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Vague graphs (VGs), belonging to the fuzzy graph (FG) family, have good capabilities when facing problems that cannot be expressed by FGs. When an element membership is unclear, neutrality is a good option that can be well-supported by a VG. The previous definitions limitations in FG have led us to offer new definitions in VGs. Therefore, this study introduces the notion of vague edge graph (VEG) [image: image], in which V is a crisp vertex set and N is a vague relation (VR) on M, presenting some of its properties. Using λ-level graphs (LGs) and (λ, δ)-LGs, we characterize VG ζ = (M, N), where M is a vague set (VS) on V and N is a VR on V. Medical diagnosis is one of the most sensitive and important issues in the medical sciences. If it is not done properly, the patient will suffer irreparable damage. Therefore, an application of VG in the diagnosis of the disease is expressed.
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1 INTRODUCTION
After the introduction of fuzzy sets (FSs) [1], the fuzzy set theory is included as a large research field. Since then, the theory of FSs has become a vigorous area of research in different disciplines, including life sciences, management science, statistic, graph theory, and automata theory. Graphs from ancient times to the present day have played a very important role in various fields, including computer science and social networks, so that, with the help of the nodes and edges of a graph, the relationships between objects and elements in a social group can be easily introduced.
A fuzzy graph (FG) is one of the most widely used topics in fuzzy theory, which has been studied by many researchers. One of the advantages of FG is its flexibility in reducing time and costs in economic issues, which has been welcomed by all managers of institutions and companies. Gau and Buehrer [2] organized the FS theory by presenting the VS notion by changing the value of an element in a set with a subinterval of [0,1]. A VS is more initiative and helpful due to the existence of false membership degrees. Kauffman [3] introduced FGs using Zadeh’s fuzzy relation (FR) [4, 5]. However, Rosenfeld [6] presented another detailed definition, such as paths, cycles, and connectedness. Mordeson and Chang-Shyh [7] defined operations on FGs. References [8, 9] introduced certain types of product bipolar FGs and some operations and densities of m-polar FGs. Das et al. [10] presented generalized neutrosophic competition graphs. Bhattacharya [11] identified some remarks on FGs. Mordeson and Nair [12] studied several concepts of FGs. Mahapatra [13] introduced radio FGs and frequency assignment in radio stations. References [14–16] investigated new definitions of vague graphs, and references [17–20] defined several concepts on VGs and neutrosophic competition graphs. Shoaib et al. [21] studied complex Pythagorean FGs.
VG is a type of FG. VGs have a variety of applications in other sciences, including biology, psychology, management, and medicine. They are used to find the most effective person in an organization or institution. Likewise, a VG can focus on determining the uncertainty combined with the inconsistent and indeterminate information of any real-world problem in which FGs may not lead to adequate results. The nodes in this graph represent the individuals, and the edges show the extent of the relationship between employees. Furthermore, VGs play a very important role in the field of medical sciences and are used to diagnose diseases and reduce the costs of hospitals and medical clinics using the concept of domination and covering. Ramakrishna [22] recommended the VG notion and evaluated some of its features. Borzooei and Rashmanlou [23, 24] introduced new concepts in VGs. Sunitha and Vijayakumar [25] presented a complement of FGs. Kosari et al. and Kou et al. [26, 27] studied new results in VG structures. References [28–30] defined dominating and equitable dominating sets in VGs. Shi and Kosari [31] investigated the global dominating set in product-VGs. Shao et al. [32] introduced a bondage set and bondage number in intuitionistic FG. VG is used to illustrate real-world phenomena using vague models in a variety of fields, including technology, social networking, and biological networks. Therefore, in this study, we presented the notion of VEG and introduced some of its properties. Likewise, we characterized VG ζ = (M, N), where M is a VS and N is a VR. Some operations, including CP, LP, SP, and cross-product on VGs, have been defined. Finally, an application of VG in medical diagnosis has been given.
2 PRELIMINARIES
In this section, we introduce some basic concepts of VGs.
A graph is an ordered pair ζ* = (V, E), where V is the set of nodes of ζ* and [image: image] is the set of edges of ζ*. Two nodes p and q in a graph [image: image] are said to be neighbors in [image: image], if {p, q} is in an edge of [image: image].
Definition 2.1. A fuzzy graph (FG) is a pair ς = (τ, ν) with a set X [12]; then τ is a fuzzy set (FS) in X, and ν is a fuzzy relation (FR) in X × X, so that
[image: image]
for all pq ∈ X × X.
