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Weyl semimetals, classified as solid-state crystals and whose Fermi energy is
accurately situated at Weyl points (WPs), have received much attention in
condensed matter physics over the past 10 years. Weyl quasiparticles have been
observed in the electronic and bosonic regimes, in addition to the extensive amount
of theoretical and numerical predictions for the Weyl semimetals. This study
demonstrates that 12 single Weyl phonons with linear dispersion and six double
Weyl phonons with quadratic dispersion coexist between two specific phonon
branches in real material P4332 BaSi2. The 12 single Weyl phonons and the six
double Weyl phonons can form a Weyl complex phonon, which hosts a zero net
chirality.
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Introduction

Condensed-matter systems with inherent topological orders have received a great deal of
attention lately. On the one hand, since quasiparticle excitations in realistic materials provide
analogs of relativistic fermions or bosons in quantum field theory, these topological systems
offer exotic platforms to study elementary particles and their related phenomena in high-energy
physics. However, non-trivial topology, which is characterized by topological invariants, gives
rise to topological quasiparticles in crystalline solids [1], providing an intriguing way to study
symmetry-protected topological orders. Additionally, the crystal symmetry rather than the
Poincare symmetry constraints quasiparticles in crystalline solids. There is therefore a
possibility of discovering unusual topological quasiparticles [2–10] without high-energy
physics counterparts in condensed-matter physics in addition to the traditional Dirac,
Weyl, and Majorana particles in the standard model.

Numerous conventional and non-conventional topological quasiparticles have been
proposed up to this point. For instance, intense research focuses on topological bosons in
crystalline solids and various non-trivial fermions in topological semimetals [11–29].Weyl-type
excitations stand out among these non-trivial quasiparticles as being particularly significant. A
quantized chiral charge, also known as the Chern number C, is what defines the topology of a
Weyl point (WP). WPs are present in a system by shattering either the time-reversal or
inversion symmetry because of the twofold-degenerate feature.

However, the crystal symmetries of crystalline solids are more intricate and may contain
unusual Weyl-type quasiparticles. For example, the screw rotational symmetry can protect
doubleWPs orWPs with the higher Chern number C. The 4-fold or 6-fold rotational symmetry
can protect quadratic-double or cubic-triple WPs [28, 30–39].

This work identifies a Weyl complex composed of 12 C-1 WPs and 6 C-2 WPs in the
phonon dispersion for P4332 BaSi2. Note that P4332 BaSi2 is a prepared experiential material
[40]. BaSi2 crystallizes in the cubic P43232 space group. Ba2+ is bonded in an 8-coordinate
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geometry to eight equivalent Si1− atoms. Si1− is bonded in a 7-
coordinate geometry to four equivalent Ba2+ and three equivalent
Si1− atoms. The optimized lattice constants for P4332 BaSi2 are a = b =
c = 6.771 Å, which are in good agreement with the experimental data,
i.e., a = b = c = 6.715 Å [40]. The crystal structure of the relaxed BaSi2 is
shown in Figure 1A.

Methods

Using the Vienna ab initio Simulation Package [41] and the DFT
framework, computations for the realistic material BaSi2 were carried
out. The calculation’s energy and force convergence conditions were
set to 10−6 eV and −0.01 eV/Å, respectively. A 5 × 5 × 5 Monkhorst-
Pack grid was used to sample the whole BZ after the plane-wave
expansion was truncated at 500 eV. We used the density functional
perturbation theory to obtain the force constants for phonon spectrum
calculations, and then we used the PHONOPY package [42] to
calculate the phonon dispersion spectrum. We obtained the
phonon Hamiltonian of the tight-binding model and the surface
local DOSs with the open-source software WANNIER TOOLS [50]
and surface Green’s functions.

Results and discussion

We determine the phonon spectra using first-principles
calculations and verify that the two obvious phonon crossing

points are present in the optical phonon branches of P4332 BaSi2.
The absence of an imaginary frequency in the phonon spectrum, as
seen in Figure 1C, demonstrates the P4332 BaSi2’s dynamical stability.
We mainly focus on the frequencies around 8 THz and find two
obvious phonon crossing points, P1 and P2, on Γ-X and Γ-M,
respectively (see Figure 1B).

