 p( ), fM2 q( )( )≤ λ.

It follows that pq ∈ N(λ,δ). Thus, (N1)(λ,δ) ∪ (N2)(λ,δ) ∪ E(λ,δ)′ ⊆ N(λ,δ).
For each pq ∈ N(λ,δ), if pq ∈ E1 ∪ E2, then pq ∈ (N1)(λ,δ) ∪ (N2)(λ,δ), by
the proof of Theorem 3.10. If p ∈ V1 and q ∈ V2, then

min tM1 p( ), tM2 q( )( ) � tN pq( )≥ δ.

Moreover,

max fM1 p( ), fM2 q( )( ) � fN pq( )≤ λ.

So, p ∈ (M1)(λ,δ) and q ∈ (M2)(λ,δ). Thus, pq ∈ E(λ,δ)′ . Hence,
N(λ,δ) ⊆ (N1)(λ,δ) ∪ (N2)(λ,δ) ∪ E(λ,δ)′ . Conversely, suppose every
LG ζ(λ,δ) is the join of (ζ1)(λ,δ) and ((M2)(λ,δ), (N2)(λ,δ)). From the
proof of Theorem 3.10, we have

i( ) tM p( ) � tM1 p( ) if p ∈ V1

tM p( ) � tM2 p( ) if p ∈ V2
{

ii( ) fM p( ) � fM1 p( ) if p ∈ V1

fM p( ) � fM2 p( ) if p ∈ V2
{

iii( ) tN pq( ) � tN1 pq( ) if pq ∈ E1

tN pq( ) � tN2 pq( ) if pq ∈ E2
{

iv( ) fN pq( ) � fN1 pq( ) if pq ∈ E1

fN pq( ) � fN2 pq( ) if pq ∈ E2.
{

Assume p ∈ V1, q ∈ V2, min(tM1(p), tM2(q)) � r,
max(fM1(p), fM2(q)) � s, tN (pq) = t, and fN (pq) = w. Then,
p ∈ (M1)(λ,δ), q ∈ (M2)(λ,δ), and pq ∈ N(w,t). It shows pq ∈ N(λ,δ),
p ∈ (M1)(w,t), and q ∈ (M2)(w,t). Hence, tN (pq) ≥ r, fN (pq) ≤ λ,
tM1(p)≥ t, fM1(p)≤w, tM2(q)≥ t, and fM2(q)≥w. Thus,

tN pq( )≥ δ � min tM1 p( ), tM2 q( )( )≥ t � tN pq( ),
fN pq( )≥ λ � max fM1 p( ), fM2 q( )( )≤w � fN pq( ).

So, tN(pq) � min(tM1(p), tM2(q)), andfw(pq) � max(fM1(p),
fM2(q)), as described.

Definition 3.13. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs.
The cross product ζ1pζ2 is the pair (M, N) of VSs defined on the cross
product ζp1pζ

p
2 so that

i( ) tA p1, p2( ) � min tA1 p1( ), tA2 p2( )( ),
fA p1, p2( ) � max fA1 p1( ), fA2 p2( )( ), ∀ p1, p2( ) ∈ V1 × V2,

{
ii( )

tN p1, p2( ) q1, q2( )( ) � min tN1 p1q1( ), tN2 p2q2( )( ),
fN p1, p2( ) q1, q2( )( ) � max fN1 p1q1( ), fN2 p2q2( )( ),

∀p1q1 ∈ E1, and ∀p2q2 ∈ E2.