Definition 2.2. A VS is a pair (tM, fM) on set X [2], where tM and fM are real-valued functions, which can be presented on V → [0, 1] so that tM(p) + fM(p) ≤ 1 and ∀p ∈ X.
Definition 2.3. A VG is defined as a pair ζ = (M, N) [22],where M = (tM, fM) is a VS on V and N = (tN, fN) is a VS on E ⊆ V × V so that for each pq ∈ E, tN (pq) ≤ tM(p) ∧ tM(q) and fN (pq) ≥ fN(p) ∨ fN(q).
Definition 2.4. A VEG on a non-empty set V is an ordered pair of the form [image: image], where V is a crisp vertex set (CVS) and N is a VR on V so that tN (pq) ≤ min{tM(p), tM(q)}, fN (pq) ≥ max{fM(p), fM(q)}, and 0 ≤ tN (pq) + fN (pq) ≤ 1, for all pq ∈ E.
We consider VEGs with CVS, that is, VGs [image: image], that is, tM(p) = 1, fM(p) = 0, ∀p ∈ V, and edges with true membership and false membership degrees in [0,1].
Example 2.5. Consider a simple graph (SG) ζ* = (V, E) [24]so that V = {p, q, s} and E = {pq, qs, ps}. Let N be a VR on V described by N = {(pq, 0.4, 0.2), (qs, 0.5, 0.2), (ps, 0.3, 0.2)}. Clearly, [image: image] is a VEG with CVS and VS of edges (see Figure 1).
[image: Figure 1]FIGURE 1 | Vague edge graph [image: image].
3 VAGUE GRAPHS BY LEVEL GRAPHS
Definition 3.1. Suppose that M = (tm, fM) is a VS on V. Then, the set M(λ,δ) = {p ∈ V|tM(p) ≥ λ, fM(p) ≤ δ}, where (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1 is named the (λ, δ)-level set of M. Let N = (tN, fN) be a VR on V. Then, the set N(λ,δ) = {pq ∈ V × V|tN (pq) ≥ λ, fM(pq) ≤ δ}, where (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1 is called (λ, δ)-LG. In the case of λ = δ, where λ ≤ 1, we write LG by ζα instead of ζ(λ,δ). Note that
[image: image]
Remark 3.2. The level graph ζ(λ,δ) = (M(λ,δ), N(λ,δ)) is a subgraph of ζ* = (V, E).
Example 3.3. Consider an SG ζ* = (V, E) so that V = {p, q, r, s} and E = {pq, qr, rs, ps, pr, qs}. From Figure 2, we get that ζ = (M, N) is a VG.Take λ = 0.5. We have M0.5 = {s, r} and N0.5 = {rs}. Obviously, the 0.5-LG ζ0.5 is a subgraph of ζ*.Now, we take λ = 0.2 and δ = 0.3. By Definition 3.1, we have M(0.2,0.3) = {p, r, s} and N(0.2,0.3) = {ps}. Clearly, (0.2,0.3)-LG ζ(0.2,0.3) is a subgraph of ζ*.
[image: Figure 2]FIGURE 2 | Vague graph ζ.
