
Scaling laws of out-of-time-order
correlators in a non-Hermitian
kicked rotor model

Wen-Lei Zhao* and Ru-Ru Wang

School of Science, Jiangxi University of Science and Technology, Ganzhou, China

We investigate the dynamics of the out-of-time-order correlators (OTOCs) via a
non-Hermitian extension of the quantum kicked rotor model, where the kicking
potential satisfies PT -symmetry. The spontaneous PT -symmetry breaking
emerges when the strength of the imaginary part of the kicking potential
exceeds a threshold value. We find, both analytically and numerically, that in
the broken phase of PT symmetry, the OTOCs rapidly saturate with time
evolution. Interestingly, the late-time saturation value scales as a pow-law in
the system size. The mechanism of such scaling law results from the interplay
between the effects of the nonlocal operator in OTOCs and the time reversal
induced by non-Hermitian-driven potential.
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1 Introduction

In recent years, the out-of-time-order correlators (OTOCs) C = −〈[A(t),B]2〉 have
attracted extensive attention in diverse fields of physics, ranging from quantum chaos [1,2]
and quantum information [3] to black hole physics [4]. A fundamental concept in these
fields is information scrambling, namely, the spread of information encoding in local degrees
of freedoms over the entire system to be inaccessible by local measurement [5–7]. This
progress is quantified by the growth of local operators with time evolution, due to which it
will be no longer commutable with other operators, separated by a long distance [8,9]. The
operator growth is dominated by the classical chaos in such a way that the rate of exponential
growth of OTOCs is proportional to the classical Lyapunov exponent [10,11]. Nowadays, the
OTOCs are being widely used to diagnose the many-body localization [12,13], quantum
entanglement [14–16], quantum thermalization [17–19], and many-body chaos [20–22],
hence promoting intensive investigations in the field of many-body physics [23,24].
Interestingly, experimental advances have observed both the quantum information
scrambling and quantum phase transition by measuring the OTOCs in the system of the
quantum circuit [25,26] and a nuclear magnetic resonance quantum simulator [27].

For PT -symmetric systems, the dynamics of OTOCs signals the Yang–Lee edge
singularity [28] of phase transition and shows the quantized response to external driven
potential [29]. It is now widely accepted that the non-Hermiticity is a fundamental
modification to conventional quantum mechanics [30–36] since many systems, such as
optics propagation in the “gain-or-loss” medium [37–39], the electronics transport in the
dissipative circuit [40–43], and cold atoms in the tailored magneto-optical trap [44–48], are
described by a non-Hermitian theory. The extension of Floquet systems to non-Hermitian
regimes uncovers rich understandings of physics [49–53]. For example, the scaling of the
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spontaneous PT -symmetry breaking and its relation with classical
chaos are revealed in a non-Hermitian chaotic system [54]. The
ballistic energy diffusion [55] and quantized acceleration of
momentum current [56] are reported in a PT -symmetric kicked
rotor (PTKR) model. The quantum kicked rotor (QKR) and its
variants provide ideal platforms for investigating fundamental
problems, such as the quantum transport in momentum-space
lattice [57,58], the quantum-to-classical transition of chaotic
systems [59,60], and the quantum thermalization in many-body
systems [61]. The operator growth and chaotic information
scrambling in different variations of QKR are still open issues
and require urgent investigations.

In this context, we investigate, both analytically and numerically,
the dynamics of OTOCs in a PTKRmodel, with focus on the broken
phase of PT symmetry. We observed that the OTOCs rapidly
saturate with time evolution. Interestingly, the saturation value is
the power-law function of the dimension of the system, which
demonstrates a kind of scaling-law of the OTOCs with the
system size. The mechanism of such scaling law results from two
aspects. One is that the action of the non-local operators
constructing the OTOCs on the state leads to a power-law
decayed distribution in momentum space. The other is that the
non-Hermitian kicking potential induces the perfect time reversal of
thequantum state in momentum space. Using the power-law
decayed quantum state, we analytically obtain the scaling of
OTOCs with the size of momentum space, for which the OTOCs
is the power-law function of the dimension of the system. This
demonstrates that the OTOCs unboundedly increase with the
system size, revealing a kind of fast scrambling [62,63]. Our
result sheds light on the Floquet engineering of the fast
scramblers in the non-Hermitian map systems.