⎧⎪⎨⎪⎩

Theorem 3.14. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs.
Then, ζ = (M, N) is the cross product of ζ1 and ζ2 if each LG ζ(λ,δ) is the
cross product of (ζ1)(λ,δ) and (ζ2)(λ,δ).
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Proof. Let ζ = (M,N) be the cross product of ζ1 and ζ2. Then, by the
definition of the CP and the proof of Theorem 3.6, we have M(λ,δ) �
(M1)(λ,δ) × (M2)(λ,δ) and ∀(λ, δ) ∈ [0, 1] × [0, 1]. We prove that

N λ,δ( ) � { p1, p2( ) q1, q2( )| p1q1 ∈ N1( ) λ,δ( ), p2q2 ∈ N2( ) λ,δ( )},
∀(λ, δ) ∈ [0, 1] × [0, 1]. If (p1, p2) (q1, q2) ∈ N(λ,δ), then

tN p1, p2( ) q1, q2( )( ) � min tN1 p1q1( ), tN2 p2q2( )( )≥ δ,
fN p1, p2( ) q1, q2( )( ) � max fN1 p1q1( ), fN2 p2q2( )( )≤ λ.

Hence, tN1(p1q1)≥ δ, tN2(p2q2)≥ δ, fN1(p1q1)≤ λ, and
fN2(p2q2)≤ λ. Thus, p1q1 ∈ (N1)(λ,δ) and p2q2 ∈ (N2)(λ,δ). Now, if
p1q1 ∈ (N1)(λ,δ) and p2q2 ∈ (N2)(λ,δ), then tN1(p1q1)≥ δ,
fN1(p1q1)≤ λ, tN2(p2q2)≥ δ, and fN2(p2q2)≤ λ. So, we have

tN p1, p2( ) q1, q2( )( ) � min tN1 p1q1( ), tN2 p2q2( )( )≥ δ,
fN p1, p2( ) q1, q2( )( ) � max fN1 p1q1( ), fN2 p2q2( )( )≤ λ

because ζ = (M, N) is the cross product of ζ1pζ2. Therefore, (p1, p2)
(q1, q2) ∈ N(λ,δ). The converse part is clear.

Definition 3.15. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs.
The lexicographic product (LP) ζ1•ζ2 is the pair (M, N) of VSs defined
on the LP G1*•G2* so that

i( ) tM p1, p2( ) � min tM1 p1( ), tM2 p2( )( ),
fM p1, p2( ) � max fM1 p1( ), fM2 p2( )( ), ∀ p1, p2( ) ∈ V1 × V2,

{
ii( )

tN p, p2( ) p, q2( )( ) � min tM1 p( ), tN2 p2q2( )( ),
fN p, p2( ) p, q2( )( ) � max fM1 p( ), fN2 p2q2( )( ),

∀p ∈ V1, and ∀p2q2 ∈ E2,

⎧⎪⎨⎪⎩
iii( )

tN p1, p2( ) q1, q2( )( ) � min tN1 p1q1( ), tN2 p2q2( )( ),
fN p1, p2( ) q1, q2( )( ) � max fN1 p1q1( ), fN2 p2q2( )( ),

∀p1q1 ∈ E1, and ∀p2q2 ∈ E2.

⎧⎪⎨⎪⎩

Theorem 3.16. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs.
Then, ζ = (M,N) is LP of ζ1 and ζ2 if ζ(λ,δ) � (ζ1)(λ,δ)•(ζ2)(λ,δ), ∀(λ, δ) ∈
[0, 1] × [0, 1] and λ + δ ≤ 1.