Theorem 3.4. ζ = (M, N) is a VG if ζ(λ,δ) is a crisp graph for each pair (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1.Proof. Suppose ζ is a VG. For each (λ, δ) ∈ [0, 1] × [0, 1], we take pq ∈ N(λ,δ). Then, tN (pq) ≥ λ and fN (pq) ≤ δ. Since ζ is a VG, it follows that
[image: image]
It shows that λ ≤ tM(p), λ ≤ tM(q), δ ≥ fM(p), and δ ≥ fM(q); that is, p, q ∈ M(λ,δ). Hence, ζ(λ,δ) is a graph for each (λ, δ) ∈ [0, 1] × [0, 1]. Conversely, suppose ζ(λ,δ) is a graph for all (λ, δ) ∈ [0, 1] × [0, 1]. For each [image: image], let fN (pq) = δ and tN (pq) = λ. Then, pq ∈ N(λ,δ). Since ζ(λ,δ) is a graph, we have p, q ∈ M(λ,δ), so tM(p) ≥ λ, tM(q) ≥ λ, fM(p) ≤ δ, and fM(q) ≤ δ. Therefore,
[image: image]
that is, ζ = (M, N) is a VG. Definition 3.5. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs of [image: image] and [image: image], respectively. The Cartesian product (CP) ζ1 × ζ2 is the pair (M, N) of VSs defined on the CP [image: image] so that
[image: image]
Theorem 3.6. ζ = (M, N) is the CP of ζ1 and ζ2 if and only if each pair (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1, (λ, δ)-LG ζ(λ,δ) is the CP of [image: image] and [image: image].Proof. Assume ζ = (M, N) is the CP of ζ1 and ζ2. For each (λ, δ) ∈ [0, 1] × [0, 1], if (p, q) ∈ M(λ,δ), then
[image: image]
and
[image: image]
Hence, [image: image] and [image: image]; that is [image: image]. Therefore, [image: image].Now if [image: image], then [image: image] and [image: image]. It follows [image: image] and [image: image]. Since (M, N) is the CP of ζ1 and ζ2, tM(p, q) ≥ δ and fM(p, q) ≤ λ; that is, (p, q) ∈ M(λ,δ). So, [image: image]. Thus, [image: image]. Now, we prove N(λ,δ) = E, where E is the edge set of the CP of [image: image] and ∀(λ, δ) ∈ [0, 1] × [0, 1]. Suppose (p1, p2) (q1, q2) ∈ N(λ,δ). Then, [image: image] and [image: image]. Since (M, N) is the CP of ζ1 and ζ2, one of the following cases holds:(i) p1 = q1 and p2q2 ∈ E2.(ii) p2 = q2 and p1q1 ∈ E1.For case (i), we have
[image: image]
So, [image: image], [image: image], [image: image], and [image: image]. It follows that [image: image] and [image: image]; that is, (p1, p2) (q1, q2) ∈ E.Similarly, for case (ii), we get (p1, p2) (q1, q2) ∈ E. Thus, N(λ,δ) ⊆ E. For each (p, p2) (p, q2) ∈ E, [image: image], [image: image], [image: image], and [image: image]. Since (M, N) is the CP of ζ1 and ζ2, we have
[image: image]
Therefore, (p, p2) (p, q2) ∈ N(λ,δ).In the same way, for each (p1, r) (q1, r) ∈ E, we get (p1, r) (q1, r) ∈ N(λ,δ). So, E ⊆ N(λ,δ) and N(λ,δ) = E.The converse part is obvious.Definition 3.7. Let ζ1 and ζ2 be two VGs of [image: image] and [image: image], respectively. The composition (Co) ζ1 [ζ2] is the pair (M, N) of VSs defined on the Co [image: image] so that
[image: image]
Theorem 3.8. ζ = (M, N) is the Co of VGs ζ1 and ζ2 if, for every (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1, (λ, δ)-LG ζ(λ,δ) is the Co of [image: image] and [image: image].Proof. Let ζ = (M, N) be the Co of ζ1 and ζ2. By the definition of ζ1 [ζ2] and the same argument as in the proof of Theorem 3.6, we have [image: image]. Now, we prove N(λ,δ) = E, where E is the edge set of the co [image: image], for all (λ, δ) ∈ [0, 1] × [0, 1]. Assume (p1, p2) (q1, q2) ∈ N(λ,δ). Then, tN ((p1, p2) (q1, q2)) ≥ δ and fN ((p1, p2) (q1, q2)) ≤ λ. Since ζ = (M, N) is the Co ζ[ζ2], one of the following conditions hold:(i) p1 = q1 and p2q2 ∈ E2.(ii) p2 = q2 and p1q1 ∈ E1.(iii) p2 ≠ q2 and p1q1 ∈ E1.For cases (i) and (ii), the same as cases (i) and (ii) in the proof of Theorem 3.6, we get (p1, p2) (q1, q2) ∈ E. For case (iii), we have
[image: image]