The paper is organized as follows. In Section 2, we show our
model and the scaling-law of OTOCs. In Section 3, we present the
theoretical analysis of the scaling law. Section 4 contains the
conclusion and discussion.

2 Model and results

The Hamiltonian of a PTKR reads

H � p2

2
+ VK θ( )∑∞

n�0
δ t − tn( ), (1)

with the kicking potential

VK θ( ) � K cos θ( ) + iλ sin θ( )[ ], (2)
which satisfies the PT symmetry VK(θ) � VK* (−θ) [55]. Here,
p = −iZeffz/zθ is the angular momentum operator and θ is the
angle coordinate, which obey the communication relation [θ, p] =
iZeff with Zeff, the effective Planck constant. The parameters K and λ

control the strength of the real and imaginary part of the kicking
potential, respectively. The time tn is integer, i.e., tn = 1, 2 . . . ,
indicating the kicking number. All variables are properly scaled and
thus in dimensionless units. The eigenequation of the angular
momentum operator is p|ϕn〉 = pn|ϕn〉 with eigenstate 〈θ|ϕn〉 �
einθ/

���
2π

√
and eigenvalue pn = nZeff. On the basis of |ϕn〉, an arbitrary

quantum state can be expanded as |ψ〉 � ∑∞
n�−∞ψ(pn)|ϕn〉.

The evolution of the quantum state from tj to tj+1 is given by
|ψ(tj+1)〉 = U|ψ(tj)〉, where the Floquet operator U takes the form

U � exp −i p2

2Zeff
( )exp −i VK θ( )

Zeff
[ ]. (3)

In numerical simulations, one period evolution splits into two steps,
namely, the kicking evolution UK(θ) � exp(−iVK(θ)/Zeff ) and the
free evolution Uf(pn) � exp(−ip2

n/2Zeff ) [57–59]. At first, we
construct the kicking evolution in angle coordinate space,
ψ′(θl) = UK(θl)ψ(θl, tj) with discrete grids θl = −π + 2πl/N (0 ≤
l < N) and N = 2m. Then, the fast Fourier transform is used to realize
the transformation of the state |ψ′〉 to momentum space yielding the
state ψ′(pn) with −NZeff/2 ≤ pn ≤ (N − 1)Zeff/2. Finally, we take the
free evolution, i.e., ψ(pn, tj+1) = Uf(pn)ψ′(pn). By repeating the same
procedure, one can get the state |ψ(tn)〉 at an arbitrary time. In the
experiment, the PTKR model can be realized by an optical platform
with a Fabry–Perot resonator consisting of two plane mirrors, one of
which is equipped with a mixed-loss phase grating to mimic the
periodic kicking sequence of PT-symmetric potential [55]. It is
found that in the broken phase of PT-symmetry, the light
propagation in the Fabry–Perot resonator demonstrates the
unidirectional transport in frequency domain.

The eigenequation of the Floquet operator has the expression
U|φε〉 = e−iε|φε〉, where the eigenvalue ε is named as quasienergy.
Intrinsically, the quasienergy of the PTKRmodel is complex, i.e., ε =
εr + iεi, when the value λ exceeds a threshold value, i.e., λ > λc [54,55],
which is a signature of the spontaneous PT -symmetry breaking of
Floquet systems. Based on the relation |ψ(tn)〉 � ∑εCεe−iεrtn eεi tn |εε〉,
the norm N � 〈ψ(tn)|ψ(tn)〉 exponentially increases with time for
positive εi. We numerically investigate the time evolution of N for
different λ. Figure 1A shows that for very small λ (e.g., λ = 10–4), the
norm remains at unityN � 1 with the time evolution, which implies
that εi = 0 and the system is in the unbroken phase of PT symmetry.
Interestingly, for sufficiently large λ (e.g., λ = 0.002), the norm
exponentially increases with time, i.e., N � eγt, signaling the
occurrence of the spontaneous PT symmetry breaking. The
growth rate γ increases with the increase of λ. In order to
quantify the phase transition point λc, we numerically investigate
the time-averaged value of norm �N � ∑M