Proof. Let ζ = (M, N) = G1•G2. According to the definition of CP
ζ1 × ζ2 and the proof of Theorem 3.6, we get M(λ,δ) �
(M1)(λ,δ) × (M2)(λ,δ) and ∀(λ, δ) ∈ [0, 1] × [0, 1]. We prove that
N(λ,δ) � E(λ,δ) ∪ E(λ,δ)′ , ∀(λ, δ) ∈ [0, 1] × [0, 1], where E(λ,δ) �
{(p, p2)(p, q2)| p ∈ V1, p2q2 ∈ (N2)(λ,δ)} is the subset of the edge
set of the direct product (DP) ζ(λ,δ) � (ζ1)(λ,δ) × (ζ2)(λ,δ), and E(λ,δ)′ �
{(p1, p2)(q1, q2)| p1q1 ∈ (N1)(λ,δ), p2q2 ∈ (N2)(λ,δ)} is the edge set of
the cross product (ζ1)(λ,δ)p(ζ2)(λ,δ). For each (p1, p2) (q1, q2) ∈ N(λ,δ),
p1 = q1, p2q2 ∈ E2, or p1q1 ∈ E1, p2q2 ∈ E2. If p1 = q1 and p2q2 ∈ E2, then
(p1, p2) (q1, q2) ∈ E(λ,δ), by the definition of the CP and the proof of
Theorem 3.6. If p1q1 ∈ E1 and p2q2 ∈ E2, then (p1, p2)(q1, q2) ∈ E(λ,δ)′ ,
by the definition of cross product and the proof of Theorem 3.14.
Hence, N(λ,δ) ⊆ E(λ,δ) ∪ E(λ,δ)′ . From the definition of CP and the
proof of Theorem 3.6, we get E(λ,δ) ⊆N(λ,δ). In addition, from definition
of cross product and proof of Theorem 3.14, we get E(λ,δ)′ ⊆ N(λ,δ).
Thus, E(λ,δ) ∪ E(λ,δ)′ ⊆ N(λ,δ).

Conversely, assume ζ(λ,δ) � (M(λ,δ), N(λ,δ)) � (ζ1)(λ,δ)•(ζ2)(λ,δ))
and ∀(λ, δ) ∈ [0, 1] × [0, 1]. It is clear that (ζ1)(λ,δ)•(ζ2)(λ,δ)) has
the same vertex set as the CP (ζ1)(λ,δ) × (ζ2)(λ,δ)). Now, by the proof of
Theorem 3.6, we get

tM p1, p2( )( ) � min tM1 p1( ), tM2 p2( )( ),
fM p1, p2( )( ) � max fM1 p1( ), fM2 p2( )( ),

∀(p1, p2) ∈ V1 × V2. For p ∈ V1 and p2q2 ∈ E2, let
min(tM1(p), tN2(p2q2)) � δ, max(fM1(p), fN2(p2q2)) � λ, tN ((p,
p2) (p, q2)) = δ1, and fN ((p, p2) (p, q2)) = λ1. Then, according to
the definitions of CP and LP, we have

p, p2( ) p, q2( ) ∈ N1( ) λ,δ( )• N2( ) λ,δ( )5 p, p2( ) p, q2( ) ∈ N1( ) λ,δ( ) × N2( ) λ,δ( ).

By the same reasoning as proof of Theorem 3.6, we get

tN p, p2( ) p, q2( )( ) � min tM p( ), tN2 p2q2( )( ),
fN p, p2( ) p, q2( )( ) � max fM p( ), fN2 p2q2( )( ).

Now, assume that tN ((p1, p2) (q1, q2)) = δ1, fN ((p1, p2) (q1, q2)) =
λ1, min(tN1(p1q1), tN2(p2q2)) � δ, and max(fN1(p1q1),
fN2(p2q2)) � λ, for p1q1 ∈ E1 and p2q2 ∈ E2. Then, according to
the definitions of the cross product and LP, we derive

p1, p2( ) q1, q2( ) ∈ N1( ) λ,δ( )• N2( ) λ,δ( )5 p1, p2( ) q1, q2( ) ∈ N1( ) λ,δ( )p N2( ) λ,δ( ).

Similar to the proof of Theorem 3.14, we have

tN p1, p2( ) q1, q2( )( ) � min tN1 p1q1( ), tN2 p2q2( )( ),
fN p1, p2( ) q1, q2( )( ) � max fN1 p1q1( ), fN2 p2q2( )( ),

which completes the proof.

Lemma 3.17. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs so that
V1 = V2, M1 =M2, and E1 ∩ E2 =∅. Then, ζ = (M, N) is the union of ζ1
and ζ2 if ζ(λ,δ) is the union of (ζ1)(λ,δ) and (ζ2)(λ,δ), ∀(λ, δ) ∈ [0,
1] × [0, 1].