So, [image: image], [image: image], [image: image], [image: image], [image: image], and [image: image]. It follows that [image: image] and [image: image]; that is, (p1, p2) (q1, q2) ∈ E. Thus, N(λ,δ) ⊆ E. For each (p1, p2) (q1, q2) ∈ E, [image: image], [image: image], [image: image], and [image: image]. Since ζ = (M, N) is the Co of ζ1 [ζ2], we get
[image: image]
So, (p, p2) (p, q2) ∈ N(λ,δ). Similarly, for each (p1, r) (q1, r) ∈ E, we get (p, p2) (p, q2) ∈ N(λ,δ). For each (p1, p2) (q1, q2) ∈ E, where p2 ≠ q2 and p1 ≠ q1, [image: image], [image: image], [image: image], [image: image], [image: image], and [image: image]. Since ζ = (M, N) is the Co of [image: image], we have
[image: image]
and then (p1, p2) (q1, q2) ∈ N(λ,δ). Hence, E ⊆ N(λ,δ). Thus, E = N(λ,δ).Conversely, suppose (M(λ,δ), N(λ,δ)), where (λ, δ) ∈ [0, 1] × [0, 1], is the Co of [image: image] and [image: image]. In the same way, by the same arguments as in the proof of Theorem 3.6, we get
[image: image]
∀p2, q2 ∈ V2 (p2 ≠ q2) and ∀ p1q1 ∈ E1.This completes the proof.Definition 3.9. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs. The union ζ1 ∪ ζ2 is defined as the pair (M, N) of VSs described on the union of graphs [image: image] and [image: image] so that
[image: image]
Theorem 3.10. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs and V1 ∩ V2 =∅. Then, ζ = (M, N) is the union of ζ1 and ζ2 if each (λ, δ)-LG ζ(λ,δ) is the union of [image: image] and [image: image].Proof. Let ζ = (M, N) be the union of VGs ζ1 and ζ2. We show that [image: image], for each (λ, δ) ∈ [0, 1] × [0, 1]. Suppose p ∈ M(λ,δ). Then, p ∈ V1 − V2 or p ∈ V2 − V1. If p ∈ V1 − V2, then [image: image] and [image: image], which shows [image: image]. Similarly, p ∈ V2 − V1 shows [image: image]. Hence, [image: image]. Therefore, [image: image].Now, let [image: image]. Then, [image: image], [image: image], or [image: image], [image: image]. For the first case, we get [image: image] and [image: image], which shows p ∈ M(λ,δ). For the second case, we get [image: image] and [image: image]. Hence, p ∈ M(λ,δ). Thus, [image: image].To prove [image: image], for all (λ, δ) ∈ [0, 1] × [0, 1], suppose pq ∈ N(λ,δ). Then, pq ∈ E1 − E2 or pq ∈ E2 − E1. For pq ∈ E1 − E2, we get [image: image] and [image: image]. Hence, [image: image]. Similarly, pq ∈ E2 − E1 gives [image: image]. So, [image: image]. If [image: image], then [image: image] or [image: image]. For the first case, [image: image] and [image: image]. Therefore, pq ∈ N(λ,δ). In the second case, we get pq ∈ N(λ,δ). Thus, [image: image]. The converse part is clear.Definition 3.11. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs. The join ζ1 + ζ2 is the pair (A, B) of VSs defined on [image: image] so that
[image: image]
Theorem 3.12. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs and V1 ∩ V2 =∅. Then, ζ = (M, N) is the join of ζ1 and ζ2 if each (λ, δ)-LG ζ(λ,δ) is the of [image: image] and [image: image].Proof. Let ζ = (M, N) be the join of VGs ζ1 and ζ2. Then, by the definition and the proof of Theorem 3.10, [image: image], for all (λ, δ) ∈ [0, 1] × [0, 1]. We prove that [image: image], for all (λ, δ) ∈ [0, 1] × [0, 1], where [image: image] is the set of all edges joining the nodes of [image: image] and [image: image].From the proof of Theorem 3.10, it follows that [image: image]. If [image: image], then [image: image], [image: image], [image: image], and [image: image]. So,
[image: image]
and
[image: image]
It follows that pq ∈ N(λ,δ). Thus, [image: image]. For each pq ∈ N(λ,δ), if pq ∈ E1 ∪ E2, then [image: image], by the proof of Theorem 3.10. If p ∈ V1 and q ∈ V2, then
[image: image]
Moreover,
[image: image]