j�1N (tj)/M for different
values of λ. Our results show that for a specific Zeff, the average value
�N equals to unity for λ smaller than a critical value λc, beyond which
the �N gradually increases (see Figure 1B). Moreover, the λc increases
with the increase of Zeff.

The OTOCs are defined as the average of the squared
commutator, i.e., C(t) = −〈[A(t),B]2〉, where both operators
A(t) = U†(t)AU(t) and B are evaluated in the Heisenberg picture,
and 〈/ 〉 = 〈ψ(t0)|/|ψ(t0)〉 indicates the expectation value taken
over the initial state |ψ(t0)〉 [23]. It usually uses the thermal states for
taking the average in the investigation of OTOCs of lattice systems.
For the Floquet-driven system, however, there are no well-defined
thermal states, as the temperature tends to be infinity as time evolves
[64]. Without loss of generality, we choose a Gaussian wavepacket as
an initial state, i.e., ψ(θ, 0) = (σ/π)1/4 exp (−σθ2/2) with σ = 10. We
consider the case as A = θ and B = pm (m ∈ N), hence C(t) �
−〈[θ(t), pm]2〉.

Our main result is the scaling law of the late-time behavior of the
OTOCs
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C t( ) ~ N2m−1θ2c , (4)

where N is the dimension of the momentum space of the PTKR
model, and θc = π/2. This prediction is verified by numerical results
in Figure 2. As an illustration, we consider m = 1, 2, and 3 in
numerical simulations. Figure 2A shows that for a specific m, the
C(t) saturates rapidly as time evolves, which is in perfect agreement
with our theoretical prediction in Eq. 4. The critical time for
the saturation of C decreases with the increase of λ, until

saturation (as shown in Figure 2A). In order to further confirm
the scaling law of C(t), we numerically investigate the C at a specific
time for different values of N. Figure 2B shows that for t = t10, the
value of C increases in the power-law of N, which coincides with the
theoretical prediction in Eq. 4. The scaling of C(t) with dimensions
of the system demonstrates that it diverges as N → ∞, which is of
interest in the study of fast scrambling [63]. We would like to
mention that we previously found the scaling law for the OTOCs
constructed by A = θ and B = p, in a Gross–Pitaevskii map system

FIGURE 1
(A) Time dependence of N for Zeff = 0.1 with λ = 10–4 (squares), 0.002 (circles), 0.005 (triangles), and 0.007 (diamonds). Solid lines indicate the
exponential fittingN � eγt . (B) The average value �N versus λwith Zeff = 0.1 (squares), 0.5 (circle), and 0.9 (triangles). Arrowsmark the phase transition point
λc for Zeff = 0.1. Horizontal dashed lines in (A,B) denote N � 1 and �N � 1, respectively. The parameter is K = 2π.

FIGURE 2
(A) Time dependence ofC(t) with B= p (squares), p2 (circles), and p3 (triangles) withN= 213. The arrowmarks the critical time tc forB= p. Inset: Critical
time tc versus λ. (B) C(t) at the time t = t10 versus N. Solid lines in (A,B) denote our theoretical prediction in Eq. 4. The parameters are K = 2π, λ = 0.9, and
Zeff = 0.1.
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[65]. Our present work explores the scaling law for B = pm with the
arbitrary integer m; moreover, it extends the investigation to non-
Hermitian systems, which is evidently a significant advance in the
fields of operator growth in chaotic systems.