Proof. Assume ζ = (M, N) is the union of VGs ζ1 and ζ2. Then,
according to the definition of union and as V1 = V2 and M1 = M2, we
get M = M1 = M2. Then, M(λ,δ) � (M1)(λ,δ) ∪ (M2)(λ,δ). Now, we
prove thatN(λ,δ) � (N1)(λ,δ) ∪ (N2)(λ,δ), for all (λ, δ) ∈ [0, 1] × [0, 1].
For each pq ∈ (N1)(λ,δ), we get tN(pq) � tN1(pq)≥ δ and
fN(pq) � fN1(pq)≤ λ. So, pq ∈ N(λ,δ). Thus, (N1)(λ,δ) ⊆ N(λ,δ). In
the same way, we get (N2)(λ,δ) ⊆ N(λ,δ). Then,
((N1)(λ,δ) ∪ (N2)(λ,δ)) ⊆ N(λ,δ). For each pq ∈ N(λ,δ), pq ∈ E1, or pq
∈ E2. If pq ∈ E1, then fN1(pq) � fN(pq)≤ λ. Thus, pq ∈ (N1)(λ,δ). If
pq ∈ E2, then we get pq ∈ (N2)(λ,δ). Therefore,
N(λ,δ) ⊆ (N1)(λ,δ) ∪ (N2)(λ,δ).

Conversely, assume (λ, δ)-LG ζ(λ,δ) is the union of (ζ1)(λ,δ) and
((M2)(λ,δ), (N2)(λ,δ)). Let tM(p) = δ, fM(p) = λ, tM1(p) � δ1, and
fM1(p) � λ1, for some p ∈ V1 = V2. Then, p ∈ M(λ,δ) and
p ∈ (M1)(λ,δ). So, p ∈ (M1)(λ,δ) and p ∈ M(λ,δ) because M(λ,δ) �
(M1)(λ,δ) and (M1)(λ,δ) � M(λ,δ). Thus, tM1(p)≥ r, fM1(p)≤ α,
tM(p) ≥ t, and fM(p) ≤ w. Hence, tM1(p)≥ tM(p),
fM1(p)≤fM(p), tM(p)≥ tM1(p), and fM(p)≤fM1(p).
Therefore, tM(p) � tM1(p) and fM(p) � fM1(p) because M1 =
M2, V1 = V2, and M = M1 = M1 ∪ M2. In the same way, we derive

i( ) tN pq( ) � tN1 pq( ) if pq ∈ E1

tN pq( ) � tN2 pq( ) if pq ∈ E2
{

ii( ) fN pq( ) � fN1 pq( ) if pq ∈ E1

fN pq( ) � fN2 pq( ) if pq ∈ E2.
{
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Definition 3.18. Assume ζ1 = (M1, N1) and ζ2 = (M2, N2) are two
vague pair of graphs ζ1* and ζ2*, respectively. The strong product (SP) ζ1
⊠ ζ2 is the pair (M, N) of VSs defined on the SP ζ1* ⊠ ζ2* so that

i( ) tM p1, p2( ) � min tM1 p1( ), tM2 p2( )( ),
fM p1, p2( ) � max fM1 p1( ), fM2 p2( )( ), ∀ p1, p2( ) ∈ V1 × V2,

{
ii( )

tN p, p2( ) p, q2( )( ) � min tM1 p( ), tN2 p2q2( )( ),
fN p, p2( ) p, q2( )( ) � max fM1 p( ), fN2 p2q2( )( ),

∀p ∈ V1 and ∀p2q2 ∈ E2,

⎧⎪⎨⎪⎩
iii( )

tN p1, r( ) q1, r( )( ) � min tN1 p1q1( ), tM2 r( )( ),
fN p1, r( ) q1, r( )( ) � max fN1 p1q1( ), fM2 r( )( ),

∀r ∈ V2 and ∀p1q1 ∈ E1,

⎧⎪⎨⎪⎩
iv( )

tN p1, p2( ) q1, q2( )( ) � min tN1 p1q1( ), tN2 p2q2( )( ),
fN p1, p2( ) q1, q2( )( ) � max fN1 p1q1( ), fN2 p2q2( )( ),

∀p1q1 ∈ E1 and ∀p2q2 ∈ E2.