Figures 2A, B display the three-dimensional plot of the twofold
degenerate phonon bands around the P1 and P2 points, respectively.
From Figure 2A, one finds that the WP at P1 is a Charge-twoWP. The
charge-2 Weyl point (C-2 WP) is a topologically charged 0D two-fold
band degeneracy with a charge of 2. It has a quadratic energy splitting
in the plane perpendicular to the Γ-X direction and a linear dispersion
in one direction (Γ-X). On a high-symmetry line or at a high-
symmetry point in the BZ, the C-2 WP can happen. Figure 2B
shows that the WP at P2 is a Charge-one WP. The charge-1 Weyl
point (C-1 WP) is a degeneracy of the 0D two-fold band. It can occur
at a generic k point in BZ and features a linear energy splitting in any
direction in momentum space.

Note that C-2 WP and C-1 WP are also named as double WP and
single WP, respectively. In the scientific literature, double-Weyl points
with greater topological ordering and emerging in particular crystals
with particular symmetries have been discovered. Because double-
Weyl points result from the coalescence of two single-Weyl points,
their topological charge values are equal to 2 and −2.

In order to determine the chirality of Weyl phonons, we employ
the Wilson-loop method within the evolution of the average position
of Wannier centers. Figures 2C, D show the evolution of the average
position of the Wannier centers for the P1 WP with positive chirality

FIGURE 1
(A) The crystal structure for BaSi2. (B) 3D bulk and 2D surface BZs. (C) Phonon dispersion for BaSi2. P1 and P2 are two obvious crossing points.
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and the evolution of the average position of the Wannier centers for
the P2 WP with negative chirality, respectively. These findings suggest
that the WP at P1 (or P2) forms a double phonon WP with chiral
charge 2 (or a single WP with chiral charge −1).

As shown in Figure 3A, one finds a total of 12 single WPs with
C = −1 and 6 double WPs with C = +2 in the 3D BZ. The positions for
all these multiple C-1 and C-2 WPs are shown in Figure 3B. These
12 C-1 WPs and 6 C-2 WPs will form a Weyl complex, which has a
zero net chiral charge and obeys the Nielsen-Ninomiya no-go theorem
[51, 52]. Note that the Weyl compelx has also be predicted by series
research groups [53–56].

Therefore, our findings present ideal candidates for C-1 and C-2
WP phonons to form phononic Weyl complexes. Moreover, our
findings are applicable to fermionic systems.

Unique non-trivial surface states are associated with the exotic C-2
and C-1 WP phonons. We build a phonon tight-binding Hamiltonian in
the Wannier representation using second-order interatomic force
constants to demonstrate this. The iterative Green’s function method
is used to calculate phonon surface states in this model. Figure 4 depicts
the local phonon density of states (LDOS) projected on a semi-infinite
(001) surface of P4332 BaSi2. As anticipated, there are two visible phonon
surface states, each of which begins at the projection of the doubleWP and

FIGURE 2
(A) and (B) 3D plots of the phonon bands around P1 and P2 points. (C) and (D) Evolutions of the average position of theWannier center for theWPwith C =
+2 at P1 and the WP with C = −1 at P2.

FIGURE 3
(A) and (B) positions for the 12 C-1 WPs and 6 C-2 WPs in the 3D BZ.
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ends at the projections of two singleWPs. The lack of trivial bulk states on
the (001) surface of P4332 BaSi2 substantially simplifies experimental
detection and subsequent applications [43–49].

Summary

We demonstrated that in real material P4332 BaSi2, there are
12 single WPs with C = −1 and 6 double WPs with C = +2 in the 3D
BZ. These Weyl phonons create a Weyl complex with zero net charge
number, and their non-trivial surface states connect the projections of
phonon WPs are visible.
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