3 Theoretical analysis

3.1 Scaling law of the C1(t)

Straightforward derivation yields the expression of OTOCs

C t( ) � C1 t( ) + C2 t( ) − 2Re C3 t( )[ ], (5)
where the three terms in right side are defined by

C1 t( ) � 〈ψR t0( )|p2m|ψR t0( )〉, (6)
C2 t( ) � 〈φR t0( )|φR t0( )〉, (7)

and

C3 t( ) � 〈ψR t0( )|pm|φR t0( )〉, (8)
with |ψR (t0)〉 = U†(tn, t0)θU (tn, t0)|ψ(t0)〉 and |φR (t0)〉 = U†(tn,
t0)θU (tn, t0)p

m|ψ(t0)〉.
To get the state |ψR (t0)〉, one needs three steps: 1) forward

evolution t0 → tn, i.e., |ψ(tn)〉 = U (tn, t0)|ψ(t0); 2) action of the
operator θ on |ψ(tn)〉, i.e., |~ψ(tn)〉 � θ|ψ(tn)〉; and 3) backward
evolution tn → t0, i.e., |ψR(t0)〉 � U†(tn, t0)|~ψ(tn)〉. C1 (tn) (see Eq.
6) is just the expectation value of the p2m taken over the state |ψR
(t0)〉. For the numerical calculation of the state |φR (t0)〉, one should
first construct the operation of pm on the initial state |ψ(t0)〉,
i.e., |φ(t0)〉 = pm|ψ(t0)〉. Then, forward evolution from t0 to tn
yields the state |φ(tn)〉 = U (tn, t0)|φ(t0)〉. At time t = tn, the
action of θ on the state |φ(tn)〉 results in a new state
|~φ(tn)〉 � θ|φ(tn)〉, starting from which the time-reversal process
tn → t0 yields the state |φR(t0)〉 � U†(tn, t0)|~φ(tn)〉. The norm of
|φR (t0)〉 is just the C2 (tn) (see Eq. 7). As the two states |ψR (t0)〉 and
|φR (t0)〉 are available at the end of time reversal, one can calculate
the C3 (tn) according to Eq. 8.

It is known that in the PT -symmetry breaking phase, the norm
of quantum state N ψ(tn) � 〈ψ(tn)|ψ(tn)〉 exponentially increases
for both the forward and backward time evolutions. To eliminate the
contribution of norm to OTOCs, it is necessary to take the
normalization for the time-evolved state. Specifically, for the
forward evolution t0 → tn, we set the norm of the quantum state
equals to that of the initial state, i.e., N ψ(tj) � 〈ψ(t0)|ψ(t0)〉 with
0 ≤ j ≤ n. The backward evolution starts from the time t = tn with the
state |~ψ(tn)〉, whose norm N ~ψ(tn) � 〈ψ(tn)|θ2|ψ(tn)〉 is
expectation value of θ2 with the state |ψ(tn)〉. It is evident that
the value of N ~ψ(tn) is important information encoded by the
operation of θ on the state |ψ(tn)〉. Based on this, we take the
normalization of the quantum state in the backward evolution tn →
t0 in such a way that its norm equals to N ~ψ(tn),
i.e., N ψR

(tj) � N ~ψ(tn). One can find that for both the forward
and backward evolutions, the norm of a time-evolved state always
equals that of the state which the time evolution starts from. The
same procedure of normalization is applied in calculating C2 (tn).
Therefore, we have the equivalence N φ(tj) � 〈φ(t0)|φ(t0)〉 and
N φR(tj) � 〈~φ(tn)|~φ(tn)〉 (0 ≤ j ≤ n) for the forward evolution and
time reversal, respectively.