So, [image: image] and [image: image]. Thus, [image: image]. Hence, [image: image]. Conversely, suppose every LG ζ(λ,δ) is the join of [image: image] and [image: image]. From the proof of Theorem 3.10, we have
[image: image]
Assume p ∈ V1, q ∈ V2, [image: image], [image: image], tN (pq) = t, and fN (pq) = w. Then, [image: image], [image: image], and pq ∈ N(w,t). It shows pq ∈ N(λ,δ), [image: image], and [image: image]. Hence, tN (pq) ≥ r, fN (pq) ≤ λ, [image: image], [image: image], [image: image], and [image: image]. Thus,
[image: image]
So, [image: image], and[image: image], as described.Definition 3.13. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs. The cross product ζ1∗ζ2 is the pair (M, N) of VSs defined on the cross product [image: image] so that
[image: image]
Theorem 3.14. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs. Then, ζ = (M, N) is the cross product of ζ1 and ζ2 if each LG ζ(λ,δ) is the cross product of [image: image] and [image: image].Proof. Let ζ = (M, N) be the cross product of ζ1 and ζ2. Then, by the definition of the CP and the proof of Theorem 3.6, we have [image: image] and ∀(λ, δ) ∈ [0, 1] × [0, 1]. We prove that
[image: image]
∀(λ, δ) ∈ [0, 1] × [0, 1]. If (p1, p2) (q1, q2) ∈ N(λ,δ), then
[image: image]
Hence, [image: image], [image: image], [image: image], and [image: image]. Thus, [image: image] and [image: image]. Now, if [image: image] and [image: image], then [image: image], [image: image], [image: image], and [image: image]. So, we have
[image: image]
because ζ = (M, N) is the cross product of ζ1∗ζ2. Therefore, (p1, p2) (q1, q2) ∈ N(λ,δ). The converse part is clear. Definition 3.15. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs. The lexicographic product (LP) ζ1•ζ2 is the pair (M, N) of VSs defined on the LP [image: image] so that
[image: image]
Theorem 3.16. Suppose ζ1 = (M1, N1) and ζ2 = (M2, N2) are two VGs. Then, ζ = (M, N) is LP of ζ1 and ζ2 if [image: image], ∀(λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1.Proof. Let ζ = (M, N) = G1•G2. According to the definition of CP ζ1 × ζ2 and the proof of Theorem 3.6, we get [image: image] and ∀(λ, δ) ∈ [0, 1] × [0, 1]. We prove that [image: image], ∀(λ, δ) ∈ [0, 1] × [0, 1], where [image: image] is the subset of the edge set of the direct product (DP) [image: image], and [image: image] is the edge set of the cross product [image: image]. For each (p1, p2) (q1, q2) ∈ N(λ,δ), p1 = q1, p2q2 ∈ E2, or p1q1 ∈ E1, p2q2 ∈ E2. If p1 = q1 and p2q2 ∈ E2, then (p1, p2) (q1, q2) ∈ E(λ,δ), by the definition of the CP and the proof of Theorem 3.6. If p1q1 ∈ E1 and p2q2 ∈ E2, then [image: image], by the definition of cross product and the proof of Theorem 3.14. Hence, [image: image]. From the definition of CP and the proof of Theorem 3.6, we get E(λ,δ) ⊆ N(λ,δ). In addition, from definition of cross product and proof of Theorem 3.14, we get [image: image]. Thus, [image: image].Conversely, assume [image: image] and ∀(λ, δ) ∈ [0, 1] × [0, 1]. It is clear that [image: image] has the same vertex set as the CP [image: image]. Now, by the proof of Theorem 3.6, we get
[image: image]
∀(p1, p2) ∈ V1 × V2. For p ∈ V1 and p2q2 ∈ E2, let [image: image], [image: image], tN ((p, p2) (p, q2)) = δ1, and fN ((p, p2) (p, q2)) = λ1. Then, according to the definitions of CP and LP, we have
[image: image]
By the same reasoning as proof of Theorem 3.6, we get
[image: image]
Now, assume that tN ((p1, p2) (q1, q2)) = δ1, fN ((p1, p2) (q1, q2)) = λ1, [image: image], and [image: image], for p1q1 ∈ E1 and p2q2 ∈ E2. Then, according to the definitions of the cross product and LP, we derive
[image: image]
Similar to the proof of Theorem 3.14, we have
[image: image]
which completes the proof.