⎧⎪⎨⎪⎩

Theorem 3.19. Let ζ1 = (M1,N1) and ζ2 = (M2,N2) be two VGs. Then,
ζ = (M, N) is the SP of ζ1 and ζ2 if ζ(λ,δ), where (λ, δ) ∈ [0, 1] × [0, 1] and
λ + δ ≤ 1 is the SP of (ζ1)(λ,δ) and (ζ2)(λ,δ).

Proof. By definitions of SP, cross product, and CP, we get ζ1 ⊠ ζ2 =
(ζ1 × ζ2) ∪ (ζ1pζ2) and (ζ1)(λ,δ) ⊠ (ζ2)(λ,δ) � ((ζ1)(λ,δ) ×
(ζ2)(λ,δ)) ∪ ((ζ1)(λ,δ)p(ζ2)(λ,δ)), and ∀(λ, δ) ∈ [0, 1] × [0, 1]. By
Theorems 3.14 and 3.6, and Lemma 3.17, we have

ζ � ζ1 ⊠ ζ25ζ � ζ1 × ζ2( ) ∪ ζ1pζ2( )
5ζ λ,δ( ) � ζ1 × ζ2( ) λ,δ( ) ∪ ζ1pζ2( ) λ,δ( )
5ζ λ,δ( ) � ζ1( ) λ,δ( ) × ζ2( ) λ,δ( )( ) ∪ ζ1( ) λ,δ( )p ζ2( ) λ,δ( )( )
5ζ λ,δ( ) � ζ1( ) λ,δ( ) ⊠ ζ2( ) λ,δ( ), ∀ λ, δ( ) ∈ 0, 1[ ] × 0, 1[ ].

4 Application of vague graph in medical
sciences

In this section, we introduce a distance measure on a VS and use it
to diagnose a disease for a group of people who suffer from certain
symptoms.

Definition 4.1. Suppose that Z = {q1, q2, . . . , qn} is the universe of
discourse. Let M = {(qi, tM(qi), fM(qi): qi ∈ Z} and N = {(qi, tN (qi), fN (qi):
qi ∈ Z} be two VSs. The new distance measure is defined as

D M,N( ) � 2
n
∑n
i�1

sin{π6|tM qi( ) − tN qi( )|} + sin{π6|fM qi( ) − fN qi( )|}
1 + sin{π6|tM qi( ) − tN qi( )|} + sin{π6|fM qi( ) − fN qi( )|}.

Clearly, D (M, N) has all four conditions of a distance measure.
Assume {E1, E2, . . . , En} is a set of diseases and {T1, T2, . . . , Tn} is a

set of n number of patients. Suppose that {R1(tEi
1 , f

Ej

1 ),
R2(tEi

2 , f
Ej

2 ), . . . , Rl(tEi
l , f

Ej

l )} is the symptoms of the diseases Ei, and

{R1(tTj

1 , f
Tj

1 ), R2(tTj

2 , f
Tj

2 ), . . . , Rl(tTj

l , f
Tj

l )} is the symptoms of patient

Tj given in VSs. So, we have

d Ei, Tj( ) � 2
l
∑l
h�1

sin{π6|tEi
h − t

Tj

h } + sin{π6|fEi
h − f

Tj

h }
1 + sin{π6|tEi

h − t
Tj

h } + sin{π6|fEi
h − f

Tj

h },

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The distance between each pair
of diseases and patients can be expressed as the following matrix:

T1 T2 / Tn

E1

E2

..

.

Em

d E1, T1( ) d E1, T2( ) / d E1, Tn( )
d E2, T1( ) d E2, T2( ) / d E2, Tn( )

..

.

d Em, T1( ) d Em, T2( ) / d Em, Tn( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that if the distance between the two VSs is less, their similarity
will be greater. This is true for a patient and the type of illness they have.