We rewrite the C1 as

C1 t( ) � 〈ψR t0( )|p2m|ψR t0( )〉 � 〈p2m t0( )〉RN ψR
t0( ), (9)

whereN ψR
(t0) � 〈ψR(t0)|ψR(t0)〉 is the norm of the quantum state

|ψR (t0)〉 and 〈p2m(t0)〉R � 〈ψR(t0)|p2m|ψR(t0)〉/N ψR
(t0) indicates

the exception value of p2m of the state |ψR (t0)〉with the division of its
norm. We numerically investigate both the forward and backward
evolutions of the norm N , and the mean values 〈θ〉 and 〈p〉 for a
specific time, e.g., t = t10. It should be noted that we define the
expectation value of observable Q as 〈Q〉 � 〈ψ(t)|Q|ψ(t)〉/N (t)
with N (t) � 〈ψ(t)|ψ(t)〉. It is evident that such kind of definition
eliminates the contribution of norm to mean value. Figure 3A shows
that the norm is in unity during the forward time evolution (i.e., t0→
t10) and remains at a fixed value, i.e., N ψR

(t0) ≈ θ2c during the
backward evolution (i.e., t10 → t0). For t0 → t10, the value of norm
equals to that of the normalized initial state, so N (tj) � 1. For the
time reversal t10 → t0, our normalization procedure results in the
equivalence N ψR

(tj) � 〈ψ(tn)|θ2|ψ(tn)〉. Interestingly, our
numerical investigations in Figures 4A, C, E show that for the
forward evolution, the initial Gaussian wavepacket rapidly moves to
the position θc = π/2; it should be noted that the initial Gaussian
wavepacket has not moved to the position θc before t4. This is the
reason why C(t) decays sharply before t4. During the time reversal, it
remains localized at θc with the width of distribution being much
smaller than that of the state of forward evolution. Correspondingly,
the mean value 〈θ〉 has very slight differences with θc (see
Figure 3A). Since the quantum state is extremely localized at θc,
one can get the approximation

N ψR
t0( ) � 〈ψ tn( )|θ2|ψ tn( )〉 ≈ θ2c . (10)

Figures 4B, D, F show the momentum distribution of the state
during both forward and backward evolutions. For the forward
evolution, the quantum state behaves like a soliton which moves to a
positive direction in momentum space, resulting in the linear
increase of the mean momentum, i.e., 〈p〉 = Kt (see Figure 3B).
Themechanism of the directed acceleration has been unveiled in our
previous investigations [29,56]. Intriguingly, at time t = t10, the
action of θ yields a state with a power-decayed shape,
i.e., |ψR(p, t0)|2 ∝ (p − pc)−2 (see Figure 4F). Most importantly,
during the backward evolution, the quantum state still retains the
power-law decayed shape, for which the center pc decreases with
time and almost overlaps with that of the state of the forward
evolution. This clearly demonstrates a kind of time reversal of
transport behavior in momentum space.

In the aspect of the mean momentum 〈p〉, we find that the value
of 〈p〉 linearly decreases during the backward evolution and is in
perfect symmetry with that of the forward evolution, which is a solid
evidence of time reversal. In the end of the backward evolution, the
quantum state |ψR (t0)〉 is localized at the point p = 0 (see Figure 4B).
By using the power-law distribution |ψR (p, t0)|

2 ~ p−2, it is
straightforward to get the estimation of the expectation value of
p2m, i.e., 〈p2m〉ψR

� ∫pN/2

p−N/2
p2m|ψR(p, t0)|2dp∝N2m−1. Taking both

〈p2m〉ψR
and N ψR

(t0) in Eq. 10 into Eq. 9 yields the relation

C1 t( )∝N2m−1θ2c , (11)
which is verified by our numerical results in Figure 5. As an
illustration, we consider the cases with m = 1, 2, and 3. Our
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numerical results of the late-time saturation values of C1 are in
good agreement with Eq. 11. It is now clear that the scaling
of C(t) with N originates from the power-law decay of

the state |ψR (t0)〉. The reason for the formation of
power-law decayed wavefunction has been uncovered in
Ref. 65.