Lemma 3.17. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs so that V1 = V2, M1 = M2, and E1 ∩ E2 =∅. Then, ζ = (M, N) is the union of ζ1 and ζ2 if ζ(λ,δ) is the union of [image: image] and [image: image], ∀(λ, δ) ∈ [0, 1] × [0, 1].Proof. Assume ζ = (M, N) is the union of VGs ζ1 and ζ2. Then, according to the definition of union and as V1 = V2 and M1 = M2, we get M = M1 = M2. Then, [image: image]. Now, we prove that [image: image], for all (λ, δ) ∈ [0, 1] × [0, 1]. For each [image: image], we get [image: image] and [image: image]. So, pq ∈ N(λ,δ). Thus, [image: image]. In the same way, we get [image: image]. Then, [image: image]. For each pq ∈ N(λ,δ), pq ∈ E1, or pq ∈ E2. If pq ∈ E1, then [image: image]. Thus, [image: image]. If pq ∈ E2, then we get [image: image]. Therefore, [image: image].Conversely, assume (λ, δ)-LG ζ(λ,δ) is the union of [image: image] and [image: image]. Let tM(p) = δ, fM(p) = λ, [image: image], and [image: image], for some p ∈ V1 = V2. Then, p ∈ M(λ,δ) and [image: image]. So, [image: image] and p ∈ M(λ,δ) because [image: image] and [image: image]. Thus, [image: image], [image: image], tM(p) ≥ t, and fM(p) ≤ w. Hence, [image: image], [image: image], [image: image], and [image: image]. Therefore, [image: image] and [image: image] because M1 = M2, V1 = V2, and M = M1 = M1 ∪ M2. In the same way, we derive
[image: image]
Definition 3.18. Assume ζ1 = (M1, N1) and ζ2 = (M2, N2) are two vague pair of graphs [image: image] and [image: image], respectively. The strong product (SP) ζ1 ⊠ ζ2 is the pair (M, N) of VSs defined on the SP [image: image] so that
[image: image]
Theorem 3.19. Let ζ1 = (M1, N1) and ζ2 = (M2, N2) be two VGs. Then, ζ = (M, N) is the SP of ζ1 and ζ2 if ζ(λ,δ), where (λ, δ) ∈ [0, 1] × [0, 1] and λ + δ ≤ 1 is the SP of [image: image] and [image: image].Proof. By definitions of SP, cross product, and CP, we get ζ1 ⊠ ζ2 = (ζ1 × ζ2) ∪ (ζ1∗ζ2) and [image: image], and ∀(λ, δ) ∈ [0, 1] × [0, 1]. By Theorems 3.14 and 3.6, and Lemma 3.17, we have
[image: image]
4 APPLICATION OF VAGUE GRAPH IN MEDICAL SCIENCES
In this section, we introduce a distance measure on a VS and use it to diagnose a disease for a group of people who suffer from certain symptoms.
Definition 4.1. Suppose that Z = {q1, q2, … , qn} is the universe of discourse. Let M = {(qi, tM(qi), fM(qi): qi ∈ Z} and N = {(qi, tN (qi), fN (qi): qi ∈ Z} be two VSs. The new distance measure is defined as
[image: image]
Clearly, D (M, N) has all four conditions of a distance measure.
Assume {E1, E2, … , En} is a set of diseases and {T1, T2, … , Tn} is a set of n number of patients. Suppose that [image: image] is the symptoms of the diseases Ei, and [image: image] is the symptoms of patient Tj given in VSs. So, we have
[image: image]
where i = 1, 2, … , m and j = 1, 2, … , n. The distance between each pair of diseases and patients can be expressed as the following matrix:
[image: image]
Note that if the distance between the two VSs is less, their similarity will be greater. This is true for a patient and the type of illness they have.
Consider a set of symptoms R, a set of diagnoses E, and a set of patients T. Assume that T = {Safari, Najafi, Ahmadi, Rahmani}, R = {Jaundice, Nausea, Heart Burn, Constipation, Chronic Diarrhea}, and E = {Cholecystitis, Migraine, Dyspepsia, Diverticulitis, Inflammatory bowel disease}. We intend to make the right diagnosis for each patient. Tables 1 and 2 show the relation between symptoms and diseases, as well as patients and symptoms, respectively.
TABLE 1 | Symptoms–diseases VR.
[image: Table 1]TABLE 2 | Patient–symptoms VR.
[image: Table 2]Now, we show the patients and symptoms as VSs as follows:
[image: image]
[image: image]
Here, we calculate the vague distance between the disease and the patients based on their symptoms.
[image: image]
[image: image]
[image: image]
[image: image]
In the same way, we have
[image: image]
The distance matrix for the aforementioned values is as follows:
[image: image]
As the distance between the patient and the mentioned diseases decreases, the probability of the patient suffering from that disease increases, so we conclude that Safari suffers from migraine, Najafi suffers from inflammatory bowel disease, Ahmadi suffers from cholecystitis, and Rahmani suffers from dyspepsia.