Consider a set of symptoms R, a set of diagnoses E, and a set of
patients T. Assume that T = {Safari, Najafi, Ahmadi, Rahmani}, R =
{Jaundice, Nausea, Heart Burn, Constipation, Chronic Diarrhea}, and
E = {Cholecystitis, Migraine, Dyspepsia, Diverticulitis, Inflammatory
bowel disease}. We intend to make the right diagnosis for each patient.
Tables 1 and 2 show the relation between symptoms and diseases, as
well as patients and symptoms, respectively.

TABLE 1 Symptoms–diseases VR.

→ Disease Cholecystitis (CH) Migraine (MI) Dyspepsia (DY) Diverticulitis (DI) Inflammatory

↓ Symptoms bowel disease (IBD)

Jaundice (JA) (0.7, 0.2) (0.2, 0.2) (0.2, 0.5) (0.6, 0.2) (0.3, 0.5)

Nausea (NA) (0.1, 0.4) (0.7, 0.3) (0.2, 0.4) (0.3, 0.5) (0.3, 0.2)

Heartburn (HB) (0.2, 0.3) (0.3, 0.4) (0.7, 0.1) (0.3, 0.5) (0.5, 0.4)

Constipation (CO) (0.6, 0.3) (0.2, 0.4) (0.3, 0.4) (0.7, 0.2) (0.2, 0.6)

Chronic diarrhea (CD) (0.2, 0.3) (0.3, 0.5) (0.2, 0.6) (0.4, 0.5) (0.7, 0.2)

TABLE 2 Patient–symptoms VR.

Jaundice (JA) Nausea (NA) Heartburn (HB) Constipation (CO) Chronic diarrhea (CD)

Safari (0.3, 0.6) (0.7, 0.2) (0.4, 0.5) (0.3, 0.2) (0.2, 0.4)

Najafi (0.3, 0.4) (0.2, 0.5) (0.4, 0.4) (0.3, 0.5) (0.7, 0.1)

Ahmadi (0.8, 0.1) (0.4, 0.3) (0.5, 0.2) (0.6, 0.3) (0.3, 0.4)

Rahmani (0.2, 0.3) (0.3, 0.5) (0.8, 0.2) (0.3, 0.4) (0.3, 0.5)
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Now, we show the patients and symptoms as VSs as follows:

CH � {〈JA, 0.7, 0.2( )〉, 〈NA, 0.1, 0.4( )〉, 〈HB, 0.2, 0.3( )〉, 〈CO, 0.6, 0.3( )〉, 〈CD, 0.2, 0.3( )〉}
MI � {〈JA, 0.2, 0.2( )〉, 〈NA, 0.7, 0.3( )〉, 〈HB, 0.3, 0.4( )〉, 〈CO, 0.2, 0.4( )〉, 〈CD, 0.3, 0.5( )〉}
DY � {〈JA, 0.2, 0.5( )〉, 〈NA, 0.2, 0.4( )〉, 〈HB, 0.7, 0.1( )〉, 〈CO, 0.3, 0.4( )〉, 〈CD, 0.2, 0.6( )〉}
DI � {〈JA, 0.6, 0.2( )〉, 〈NA, 0.3, 0.5( )〉, 〈HB, 0.3, 0.5( )〉, 〈CO, 0.7, 0.2( )〉, 〈CD, 0.4, 0.5( )〉}
IBD � {〈JA, 0.3, 0.5( )〉, 〈NA, 0.3, 0.2( )〉, 〈HB, 0.5, 0.4( )〉, 〈CO, 0.2, 0.6( )〉, 〈CD, 0.7, 0.2( )〉}.