FIGURE 3
Time evolution of N (A), 〈θ〉 (A), and 〈p〉 (B) with t = t10. In (A), solid and dash-dotted lines indicate N � θ2c and 〈θ〉 = θc (= π/2), respectively. In (B),
solid line indicates 〈p〉 = Kt. Green dashed lines in (A,B) are auxiliary lines. The parameters are the same as in Figure 2.

FIGURE 4
Distributions in real (left panels) andmomentum (right panels) space. In (A–D), black and red lines indicate the distribution of the states at the forward
|ψ(tj)〉 and backward |ψR (tj)〉 evolution, respectively, with t = t0 (top panels), t = t5 (middle panels), and t = t10 (bottom panels). In (E–F), red and black lines
indicate the distribution of the states |ψ(t10)〉 and |~ψ(t10)〉 � θ|ψ(t10)〉. Blue dashed lines indicate the power-law decay |ψ|2 ∝ (p − pc)−2. The parameters are
the same as in Figure 2.
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3.2 Analytical analysis of C2(t)

We proceed to evaluate the time dependence of C2(t) in Eq. 7,
which is just the norm of the state |φR (t0)〉 at the end of backward
evolution. According to our normalization procedure, the value of
C2 equals to the norm of the state |~φ(tn)〉 � θ|φ(tn)〉, hence

C2 � 〈φ tn( )|θ2|φ tn( )〉 � 〈θ2〉N φ tn( ), (12)
with N φ(tn) � 〈φ(tn)|φ(tn)〉 and 〈θ2〉 � 〈φ(tn)|θ2|φ(tn)〉/N (tn).
We numerically find that the state |φ(tn)〉 is extremely localized at
the position θc during the forward evolution (see Figure 6). Then, a
rough estimation yields 〈θ2〉 ~ θ2c . The norm N φ(tn) equals that of
the initial state |φ(t0)〉 = pm|ψ(t0)〉. By using the initial Gaussian
wavepacket ψ(p, t0) � (1/σZ2effπ)1/4 exp(−p2/2σZ2eff ), one can
straightforwardly obtain

N φ tn( ) � ∫∞

−∞
p2m|ψ p, t0( )|2dp � 2m − 1( )‼

2mαm
,

where α = 1/(σZ2) and (. . .)!! denote a double factorial. Taking both
the 〈θ〉 andN φ(tn) into Eq. 12 yields the late-time saturation value

C2 t( ) ~ θ2c
2m − 1( )‼
2mαm

, (13)

which is in good agreement with our numerical results in Figure 5.

3.3 Scaling law of C3(t)

The value of C3(t) depends on both the states |ψR (t0)〉 and |φR
(t0)〉 (see Eq. 8). Figure 7 shows the probability density distributions
of the two states in both the real space and momentum space. For
comparison, the two states are normalized to unity. One can find the
perfect consistence between |ψR (t0)〉 and |φR (t0)〉. Then, we roughly
regard C3 as the expectation value of the pm taking over the state ψR
(t0) or φR (t0), i.e., C3(t) ≈ 〈pm(t0)〉ψR

�������
N ψR

(t0)
√ �������

N φR(t0)
√

, where
according to aforementioned derivations N ψR

(t0) � θ2c and
N φR(t0) � C2(t). By using the power-law decayed wavepacket
|ψR (t0)|

2 ∝ p−2, one can obtain the estimation

〈pm t0( )〉ψR
≈ ∫ pN/2

p−N/2

pm|ψR p, t0( )|2dp
~

0 for odd m,
Nm−1 for even m.

{ . (14)

Accordingly, the C3 is approximated as

C3 t( ) ~ 0 for odd m,
ηNm−1 for even m.