5 CONCLUSION
VGs are important in other sciences, including psychology, life sciences, medicine, and social studies, and can help researchers with optimization and save time and money. Likewise, VGs, belonging to the FG family, have good abilities because they face problems that cannot be explained by FGs. Hence, in this study, we introduced the notion of VEG and presented some of its properties. Moreover, we characterized VG ζ = (M, N), where M is a VS and N is a VR. Some operations have been defined, such as CP, cross product, LP, and SP on VGs. Finally, an application of VG in medical sciences has been presented. In our future work, we will introduce some connectivity indices, such as the Wiener index, harmonic index, Zagreb index, and Randic index in VGs, and investigate some of their properties.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
All authors have made a substantial, direct, and intellectual contribution to the work and approved it for submission.
FUNDING
This work was supported by the National Key R and D Program of China (Grant 2019YFA0706 338402) and the National Natural Science Foundation of China under grants 62172302, 62072129, and 61876047.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 1. Zadeh LA. Fuzzy sets. Fuzzy sets, Inf Control (1965) 8:338–53. doi:10.1016/s0019-9958(65)90241-x
 2. Gau WL, Buehrer DJ. Vague sets. IEEE Trans Syst Man, Cybernetics (1993) 23(2):610–4. doi:10.1109/21.229476
 3. Kauffman A. Introduction a la theories des sous-emsembles 503 ous. Masson Cie (1973) 1:607–18. 
 4. Zadeh LA. Similarity relations and fuzzy orderings. Inf Sci (1971) 3:177–200. doi:10.1016/s0020-0255(71)80005-1
 5. Zadeh LA. Is there a need for fuzzy logical. Inf Sci (2008) 178:2751–79. doi:10.1016/j.ins.2008.02.012
 6. Rosenfeld A. In: LA Zadeh, KS Fu, M Shimura, editors. Fuzzy graphs, fuzzy sets and their applications. New York, NY, USA: Academic Press (1975). p. 77–95.
 7. Mordeson JN, Chang-Shyh P. Operations on fuzzy graphs. Inf Sci (1994) 79:159–70. doi:10.1016/0020-0255(94)90116-3
 8. Ghorai G, Pal M. Certain types of product bipolar fuzzy graphs. Int J Appl Comput Math (2017) 3(2):605–19. doi:10.1007/s40819-015-0112-0
 9. Ghorai G, Pal M. On some operations and density of m-polar fuzzy graphs. Pac Sci Rev A: Nat Sci Eng (2015) 17(1):14–22. doi:10.1016/j.psra.2015.12.001
 10. Das K, Samanta S, De K. Generalized neutrosophic competition graphs. Neutrosophic Sets Syst (2020) 31:156–71. 
 11. Bhattacharya P. Some remarks on fuzzy graphs. Pattern Recognition Lett (1987) 6(5):297–302. doi:10.1016/0167-8655(87)90012-2
 12. Mordeson JN, Nair PS. Fuzzy graphs and fuzzy hypergraphs. 2nd ed. Physica, Heidelberg, Germany: Springer (2001). 
 13. Mahapatra R, Samanta S, Allahviranloo T, Pal M. Radio fuzzy graphs and assignment of frequency in radio stations. Comput Appl Math (2019) 38(3):117–20. doi:10.1007/s40314-019-0888-3
 14. Akram M, Gani N, Borumand Saeid A. Vague hyper graphs. J Int Fuzzy Syst (2014) 26:647–53. doi:10.3233/ifs-120756
 15. Akram M, Samanta S, Pal M. Cayley vague graphs. J Fuzzy Math (2017) 25(2):1–14. 
 16. Akram M, Feng F, Sarwar S, Jun YB. Certain types of vague graphs. U.P.B Sci Bull Ser A (2014) 76(1):141–54. 
 17. Rashmanlou H, Samanta S, Pal M, Borzooei RA. A study on vague graphs. SpringerPlus (2016) 5(1):1234–12. doi:10.1186/s40064-016-2892-z
 18. Samanta S, Pal M, Rashmanlou H, Borzooei RA. Vague graphs and strengths. J Intell Fuzzy Syst (2016) 30(6):3675–80. doi:10.3233/ifs-162113
 19. Samanta S, Pal M, Mahapatra R, Das K, Singh Bhadoria R. A study on semi-directed graphs for social media networks. Int J Comput Intelligence Syst (2021) 14(1):1034–41. doi:10.2991/ijcis.d.210301.001
 20. Samanta S, Kumar Dubey V, Sarkar B. Measure of influences in social networks. Appl Soft Comput (2021) 99:106858. doi:10.1016/j.asoc.2020.106858
 21. Shoaib M, Kosari S, Rashmanlou H, Aslam Malik M, Rao Y Talebi Y, et al. Notion of complex pythagorean fuzzy graph with properties and application. J Multiple-Valued Logic Soft Comput (2020) 34:553–86. 