Safari � {〈JA, 0.3, 0.6( )〉, 〈NA, 0.7, 0.2( )〉, 〈HB, 0.4, 0.5( )〉, 〈CO, 0.3, 0.2( )〉, 〈CD, 0.2, 0.4( )〉}Najafi

� {〈JA, 0.3, 0.4( )〉, 〈NA, 0.2, 0.5( )〉, 〈HB, 0.4, 0.4( )〉, 〈CO, 0.3, 0.5( )〉, 〈CD, 0.7, 0.1( )〉}Ahmadi

� {〈JA, 0.8, 0.1( )〉, 〈NA, 0.4, 0.3( )〉, 〈HB, 0.5, 0.2( )〉, 〈CO, 0.6, 0.3( )〉, 〈CD, 0.3, 0.4( )〉}Rahmani

� {〈JA, 0.2, 0.3( )〉, 〈NA, 0.3, 0.5( )〉, 〈HB, 0.8, 0.2( )〉, 〈CO, 0.3, 0.4( )〉, 〈CD, 0.3, 0.5( )〉}.

Here, we calculate the vague distance between the disease and the
patients based on their symptoms.

d CH, Safari( ) � 2
5

sin
π

6
|0.7 − 0.3| + sin

π

6
|0.2 − 0.6|

1 + sin
π

6
|0.7 − 0.3| + sin

π

6
|0.2 − 0.6|

⎧⎪⎪⎨⎪⎪⎩
+

sin
π

6
|0.1 − 0.7| + sin

π

6
|0.4 − 0.2|

1 + sin
π

6
|0.1 − 0.7| + sin

π

6
|0.4 − 0.2|

+
sin

π

6
|0.2 − 0.4| + sin

π

6
|0.3 − 0.5|

1 + sin
π

6
|0.2 − 0.4| + sin

π

6
|0.3 − 0.5|

+
sin

π

6
|0.6 − 0.3| + sin

π

6
|0.3 − 0.2|

1 + sin
π

6
|0.6 − 0.3| + sin

π

6
|0.3 − 0.2|

+
sin

π

6
|0.2 − 0.2| + sin

π

6
|0.3 − 0.4|

1 + sin
π

6
|0.2 − 0.2| + sin

π

6
|0.3 − 0.4|

⎫⎪⎪⎬⎪⎪⎭
� 2
5
0.2875 + 0.2857 + 0.1666 + 0.1666 + 0.0476{ } � 0.3808.

d CH,Najafi( ) � 2
5

sin
π

6
|0.7 − 0.3| + sin

π

6
|0.2 − 0.4|

1 + sin
π

6
|0.7 − 0.3| + sin

π

6
|0.2 − 0.4|

⎧⎪⎪⎨⎪⎪⎩
+

sin
π

6
|0.1 − 0.2| + sin

π

6
|0.4 − 0.5|

1 + sin
π

6
|0.1 − 0.2| + sin

π

6
|0.4 − 0.5|

+
sin

π

6
|0.2 − 0.4| + sin

π

6
|0.3 − 0.4|

1 + sin
π

6
|0.2 − 0.4| + sin

π

6
|0.3 − 0.4|

+
sin

π

6
|0.6 − 0.3| + sin

π

6
|0.3 − 0.5|

1 + sin
π

6
|0.6 − 0.3| + sin

π

6
|0.3 − 0.5|

+
sin

π

6
|0.2 − 0.7| + sin

π

6
|0.3 − 0.1|

1 + sin
π

6
|0.2 − 0.7| + sin

π

6
|0.3 − 0.1|

⎫⎪⎪⎬⎪⎪⎭
� 2
5
0.2307 + 0.0909 + 0.1304 + 0.2 + 0.2592{ } � 0.3644.

d CH,Ahmadi( ) � 2
5

sin
π

6
|0.7 − 0.8| + sin

π

6
|0.2 − 0.1|

1 + sin
π

6
|0.7 − 0.8| + sin

π

6
|0.2 − 0.1|

⎧⎪⎪⎨⎪⎪⎩
+

sin
π

6
|0.1 − 0.4| + sin

π

6
|0.4 − 0.3|

1 + sin
π

6
|0.1 − 0.4| + sin

π

6
|0.4 − 0.3|

+
sin

π

6
|0.2 − 0.5| + sin

π

6
|0.3 − 0.2|

1 + sin
π

6
|0.2 − 0.5| + sin

π

6
|0.3 − 0.2|

+
sin

π

6
|0.6 − 0.6| + sin

π

6
|0.3 − 0.3|

1 + sin
π

6
|0.6 − 0.6| + sin

π

6
|0.3 − 0.3|

+
sin

π

6
|0.2 − 0.3| + sin

π

6
|0.3 − 0.4|

1 + sin
π

6
|0.2 − 0.3| + sin

π

6
|0.3 − 0.4|

⎫⎪⎪⎬⎪⎪⎭
� 2
5
0.0909 + 0.1666 + 0.1666 + 0.0909{ } � 0.206.