{ . (15)

with the prefactor η∝ θ2c[(2m − 1)!!/2mαm]12.
We numerically calculate the absolute value of the real part of

C3. Interestingly, our numerical results of |Re [C3]| is in good
agreement with the analytical prediction in Eq. 15 (see Figure 5),
which proves the validity of our theoretical analysis. We further
numerically investigate the |Re [C3(t)]| at a specific time for different
N. Figure 8 shows that for B = p, the value of |Re [C3(t)]| is nearly
zero with varying N, which is consistent with our theoretical
prediction in Eq. 15. For B = p3, the value of |Re [C3(t)]| has
slight difference with zero for large values of N, signaling the

FIGURE 5
C1 (squares), C2 (circles), and |Re[C3]| (triangles) versus time with
B = p (A), p2 (B), and p3 (C). Dash-dotted, solid, and dashed lines
indicate our theoretical prediction in Eq. 11 forC1, Eq. 13 forC2, and Eq.
15 for C3, respectively. The parameters are the same as in
Figure 2.

FIGURE 6
Probability density distributions in real space at the time t = t0
(squares), t5 (triangles), and t10 (circles) with B = p (A), p2 (B), and p3 (C).
The parameters are the same as in Figure 2.

Frontiers in Physics frontiersin.org06

Zhao and Wang 10.3389/fphy.2023.1130225

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1130225


derivations with Eq. 15. This is due to the fact the quantum state |ψR
(t0)|

2 is not exactly symmetric around p. In order to quantify such
asymmetry, we numerically investigate the difference of the sum of

the probability between the positive and negative momentums Δρ �∑N
2−1
n�0 |ψR(t0, pn)|2 −∑−1

n�−N
2
|ψR(t0, pn)|2 and find that it is non-zero

Δρ = 0.13. Interestingly, for B = p2, the value of |Re [C3(t)]| increases
linearly with increasing N, which is clear evidence of the validity of
our theoretical prediction.

4 Conclusion and discussion

In the present work, we investigate the dynamics of the
C(t) = −〈[θ(t), pm]〉 in a PTKR model. The spontaneous
PT -symmetry breaking is assured by the condition λ > λc. In the
broken phase of PT -symmetry, we find, both analytically and
numerically, the scaling law of C(t) with the dimension of the
momentum space, i.e., C(t) ~ N2m−1θ2c . This demonstrates that the
value of C increases unboundedly with N, which implies that the local
perturbation can spread to the entire system very rapidly. In order to
reveal the mechanism of the scaling, we make detailed investigations on
both the forward and backward evolutions of the quantum state. Our
investigations show that the action of θ on a quantum state leads to the
formation of the power-law decayed momentum distribution
|ψ(p)|2 ∝ (p − pc)−2. Interestingly, such a shape retains during the
time reversal, in addition to the decrease of pc to almost zero. Based on the
power-law decayed state, we analytically derive the late-time saturation
values of the three parts of theC, which is confirmed by numerical results.

FIGURE 7
Comparison of the distribution of states |ψR (t0)〉 (solid lines) and |φR (t0)〉 (dashed lines) in real (A, C, E) andmomentum space (B, D, F)with B = p (top
panels), p2 (middle panels), and p3 (bottom panels). Blue dashed lines in (B, D, F) indicate the power-law decay |ψR (t0)|

2 (|φR (t0)|
2)∝ p−2. The parameters are

the same as in Figure 2.

FIGURE 8
|Re [C3(t)]| at the time t = t10 versus N with B = p (squares), p2

(circles), and p3 (triangles). Red solid line indicates our theoretical
prediction in Eq. 15 with η = 6.05 × 10−7 for B = p2. The parameters are
the same as in Figure 2.
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In recent years, fruitful physics of quantum many-body systems,
such as dynamical phase transition, many-body localization, and
thermalization have received extensive studies. It is found that the
energy conservation of chaotic systems leads to the scaling law of
OTOCs, for which the late-time saturation of OTOCs scales as the
inverse polynomial with the system size [66]. For chaotic systems with
long-range interaction, the late-time saturation values of OTOCs obey
the dynamical scaling law near the phase transition point [67].
Accordingly, our finding of the power-law scaling of OTOCs with
the system size of the PTKR model serves as a new element of the
quantum information scrambling in non-Hermitian map systems.
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