 22. Ramakrishna N. Vague graphs. Int J Cogn Comput (2009) 7:51–8. 
 23. Borzooei RA, Rashmanlou H. Domination in vague graphs and its applications. J Intell Fuzzy Syst (2015) 29:1933–40. doi:10.3233/IFS-151671
 24. Borzooei RA, Rashmanlou H. Degree of vertices in vague graphs. J Appl Math Inform (2015) 33(5):545–57. doi:10.14317/jami.2015.545
 25. Sunitha MS, Vijayakumar A. Complement of a fuzzy graph. Indian J Pure Appl Math (2002) 33:1451–64. 
 26. Kosari S, Rao Y, Jiang H, Liu X, Wu P, Shao Z. Vague graph Structure with Application in medical diagnosis. Symmetry (2020) 12(10):1582. doi:10.3390/sym12101582
 27. Kou Z, Kosari S, Akhoundi M. A novel description on vague graph with application in transportation systems. J Math (2021) 2021:4800499. doi:10.1155/2021/4800499
 28. Rao Y, Kosari S, Shao Z. Certain Properties of vague Graphs with a novel application. Mathematics (2020) 8(10):1647. doi:10.3390/math8101647
 29. Rao Y, Kosari S, Shao Z, Cai R, Xinyue L. A Study on Domination in vague incidence graph and its application in medical sciences. Symmetry (2020) 12(11):1885. doi:10.3390/sym12111885
 30. Rao Y, Kosari S, Shao Z, Qiang X, Akhoundi M, Zhang X. Equitable domination in vague graphs with application in medical sciences. Front Phys (2021) 9:635642. doi:10.3389/fphy.2021.635642
 31. Shi X, Kosari S. Certain properties of domination in product vague graphs with an application in medicine. Front Phys (2021) 9:680634. doi:10.3389/fphy.2021.680634
 32. Shao Z, Kosari S, Rashmanlou H, Shoaib M. New concepts in intuitionistic fuzzy graph with application in water supplier systems. Mathematics (2020) 8(8):1241. doi:10.3390/math8081241
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Shi, Jiang, Khan and Akhoundi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










































































































































































































































































































































































Contents

		Cover

		New concepts on level graphs of vague graphs with application in medicine		1 Introduction

		2 Preliminaries

		3 Vague graphs by level graphs

		4 Application of vague graph in medical sciences

		5 Conclusion

		Data availability statement

		Author contributions

		Funding

		Publisher’s note

		References















































































































































