d CH, Rahmani( ) � 2
5

sin
π

6
|0.7 − 0.2| + sin

π

6
|0.2 − 0.3|

1 + sin
π

6
|0.7 − 0.2| + sin

π

6
|0.2 − 0.3|

⎧⎪⎪⎨⎪⎪⎩
+

sin
π

6
|0.1 − 0.3| + sin

π

6
|0.4 − 0.5|

1 + sin
π

6
|0.1 − 0.3| + sin

π

6
|0.4 − 0.5|

+
sin

π

6
|0.2 − 0.8| + sin

π

6
|0.3 − 0.2|

1 + sin
π

6
|0.2 − 0.8| + sin

π

6
|0.3 − 0.2|

+
sin

π

6
|0.6 − 0.3| + sin

π

6
|0.3 − 0.4|

1 + sin
π

6
|0.6 − 0.3| + sin

π

6
|0.3 − 0.4|

+
sin

π

6
|0.2 − 0.3| + sin

π

6
|0.3 − 0.5|

1 + sin
π

6
|0.2 − 0.3| + sin

π

6
|0.3 − 0.5|

⎫⎪⎪⎬⎪⎪⎭
� 2
5
0.2307 + 0.1304 + 0.2592 + 0.1666 + 0.1304{ } � 0.3669.

In the same way, we have

d MI, Safari( ) � 0.2239, d MI,Najafi( ) � 0.3255
d MI, Ahmadi( ) � 0.3215, d MI, Rahmani( ) � 0.2340,
d DY, Safari( ) � 0.3164, d DY,Najafi( ) � 0.300,
d DY,Ahmadi( ) � 0.3564, d DY, Rahmani( ) � 0.1454,
d DI, Safari( ) � 0.3452, d DI,Najafi( ) � 0.3427,
d DI, Ahmadi( ) � 0.2570, d DI, Rahmani( ) � 0.3056,
d IBD, Safari( ) � 0.3057, d IBD,Najafi( ) � 0.1601,
d IBD, Ahmadi( ) � 0.3928, d IBD, Rahmani( ) � 0.3401.

The distance matrix for the aforementioned values is as
follows:

Safari Najafi Ahmadi Rahmani
Cholecystitis
Migraine
Dyspepsia
Diverticulitis
Inflammatory bowl disease

0.3808 0.3644 0.206 0.3669
0.2239 0.3255 0.3215 0.3240
0.3164 0.300 0.3564 0.1454
0.3452 0.3427 0.2570 0.3056
0.3057 0.1601 0.3928 0.3401

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As the distance between the patient and the mentioned
diseases decreases, the probability of the patient suffering from
that disease increases, so we conclude that Safari suffers from
migraine, Najafi suffers from inflammatory bowel disease,
Ahmadi suffers from cholecystitis, and Rahmani suffers from
dyspepsia.

5 Conclusion

VGs are important in other sciences, including psychology, life
sciences, medicine, and social studies, and can help researchers
with optimization and save time and money. Likewise, VGs,
belonging to the FG family, have good abilities because they
face problems that cannot be explained by FGs. Hence, in this
study, we introduced the notion of VEG and presented some of its
properties. Moreover, we characterized VG ζ = (M, N), whereM is a
VS and N is a VR. Some operations have been defined, such as CP,
cross product, LP, and SP on VGs. Finally, an application of VG in
medical sciences has been presented. In our future work, we will
introduce some connectivity indices, such as the Wiener index,
harmonic index, Zagreb index, and Randic index in VGs, and
investigate some of their properties.
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